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This note gives an account of normali zers and covering groups more general
than both the ,V-normalizers and ,F-covering groups of Carter, Hawkes and
Gaschiitz and the ff-norunalizers and ff-covering groups given by M. J.
Prentice. The extended notions are used in an iterative scheme which produces
covering groups from normalizers, and the rate of convergence of this method
in the case of ,F -norunalizers is compared with the rates of related procedures
developed by Yen and by F'ischer, Mann, and Graddon. The context is the
theory of finite solvable groups.

1. IxrnooucrroN

Carter and Hawkes, in [1], define the concept of an,F-normalizer, where,%
is a locally induced formation, and give a number of connections between
,%-normalizers and the ,V-covering groups first considered by Gaschtitz.
Theorem 5, below, gives an iterative process which can be used to construct
an ,V-covering group of a group G from ,V-normalizers of certain easily
obtained subgroups of G. This paper had its genesis in the observation that
the proof of Theorem 5 for ,T-normalizers and ,?-covering groups also

produces 9f-covering subgroups from ff-normahzers in the sense of Prentice,

[3], although the two sorts of norm alrzers and covering groups are defined
quite differently. In this paper the term "normalizer" is used to denote a

subgroup whose properties resemble those of a system normalizer or g-
normahzer, in a sense to be made precise later. Since Prentice's approach
is entirely from within the fixed group G, and since the determination of
subgroups of. G, even when related to ,7, ultimately depends on G and not
on having the complete list of groups in ,V in view, it seems desirable to have

some sort of internal formation theory developed entirely within a given
group which unifies both previous theories.
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Sections 2 and 3 give the details of such a theory. Desirable sections of G
are determined by considering their actions on their chief factors somewhat
as in the theory of locally induced formations. Section 3 shows that, with
suitable natural restrictions on the actions allowed, the normalizers and

covering groups obtained have the familiar properties that seem to make the
theory of %-normalizers and fi-covering groups work.

Section 4 gives an iterative method for obtaining covering groups from
normalizers in an axiomatic setting. The main point of Section 3 is that a

number of examples satisfy the axioms. Section 5 treats still another
example.

Finally, Sections 6 and 7 compare the method of Theorem 5 with two other
iterative processes. In Section 6 an axiomatic treatment similar to the one
given to Theorem 5 also yields a generalizatton of Yen's method of t6] to
our setting.

Notation is intended to be standard, and is that of [a] and [5]. The notation

means that M is a maximal subgroup of G. All groups considered are finite
and solvable. Although some of the results given hold under less restrictive
hypotheses than solvability, we sacrifice utmost generality for the sake of
clarity of exposition.

2. Gooo Srcrroxs

In this part of the paper we develop general notions of normalizer and
covering group defined within a given group G. To have a notion of covering
group one needs some classification of good sections to be covered. A notion
of normalizer, on the other hand, leads to chief factors which are covered by
normalizers (and hence are good) and chief factors avoided by normalizers.
A section should be good if all of its chief factors are good, and in this way
normalizers define good sections and so also determine what covering groups
should be. Our development has obvious roots in the work of Carter and
Hawkes t1] and Prentice [3].

Throughout, let G be a fixed group . A dissection of. G is a set of sections

of G. If I isadissectionof Gand itH < G, then0 induces a dissection
9 H of H given by

9H - {S e I I S is a section of H}.

If lf d G, 0 also induces a dissection 0lIV of GII{ defined by

slN - {(UlN)l(VlI,{) I ulv e e and v > ltr}.
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We shall often denote the section Ull by LI and identify gll with 9.It
follows from the definition that if Ar < G and I/ < C < G, then

9rlN - (slN)rr* .

It 9 is a dissection of G, the subgroup ,E of G is a O-coaering subgroup of G
in case

(i) Ee9 and

(ii) EV: U whenever E'< U < G and UlVe9.

For each section UIV of G let Covs(UlV) be the set of OulV-covering
subgroups of tl lV. For future reference, we list some immediate con-
sequences of these definitions.

Pnoposrrrol\ 1. (u) If l.r< H < G, then HlI,{ e Lf and only if
H IIV e Cov s(H IIV).

(b) If l,I< G, if CIIV e Covs(G/l/), and if C < U < G, then

CIN e Covs(UlN).

We need to produce dissections in some systematic way which leads to a

rich enough theory. A sort of local induction is one answer.

A sector on G is a function Y defined on the set of all subgroups of G such
that Y(f/) < H for every subgroup H of G.

If Y is a sector on G and F/ is a subgroup of G, the restriction of Y to the
set of subgroups of H is a sector on H, denoted Y, .

If Y is a sector on G and l/ < G, Y yields a sector Y/l/ on G/l/ defined by

(Y/IO(EIIV) : Y(E)lql/ whenever lr < 'B < G'

Let n be a set of primes. A sector screen of G with support zr is a function U
from zr into the set of sectors of G. Denote g(p) by Y, . For H a subgroup
of G call the p-chief factor UIV of H U-central in H in case P e ,r and

Let d.(g) be the set of section s H lK of G such that each I/-chief factor of
H lK is W -central rn H. Call d.(g) the dissection of G induced by W .

I{ote 1. Each subgroup E of G has a smallest normal subgroup K with
the property that E lK e d(W). We denote this subgroup by Ed(w) .

In making these definitions we have in mind two examples. If I is a screen

with supportrr,theset{9(p) I p e z} of formations locally induces a formation
g.If we define sectors Y, for p inrrbyYo(H) : He(p), then d(U) is the set

of sections of G which belong to ,F.



COVERING GROUPS 131

The d(A)-covering groups of G are the ,7-covering groups in this case,

and the W -central chief factors are the I -central ones.

Another quite different example, due to Prentice (t3]) is obtained by
arbitrarily choosing a normal subgroup X( p) of G for each ? in rr and defining
Y r(H) - H n X(p) whenever 11 < G. In Prentice's notation, d.(g) - ff
and the d(U)-covering groups are the ff-covering subgroups of G.

If H < G and lf < G, the sector screen W an G induces sector screens
g H and g 

IIV on H and G lN, respectively, with

(U ,)(p) - (Y,), and (s ll)(p) - Y,/l/.

From these definitions it is immediate that UH induces d(W), on H and gllr{
induces d(U)/I/ on GIIY.

Let W be a sector screen of G with supportr, and let Xbe a Sylow system
for G. The W -normalizer of G determined by I is the subgroup

I,n o lr"g,(G)nIo).

The proof of the following result is essentiallly the proof of Theorem 3

of [a] (and is really due to P. Hall).

PnoposITIoN 2. Let W be a sector screen of G, and let D be the W-normalizer
of G determined by the Sylout system Z of G. Then

(1) D cozsers eaery W-central chief factor of G and aaoids eaery U-eccentric
chief factor of G, and

(2) DKIK is the W lK-normalizer of GIK determined by ZKIK, wheneoer

K< G.

Tf g is a sector screen of G and tllv is a section of G, let Nora,(tllv)be
the set of UrlV-normalizers of UlV. Then Proposition 2(2) says that if
D e Nora,(U), then DVIV e Norry(llv).

We single out an easy consequence of Proposition 2(l) for later reference.

Pnoposlrlol{ 3. Let A be a sector screen of G. If tllV e d(U), then

Norry(Ulv) - {UIV}.

Each of the properties of Nor oy and Cov ag, that we have verified should
hold for any definitions of Nor and Cov which can be viewed as generalizations
of the familiar notions, and in fact we have used little more than natural
definitions and P. Hall's covering-avoiding results so far. The other conditions
on Cov and Nor that we need are not true without some additional restrictions
on the sectors, however. Examples of various sorts of pathology are not
difficult to construct out of Su , Au , Kn and S, X Z, .
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3. Sncrons rHAT Wonr

If the sectors Yo for P in 7T are required to be well-behaved, then one can

expect the families Cov^osiulv) and Nors,(UlV) to have many of the
familiar properties of their antecedents. This section shows that if each Y,
satisfies three conditions, labeled (A), (B), and (C), then the properties needed

in Section 4 hold. Since the sectors used to define 9-izers and those used by
Prentice satisfy (A), (B), and (C), it follows that our convergence process in
Section 4 applies to both settings as well as to mixtures of the two.

The three conditions on a sector Y on G which we consider are the following:

E=,Y(EK)'K:Y(E)'K.
(B) If E and K arc subgroups of G with E < l/"(K), then /( < Y(EK) +

Y(EK).K - Y(E) .K.

(C) If E < G and if S e G, then Y@10 - Y(E',).

PnoposlrroN 4. (1) If ,q is a formation, and if Y(tl): Us for eu)ery

subgroup U of G, thenY satisfies (A), (B) and (C).

(2) If X < G, and if Y(U) - X A tJ for eaery subgroup U of G, then Y
satisfier (A), (B) and (C).

Thus both of our motivating examples, the screens and Prentice's localized
formation theory, satisfy all three conditions.

Proof of the Proposition. (1) Since (EK)u . KIK - (EKIK)' - EsKlK,
Y(EK) ' K - Y(E)K, regardless of whereY(EK) lies. (C) is also clear.

(2) we haveY(EK)' K - l@K) ^ 
xlK - (EK) n (xK) - K' lan (x/<)1.

If Y(EK) <,8, then (EK)^X-EAX -Y(E).Thus (A) holds. If
Y(EK)>K, then /(< X and so K'lEn(XK)J -K 'Y(E).Hence (B)
is true. Again, (C) is obvious, since X < G.

We begin with some elementary consequences of (A), (B) and (C).

Lruue 1. Conditions (A), (B), and (C) are inherited by subgroups and

.factor groups of G.

Proof . By their nature, the conditions are inherited by subgroups.
Clearly (C) is also inherited by factor groups. Let E, K and L be subgroups
of G with L < G,L < E' n Kand E' < lf"(K).

Suppose that the sector Y satisfie. (A) on G. It (Y IL)(EKIL) < ElL, then
by definition Y(EK)LIL - (Y IL)(EKIL) < ElL, so that Y(EK) < E and

thusY(E/q 'K - Y(z') 'K, bv(A).Hence (YlL)(ElL)'(KIL):Y(E)KIL -
Y(EK)KIL - (Y IL)(EKIL) ' (KlL), as desired.
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Suppose that Y satisfies (B). It KIL < (Y/Z)(EKIL), then /< < Y(EK)L,
so that K - IY(EK) n KlL. Let Kt : Y(EK) n K. Then K, < EK -
EKLL - EKt. Since K, < Y(EK'), (B) implies that Y(E) Kr:Y(EKL) Kt:
Y(EK). Thus (Y IL)(EKIL) - Y(EK)LIL : Y(E') K.LIL - Y(E)KIL :
(Y lL)(ElL) ' (KIL) ur claimed.

Lruua 2. Suppose the sector Y on G satisfies (A) and (B). If E and K are

subgroups of G utith E' < l/"(K) , then

Y(E) < Y(E'l<).K.

Proof . Let G be a minimal counterexample. Then G - EK by Lemma 1.

again,

Y(E)AIA - (YlA)(ElA)

< (Yil)@KlA).KlA
: IY(EK). KllA,

which is not true. Thus E n [Y(G)rK] is coreless.

so that E < BE. We may choose E maximal subject to Y(.8) < Y(G)K and

minimal choice of K forces B - K.
If Y(G) < ,8, then (A) yields Y(E')K : Y(EK)K, which is not true. Thus

E 'Y(G) _- G. If /( < Y(G), then (B) yields a contradiction. Hence
KnY(G) -1. So En [Y(G)/<] < EK: G,and thus En [Y(G)/(] - l,
giving a final contradiction.

The next few results show some of the consequences to Cov a(@ and Norg,
of imposing (A), (B) and (C) on the sectors Y, .

THBonEu 1. Let g be a sector screen

sector Y o for P in n satisf,es (A) and (B).
then EIVII{ e Cov, @g,)(GIIV).

with support n. Suppose that each

If E e Cov, @)(G) and if N < G,

Proof. Since EV - ClwheneverEl/ < Uand LIIVe d(W),EI{lI{'VlN -
UIIV whenever Elf < (J and PII'{)IVIN)ed(Wl,^rl). Thus we need only
show that EIV lN e d(W).

This is not immediate, since Prentice's Example 2.1 in [3] shows that if
H < G and H e d.(g) it need not be true that HIVIN e d(W) even when each

Y, satisfies (A), (B), and (C).
To complete the proof of Theorem I it will be enough to establish the

following.
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PnoposITIoN 5. Let g be a sector screen with support n such that each

sector Yo satisfies (A) and (B). If E e d(0!),if IV < G, and if E' (ElQatu) -
EIY, then EIYIN e d@).

Proof . Let G be a minimal counterexample. Then G - EIY, by Lemma L,

There is a prime p in n and a p-chief factor H lK of G above l/ with
Yr(G) { CG@|K). Since G : EI,{, (H 

^ 
E)I(Kn E) is ,E-isomorphic to

If Yr(G) < .8, then by (A), %(G) < Yr(E) 'I/, which is false. Thus
G :Yn(G).8.

by minimality of G, GIIYB e d(W). Eqrally, (EYp(G)lB)lUr(G)lB) -
(lfB) n Ye(G) -,8. Then G : EB - E, afinal contradiction.

TuEonnnn 2. Let g be a sector screen

sector Y o for ? in n satisfies (A), (B) and
of G are conjugate.

Proof. Let Gbeaminimalcounterexample.Then 1 <G and G*d,(g).

By Theorem l, EAIA andFAlA are d(U lA)-covering in GlA. By minimality
of G, EA - FgA for some g, and since.F's is d(A)-covering in G bV (C), we
may assume that EA : FA.

Now E andF are d(W)-covering h EA, and so by minimality of G, EA - G.

Since GIA - EAIA: d.(g) by Theorem 1, A__ 6d'tu) and A is unique.
Since E andF complement A in G, E and F are conjugate, a final contradiction.

THsonBvI 3. Let W be A sector screen with support r, and suppose that eaclt

sector Y o satisfies (A), (B) and (C). ry.^rr < G and if C lI{ e Cov, vil(G|IV), and
He Covals)(C), then He Cov6los)(G).

Proof . Let G be a rninimal counterexample. Then l/ > 1. There is a sec-

tion UIV of G with VH < U and UIV e d@). If it is true that UIVIVN e d(W)
and (C n U)I(C a V) e d.(g), a short argument leads to a contradiction.
Since we cannot, in general, make these assertions, a longer proof seems to be

necessary.

Suppose that .E is a d(W)-covering group of G. By Theorem 1, EN/N is

d(gl!{)-covering in GIIV and so, by Theorem 2, EIY is conjugate to C. We
may assume that EI{ : C. Then E and H are d(W)-covering in C, so that ,E

with support n. Suppose that each

(C). Then all d(U)-cooering groups
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and H are conjugate in C by Theorem 2. Then ,t/ is d(U)-covering in G,
wlrich is false. Thus G has no d(W)-covering subgroup.

We also have C - HI,{ I G, since F/ is d(W)-covering in C but not in G.

so that Ga@t < lfB. Let D be aW-normalizer of G. Then l) covers Gf NB,
so DI'{B- G. Moreover, DIV < G, and so DI{ <'G. Since GlIr{ #d.(A),
B { Gotost q frrB. Intersection of a chief series for G through B with DN
yields a chief series for DIV, where the Dl{-factors above l/ come from
G-factors above l/B and hence above 6atwt. By Lemma 2, Yp(DLI) <

LIB. Hence, DIVIN e d(W). Because Dl/ covers Gf Gaw)IV, Dl{llfl is d(g)lN-
covering in G lIV.We may suppose that C - Dl{ by The orem 2.

d(U)-covering in C. We may suppos e that D - H, by Th eorem 2. Since D
avoids both l/ and B, 6la@t : /VB.

(l < G. Now U n (BN) < UBLI - G. Let K - ti n (Bltr). Since KD : U,

G-chief.
l{ow DKI K is aW -normalizer of G lK by Proposition 2(2). Since K' < UBI{,

Lemma2 UlKe d(W). If K - rya@), then.D. Ua@tt: (J, contrary to the
choice of (J. Thus (Jd@t- 1, and since U <'G and U covers Gf Gawt,
[/ is itself d(W)-covering in G, contradicting what has already been shown.
It follor,vs that CB < G.

Since CII'{ is d(U)/l/-covering in CBIIV and 1/ is d(A)-covering in C, by
minirnality of G, /{is d(A)-covering in CB. By Theorem l, HBIB is d(g)lB-
covering in CB I B.Since CB I NB is d(W) I l{B-covering in G I I{B by Theorem 1,

the minimal choice of G forces HBIB to be d(U)|ts-covering in GlB.
Since G # d,(g), B can be taken to be contained in 6a@). Becau se HB lB

covers Gf Gawt, HGd(?/) - G.

H < U < G. If ULI < G, then I/ is d(U)-covering in (JIV, by minimality
of G, although H is not d(W)-covering n (J. Thus (JIr{ : G, and so LI < .G

andLniv-1.
Ler V - (Jd(st. If VIV > Gd(s), then G - CVN - HVN and so

Lt - HV(IY n U) - HV, which is false. Thus GIVIV f d(g). But GIVI{ -UNIVf{ :s UIV e d(U), so that GIVIY is a z'-group. For some p in zr there
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is a G-chief p-factor above lryV which is centralized by Yr( U) but not by
Yr(G). Hence,

Y,(G) { Y,(U). F(G).

If Yp(G) < (J, then by (A), Yr(G) ' N : Yr( U) ' ltr, which is not true.
Thus G : Yr(G) ' U. ff,4/ < Yr(G), then we get a contradiction from (B).
Sol/nYe(G) - l.Thenalso LI nYr(G)< (J'N : G. If tl n Yr(G):1,

showed above, H is d(U)-covering in CA by minimality of G. Thus // is

d(U)-covering in HA. Then since HAIA is d(W)-covering in UIA by Theo-
rem 1, H is d(U)-covering in U by minimality of G. But .F/ is not d(W)-covering
in U by the choice of [/. This contradiction completes the proof.

Tnnonpu 4. Let W be a sector screen with support rr, and suppose that each

sector Yrsati.sfies (A), (B) and (C). If D is aU-normalizer of G andif Gatur g
F(G), then D is a d(U)-coaering subgroup of G.

Yr(G) ' F(G) for each p in tr, and so the intersection with D of a chief series

for G is a U-central chief series for D. Hence, D e d.(g).

DAlAis aU-normalizer of GlA. By minimality of G, DAIA isd(A)f A-covering
in GlA. By Theorem 3, l) is not d(U)-covering tn DA. Thus.D < DA and
so.D avoids A.Thus,D is coreless. Moreover, A'< DA, since G - D 'F(G),

D>(DA1d'(u). Since DAlAed(W),(DA)a(Q/) <AnD:1. Thus A is

U-central in DA. Moreover, DAis d(W)-covering in G by Theorem 3.

Suppose that ,B is another minimal normal subgroup of G distinct from A.
Then DB is d(U)-covering in G, too. By Theorem 2, DA and DB are con-
jugate, from which we get A < DB and thus DA - DB. Then l@B) A DIA -

Or(G) for some prime p in n.

factor 6at% 1W with W > Yr(G) n Qa@). Then 6a@t 1W is a p-chief factor
centralized by Yr(G), contradicting the definition of Gd(w).
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Let G be a given group. For each section tllv of G let Nor(UlV) and
Cov( U lV) be sets of subgroups of U lV , called normalizers and cooering groups,

respectively, of UlV, and consider the following conditions:

f . If V < G and it CIV e Cov(G lV),then CIV e Cov(ClV).

II. If V< U< Gand if D e Nor(U), then DV|VeNor(UlV).
III. HV< U < Gandif UlVe Cov(Ulv),thenNor(UlV) - {UlV},
IV. If r\,r < G and V < G, and if CIIV € Cov(GlIt{V) and

HIV e Cov(ClV),then HIV e Cov(GlV).

V. If V < t/ < G, if DIV e Nor(UlV) and if (DIV) 'F(UIV) : UlV,
then DIV e Cov(UIV).

PnoposlrloN 6. If U is a sector screen suclt thatYo satisfies (A), (B) and (C)

fo, each P in the support of W , then Nors, and Cov aqosy satisf)t conditions I-Y
in the role o/ l{or and Cov, respecticely.

Proof . The conditions follow from Proposition 1, Proposition 2(2),
Proposition 3, Theorem 3 and Theorem 4, in that order.

with Htl G and Ho-rlHu nilpotent for i - 1,...,n. Suppose the subgroups

Do ,..., Dn and Go ,..., Gn satisfy:

(l) Go - G,

(2) D, e Nor(Gu) fo, i - 0,... , n, and

(3) Gi - Di-rHofor i - 1,..., n.

If I-Y hold, then GnlHue Cov(GlH) for i - 1,...,n. In particular, G"ll e

Cov(G/1).

Proof. Since Do e Nor(G), GIG : DoGIG e Nor(G lG) by II, and so

GolHo: GIG e Cov(GlG) by V with Lr - V - G.
Assume inductively that Gn-rlHn-l e Cov(GlHu-).Then by I, Gr-rlHu-1 €

Cov(Gu-rlHu-r) and So, by III, {Gu-rlHu-r} - Nor(Gu-r.lHr-r).
Now GulHu - Di-rHulHue Nor(Gu-rlHr) by (2) and II. Also by II,

Do-rHu-rlHo-, e Nor(Gr-rlHo-r) : {Gn-r,lHu-r}, and so GlHi-l : Du-rHu-1 :
Gn-r -

Since

H u*rl H o < ^F(G n-rl H r) : F(G7H u-rl Go-.r),
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V implies that GulHue Cov(Gn-rlH). But then GrlHue Cov(GlH) by IV
and the inductive assumption. The result follows by finite induction.

This theorem has the obvious corollary that if I-V hold and if Nor(Ull)
is nonempty for every subgroup [-i of G then Cov(G) is nonempty. It thus
provides an alternate proof of Theorern 4.9 [3].

such that Dr-, ( De for all i.
Let I be a screen and let Z be a Sylow system for G which reduces into the

subgroup H of G. Then by Proposition I of 147, Z also reduces into the 9-izer
of H with respect to Z. Thus if we use f -izers for Nor we can choose Do',
such that X reduces into each of them as well as into each Gi .

Example 1 of [1] shows that even in this setting the Du's need not increase.

for each i and so

Du_r-InnGnn, n I{oGf-?) nI,)

<I1,nG,A n N"Gf(r)6Zo)

The Du', also increase if they are ,V-tormalizers and g >.-,f .In this
case, since GnlHu is an ,7-normalizer of Gu-rlHu, Theorem 4.7 of [1] shows

that Gi can b. joined to Gi-rby an ,?-crrtical maximal chain. By repeated use

of Theorem 4.3 of. U7, Dn-r, ( De .

In the Prentice setting, too, the Dr'* can be chosen to have Z reduce into
each D6 and Gi . Then

Dr-r,-In^rGtA

<LnGuA
: Di.

I'{o(Gu_l nYr(G)nIr)

I{c(G,nYe(G)nIr)
D

n

5. Sonrr ExevrpLES oF SEcrons SarrsFyrNc (A), (B) exD (C)

Sectors given by Yr(f| : He or Yr(H) - H nX with X<G satisfy
(A), (B) and (C), as noted in Proposition 4. Mixtures involving sectors of the
first type for some primes and of the second type for others yield normalizers
and covering groups not considered in either tl] or [3].To get still more
normalizers and covering groups we need other sectors satisfying (A), (B),
and (C). The following result is easy to verify.
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PnoposlrloN 7. Let,7 be aformation, andlet X.< G. IfY(H)
for all subgroups H of G, thenY satisfies (B) and (C).

As the example at the end of this section shows, condition
for this choice of Y. To get sufficient conditions for (A) we use

notation) from t5].

(Yu/N)(E/rQ - (E I I{)u n (xn/Ir)

whenever l/ < E < G, and Y satisfies (A).

Proof. By Corollary 2.3 of l5J, Es e E. Hence, by Proposition 8,

(x0^(Eulfl):(xnEu)N

139

-H3nX

(A) can fail
results (and

i

,

PnoposlrloN 8. Let E,.n/, X and H be subgroups of G such that X < G,
If < E and H e E. Then

xn (H rr) < (xn 14lr,

and so (XI/) n (Hrf) - (X n H)IY.

Proof. Let G be a minimal counterexarnple. Then G - E. A routine

X n iV - H n.Ari - l. It is easy to check that H n X - 1.

Let L - X n (HfQ. Then 1 + L N G HLIH < HIVIH, so I zcl/ and
HL - HIr{. Also, (iVZ) a H:cL. If li <Or(G), then since LHIH is
pH-central, so are L and l/, and thus (Nf) n F/ is, too, contradicting the
factthat HeG.

Tunonru 6. Let .V be a subgroup-closed, locally induced formation with
support o. Let G be a group whose Sylou; subgroups are abelianfor the primes in o,

andletX<G.

If Y( U) : ry'r n X for all subgroups U of G, then

(1)

whenever l/< E < G. Since (Ysl,^0(E/.^0 : Y(E)lfil/ - (X n EIIVIIV,
the first assertion follows.

Suppose that E < No(K) and (EK)u n X < ,8. For (A), we want

l(EK)u ^ 
X)K - lEs ^ 

XJK. Since ,7 issubgroup-clos ed, E lE ^ 
(EK)u . ,9 ,

and(EK)*AX>EsnX.
Let lV - E n /( in (1). Then

x alEu(E n K)l < (x 
^ 

Es)(E n K),
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x n (EK)u < X n l(EK)u . K) n E

- x 
^lUsKla 

E

- x^lEs(/<nE)l
< (x 

^ 
Es)(K n E),

as desired.
The first conclusion of Theorem 6 simply says that Yg/ltr is defined the

way Y is.

ConorLARy. Let G be an A-group, and let X < G. Then G has a subgroup E
satisfying

i) (E'nX)'-1
and

ii) E' (H' A X)' : H wheneuer E <,H < G.

Moreover, all such subgroups of G are conjugate.
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and so

Proof. Let Yn(H) : Htr n X for all
terize the d(U)-covering subgroups of G.

The following example shows that the
if its hypotheses are weakened too much.

p and H. Then (i) and (ii) charac-

conclusion of Theorem 6 can fail

Exaiuprr. Let G - K x Y -.SIr(3) xZE, and say Y - (y) and

(*, y') > (ry') - (G{ n R)lf, so the first conclusion of Theorem 6 fails
with gF 

- Jr, E - G and X : R. The second conclusion fails for a more

compli cated 9. Let I be the formation generated by An , and let ,% be the
formation of groups for which 6s has exponent 2. Let E - Or(G). Then
(EK)u A l/ : 1, but B'r n l/ - AI < l(EK)u n lil/<. Thus (A) fails with
X : .Ay'.

6. Ax ExTENSIoN oF Yrx's MEruoo

Theorem 5 provides a method for obtaini ng g -covering groups of G by
considering ,%-normalizers of suitably chosen subgroups of G, where ,F is
a locally induced formation. Yen, in [6], has given another method for
constructung sequences leading to ,%-covering groups. He defines subgroups
(Ji and Vuby:
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(2) Uiis an,7-normalizer of V6for i - 1,2,..., and

(3) Vi: LIi ' V{{ fot i - 1,2,... .

He then shows that

for som e r, and that C is an ,V -covering group of G.
In this section we show that this iterative process, too, generalizes to Nors,

and Cov 6,,0y) , and we then show that in the case actually considered by Yen
our process from Theorem 5 converges more slowly than his.

In the same way as in Section 4, we consider the following five conditions
on sets Nor(UlV) and Cov(UlV) of subgroups of sections of G.

VI. If C e Cov G and C < U < G, then C e Cov U.

VII. If V< U< GanditC e Cov[/, then CV|VeCov(UlV).

VIII. If V < U < G, then Cov(UlV) is nonempty.

IX. If V < U < G, then every U-conjugate of a member of Cov(UlV)
is in Cov(UlV), and all members of Cov(UlV) arc conjugate in fJ.

X. If U < G there is a unique smallest normal subgroup U* of U
supplemented by all members of Cov [/.

PnoposlrloN 9. If A is a sector screen suclt that Yo satisfies (A), (B), and
(C) for each ? in the support of U , then Nors, and Cov 61w, satisfy VI-X in the

roles o/ Nor and Cov, respectively.

Proof . Proposition I and Theorem I (together with Lemma I ) give VI
and VII. We have already observed that VIII follows from Theorem 5. The
first part of IX follows from (C) (and Lemma 1), while Theorem 2 gives the
second statement. By Note 1, (Jd(wt exists, and by VIII there is some C in
Covas,(U). If K'< U and U - C ' K, then CK|Kis d(W)-covering in UIK

holds.

Tunonpu '7. Suppose that Nor and Cov
satisfy II, III, Y, and VI-X. Define subgroups

(1) Vo: G,

(2) (J, e Nor( V ) for i - l, 2,..., and

(3) Vr*r- (Ji ' (Vu*){.

are defi,ned on sections ol G and
U6 and Vr of G by:
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Proof. We proceed in a series of steps.

VulVn* e Cou(VulVu*). From III {VulVn*\ --_ Nor(VulVr*), and thus (JuVn* -
Vu , by II.

Cretu 2. For each i, Vr*rl(Vu\n e Cov( Vul(Vu\n).

F(Vul(V,*)tr),

vu*rl(vu\r - uu(vu\tr l(vr*)n e cov( vul(vr*)r),

using V.

to Vu*rin Vi .

By VI, Cre Cov(V). From VII , C,(L'r*)ff l(Vr*)ff e Cov(Vul(Vu*)'r).
Claim 3 follows from Claim 2 and IX.

Crelivr 4. For each i, V5 contains a member, Cn, of Cov(G).

Cuo e Cov(G). The claim follows by induction.

By repeated use of Claim 5, since Vo* e rft, V{-re tf . Thus (Jr-r: V1 .

We can compare the two convergence processes in the case in which Nor
and Cov are Nors, and Covorsr, respectively, and each Ye is a formation.

PnoposITIoN 10. Let the formation ,% be locally induced by the screen 9,
and let Z be a Sylow system of G.Define subgroups LI6 and Vi as in TheoremT
and Di and Gi as in Theorem 5, taking 9-izers relatiae to Z as normalizers. Theru

Proof. Since GulH, is ,T-covering in GlHu by Theorem 5, and since X
reduces into exactly one ,% -covering group of G by Corollary 2.1 of [6],
Gi: C'Hrfotalli.
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(V{-r)t. Thus ViHi - UuV{-.r)n Hu : C(V{r)- Hn : CHu: Gi . The
result follows by induction on i.

7. CoupeRrsoN wITH THE RnnucING MEruoo

Another scheme for converging to ,%-covering groups has been developed

by Fischer, Mann and Graddon. Its most general setting, given by Graddon
in [2], is that in which ,7 is a formation locally induced by an integrated set

of subgroup-closed formations ,7(p). The essence of the method (with a

slight change of notation) is the following.
Suy that the ,Z-system .qQ) - {Gs 

(p) n Ze I p e n} reduces into the
subgroup H of Gincase G'r(e)n ZenH - Hs(etnZefor eachp inzr.
Choose a Sylow system Z of G, and let

Ro( U; fr) - <x e G I ,q@)* reduces into U>

Define subgroups Ei and R, of G by

(l) Ro- G,

(2) E,-is an,F-normalizer of Rn with respect to Z for i - 0, 1,..., and

(3) Ri: R^,- r(En-r;'q) fot i -- 1,2,"' '

Graddon shows in 121 that ,q@) reduces into each Ei and Ru , and it
follows from the proof of Lemma 2.ll of l2l that I does, too. Moreover,
he shows that if G e -,ft%, then

and R, is ,V-cavering in G.

PnoposlTroN 11. In the setting just described, let Di and Gu be taken as tn,

Theorem 5 using .F-normalizers fo, Nor and taking all normalizers with

Proof . Clearly Ro : Go and l)o - Eo. Assume inductively that Do ( Eu

and Ri ( G, for some i. Since Eu , as an ,7-normalizer, has just one g-
system, and since (by Lemma 2.2 of l2l) some ,V-system of Ei reduces into
Du,

Ro*':l; 
IX,',;l;); ::*":: ;::: 'i,
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It G e rf g, Theorem 2.15 of [2] shows that Eo - R1 , and thus Ro(E, ; 
g),

which is Rr, is an ,%-normalizer of G. It follows from this observation,
applied to GulG{* rather than to G, and from Theorem 2.8 of l2l that

R"u(Dr; ,g) . G{u - Di. G{'

Rr*, ( Rcr(Dr, g) ( Dz 'Hi+L: Gunr, sS desired.

By Corollary 2.1 of t6] the system I reduces into a unique ,T-covering
group of G. Hence l)r, : Et-t, and so Dr*, ( Rr*, . Thus

I,nRe*ro 0lr"(Gfr?nIr)

I, n R,n, :dr{"@ff\,),,-', I,)
: Ei+L.

The proposition now follows by induction on i.
As a corollary, we obtain the fact that if G e -,fn, then Dn-t: En-t:

The method of Theorem 5 converges most rapidly in case the length of

noting, though, that the chain need not itself be the upper or lower Fitting
series for G in order to have the minimal length. Moreover, by taking a chief

keep close track of the process to determine how the covering groups of G
meet its chief factors. Rapid convergence may not always be desirable.

Note also that the reducing method requires subgroup-closure of the local
formations ,7(p), whereas the method of Theorem 5 does not. Without such
an assumption on ,%(.P)'., however, the Dn's may not be increasing, as our
earlier example has shown.

Even if we use ,T-normalizers for Nor, we can change systems from one D6

to the next and still getg-covering groups at the end. How much freedom of
choice there is and whether anything is to be gained from such switching is

not clear, though.
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