
Topics in the Theory of Algebraic Groups

G. Seitz

1 Introduction

This article is a collection of notes from a series of talks given at the Bernoulli center.
The attendees ranged from people who have never studied algebraic groups to experts.
Consequently the series began with two introductory talks on the structure of algebraic
groups, supplemented by two lectures of Steve Donkin on representation theory. The notes
from his lectures appear in this volume and we encourage readers new to the theory of
algebraic groups to consult his notes as this material will be used throughout this article.

The first section of this article contains a brief introduction to the theory of algebraic
groups starting from the classification of simple Lie algebras over C. The next section covers
morphisms of simple algebraic groups and this leads to a discussion of the finite groups
of Lie type and Lang’s theorem. Sections three and four concern maximal subgroups of
algebraic groups. Section 5 concerns a problem on the finiteness of double coset spaces.
The last two sections cover some current work on unipotent classes in simple algebraic
groups. None of the sections represents anything near a complete account of the subject
at hand so the interested reader should consult the references for further information.

2 Algebraic groups: Introduction

In this section and the next one we give an informal introduction to the theory of simple
algebraic groups and their finite analogs, the finite groups of Lie type. These sections,
together with the material on representation theory presented by Steve Donkin, will form
the foundation for later sections on various topics in the theory. We assume prior knowledge
of the theory of complex Lie algebras in what follows, but familiar examples will be present
at all times. The articles [39] and [22] from the 1994 Istanbul NATO conference provide
an expanded account of the topics of these lectures and include references for the main
results. A full development of the basic theory can be found in books such as Borel [5] and
Humphreys [17].

Let K be an algebraically closed field and consider the algebra Mn(K), of all n × n
matrices over K. Let sln(K) denote the subspace of trace 0 matrices. This subspace is not
closed under matrix product, but it does have additional structure, a bracket operation
[x, y] = xy − yx, which turns sln(K) into a Lie algebra. Another important object for us
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is G = SLn(K), the group of matrices of determinant 1. There is extra structure here
as well which will be discussed below. When working in sln(K), the notion of vector
space dimension is an important tool that is used repeatedly. It allows us to talk about
large or small subalgebras. We want a similar notion for SLn(K), but this requires some
background material.

2.1 Affine algebraic varieties and algebraic groups

We illustrate the ideas in SLn(K) and then generalize the theory. A vector space basis of
Mn(K) is given by the elementary matrix units xij . We can regard these basis elements
as functions on matrices. The functions generate a polynomial ring K[xij ], an algebra of
functions on Mn(K). Then SLn(K) is the set of matrices annihiliated by the principal
ideal I = (det− 1) and K[xij ]/I is an algebra of functions on SLn(K).

More generally, consider Km and the polynomial ring K[x1, . . . , xm] viewed as a ring
of functions. There is a map I → V (I) sending an ideal to the subset of Km annihilated
by I and another map sending a subset S ⊂ Km to the ideal I(S) of all polynomials
annihilating the subset. Note that the first map is not 1-1 since a polynomial and its
powers have the same zero set, Hence, V (I) = V (

√
I). The Hilbert Nullstellensatz implies

that I(V (I)) =
√

I. Consequently, we focus on radical ideals so that the correspondence
between radical ideals and zero sets of radical ideals is bijective.

An affine algebraic variety is defined to be a pair (V,K[V ]), where for some m, V ⊂ Km

is the zero set of a radical ideal I ≤ K[x1, . . . , xm] and K[V ] = K[x1, . . . , xm]/I.
There is a notion of morphism from one algebraic variety (V,K[V ]) to another (W,K[W ]).

Let φ : V → W be a function. For f ∈ K[W ], φ∗(f) = f ◦ φ is a K-valued function
on V . We say that φ is a morphism provided φ∗(f) ∈ K[V ] for each f . In this case
φ∗ : K[W ] → K[V ] is an algebra homomorphism, called the comorphism of φ. Given
algebraic varieties V ⊂ Kn and W ⊂ Km, the cartesian product V ×W ⊂ Kn+m is also
an algebraic variety, where K[V ×W ] = K[V ]⊗K[W ], subject to suitable identifications.

An algebraic group, (G, K[G]), is an affine algebraic variety which also has a group
structure such that multiplication, m : G × G → G, and inverse, i : G → G, are mor-
phisms. For example, one checks that for G = SLn(K),m∗(xij) =

∑
k xikxkj , where we

are identifying xij with its restriction to SLn(K). There is a considerable amount of al-
gebraic geometry lurking in the background, which we mostly ignore in this brief survey.
However, the proofs of essentially all the major results are heavily dependent on the extra
structure.

The Zariski topology on Km is the topology where the closed sets have the form V (I)
with I an ideal of K[x1, . . . , xm]. An algebraic variety V is said to be irreducible if it cannot
be written as the union of two proper closed subsets.. If V is reducible and V = V1∪V2 is a
proper decomposition with I1, I2 the radical ideals annihilating V1, V2, respectively. Then
I1I2 ⊂ I1 ∩ I2 is an ideal annihilating all of V , hence must be the 0 ideal. Here is a key
result.
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Proposition 2.1 An algebraic variety V is irreducible if and only if K[V ] is an integral
domain.

We can now introduce the notion of dimension for irreducible algebraic varieties. Namely,
if V is an irreducible variety we define dim(V ) to be the transcendence degree over K of
the quotient field of K[V ]. The following result shows that dimension works nicely with
respect to containments.

Proposition 2.2 Let V1, V2 be irreducible varieties such that V1 ⊆ V2. Then dim(V1) ≤
dim(V2). Moreover, the dimensions coincide if and only if the varieties are equal.

An arbitrary algebraic variety can be uniquely expressed as the union of finitely many
irreducible varieties, called the irreducible components of the variety. One defines the
dimension as the largest of the dimensions of the irreducible components.

Let G be an algebraic group. Let G0 denote the irreducible component containing the
identity. Then G0 is a normal subgroup of G and the other irreducible components are the
(finitely many) cosets of G0. In this case the irreducible components are both open and
closed, so G is irreducible if and only if it is connected.

The coordinate ring provides a link between the theory of algebraic groups and the
theory of Lie algebras. If G is an algebraic group define L(G) = T (G)1, the tangent
space at the identity, to be the space of functions γ : K(G) → K satisfying the property
γ(fg) = γ(f)g(1)+f(1)γ(g). This space is closely connected to a certain derivation algebra
of K[G] and so inherits a Lie algebra structure. A homomorphism φ : G → H between
algebraic groups gives rise to a homomorphism ∂φ : L(G) → L(H) via ∂φ(γ) = γ ◦ φ∗.
Taking φ = inng for g ∈ G we obtain an isomorphism of L(G) which is called Ad(g). Then
Ad : G → GL(L(G)) and this is called the adjoint representation of G.

2.2 Lie algebras to algebraic groups

Here we discuss a method for passing from Lie algebras to algebraic groups. If e is a
nilpotent element of sln(K) (e.g. one of the eij), then exp(e) = 1 + e + e2/2 + · · ·, a finite
sum, is an element of SLn(K). For the time being assume that K has characteristic 0 so
that there are no problems with denominators in this expression. It can be shown that SLn

is generated by such unipotent elements. Indeed, SLn(K) is generated by transvections
and each transvection has the above form. This depends on the particular presentation of
sln(K) as acting on a vector space, but something similar holds more generally. Let L be
a simple Lie algebra and suppose e ∈ L has the property that the map ad(e) : l → [e, l]
is a nilpotent endomorphism of L. Then u = exp(ad(e)) = 1 + ad(e) + ad(e)2/2 + · · · is
well-defined and it turns out to be an automorphism of L. The elements u(c) = exp(ad(ce))
for c ∈ K is an abelian subgroup of SL(L) with entries being polynomials in c. It is an
algebraic group isomorphic to K+. There is a result showing that the subgroup of Aut(L)
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generated by these irreducible subgroups is itself a connected algebraic group. So in this
way we can pass from L to an irreducible algebraic group G(L).

If we take L = sln(K) in the above situation, then the corresponding unipotent ele-
ments generate G(L) = PSLn(K) = SLn(K)/Z(SLn(K)). We get PSLn(K) rather than
SLn(K) since we are looking at the action on L, by conjugation, rather than the action on
the original vector space. This shows that exponentiation gives slightly different groups,
depending on the representation.

The exponentiation process described above is more complicated when the field involved
has positive characteristic, since the denominators cause problems. However, one can
proceed by choosing a basis defined over Z and then carefully passing to arbitrary fields.
A very good reference for this can be found in the Steinberg Yale notes [46].

Let L be a simple, finite dimensional Lie algebra over C, the complex field. The
classification theorem shows that there exists an indecomposable root system Σ and base Π
of this root system such that L has vector space basis consisting of elements {hαi : αi ∈ Π}
and root vectors {eα : α ∈ Σ} subject to the following relations:

(i) If α, β, α + β ∈ Σ, then [eα, eβ] = Nα,βeα+β, where Nα,β is an integer.
(ii) If α ∈ Σ+, then [eα, e−α] = hα and 〈eα, hα, e−α〉 ∼= sl2.
(iii) [hαi , eβ] =< β,αi > eβ and [hαi , hαj ] = 0 for all i, j.

Also recall that the simple roots give rise to a Dynkin diagram and the diagram deter-
mines the isomorphism type of L. The possible types are An, Bn, Cn, Dn, E6, E7, E8, F4, G2.
The infinite familes are called the classical types and the other are said to be of exceptional
type.

We next discuss analogs of the above relations which hold within the group G(L). We
work with an algebraically closed field of arbitrary characteristic, ignoring the complications
that occur in finite characteristic.

For each root α and c ∈ K, set Uα(c) = exp(ad(ceα). Then the root space 〈eα〉
exponentiates to yield a unipotent group Uα = {Uα(c) : c ∈ K} ∼= K+ (isomorphism of
algebraic groups). These groups generate G. The group analog of (i) is as follows.

(a) If α, β, α + β ∈ Σ, then [Uα(x), Uβ(y)] =
∏

i,j>0 Uiα+jβ(cijx
iyj). Also , c11 = Nα,β.

If the Dynkin diagram is simply laced (no multiple bonds), then there is just one term
in the product (i = j = 1), so this closely resembles (i). The analog of (ii) is

(b) If α ∈ Σ+, 〈Uα, U−α〉 ∼= SL2(K). or PSL2(K).

Under this isomorphism we regard Uα (resp. U−α) as the group of lower (resp. up-
per) triangular matrices. Then for c ∈ K, we let Tα(c) denote the image of the diagonal
matrix having entries c, c−1 and set Tα = {Tα(c) : c ∈ K∗}. Then Tα

∼= K∗ is a com-
mutative algebraic group. We obtain the group analog of the maximal toral subalgebra
H = 〈hα1 , . . . , hαn〉, by setting T = 〈Tα1 , . . . , Tαn〉. Then T is a connected abelian algebraic
group isomorphic to (K∗)n and it is called a maximal torus. T has the property (analgous
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to maximal toral subalgebras) that it can be diagonalized in any linear representation of G.
In the case G = SLn(K), the maximal tori are just the full diagonal groups with respect
to a given basis. We have the relation

(c) Tαi(c)
−1Uβ(d)Tαi(c) = Uβ(c<β,αi>d).

2.3 (BN)-pair and Classification

To determine the isomorphism type of a Lie algebra one finds a convenient basis of the
space and determine commutators among basis elements. It is not so clear how this carries
over to the group setting. Let’s continue to work with G = G(L).

Let Σ+ denote the set of positive roots. It follows from (a) above that U =
∏

α∈Σ+ Uα

is a subgroup of G. Indeed, if we order the roots in Σ+ according to descending height,
say Uγ1 , . . . , Uγk

, then the commutator relations in (a) imply that each of the products
Uγ1 · · ·Uγi , for i ≤ k, is a normal subgroup of U and hence U is a nilpotent group. Also
(b) shows that T normalizes each Uα and so U is normalized by T . The group B = UT is
a solvable group which can be shown to be maximal among connected solvable subgroups
of G. Such subgroups of algebraic groups are called Borel subgroups and they play a
fundamental role in the theory.

A key result shows that if a connected solvable group acts on a special type of variety
(a complete variety), then it fixes a point. We will not go into this here, but one important
consequence is the fact that all Borel subgroups of G are conjugate. An easier, but still
important, result shows that connected solvable groups leave invariant a 1-space in any
linear representation of G. An induction shows that they fix a maximal flag. For G =
SLn(K), this implies that the Borel subgroups are precisely the lower triangular groups
with respect to a suitable basis.

At certain stages in the classification of simple Lie algebras one goes outside the Lie
algebra. In particular, the Weyl group is introduced. It should be no surprise to see it
appear here as well, although here it appears in a more intrinsic manner.

The simplest case is G = SL2(K). We describe matrices as follows.

U(c) =
(

1 0
c 1

)
, V (c) =

(
1 c
0 1

)
, s =

(
0 1
−1 0

)
.

A matrix calculation shows that s = U(−1)V (1)U(−1). Also, notice that s interchanges
the 1-spaces spanned by the basis vectors and normalizes the diagonal group.

Now consider G = SLn(K). For each consecutive pair of basis vectors, G contains
a subgroup SL2(K) acting on the corresponding 2-space and fixing the remaining basis
vectors. It is then easy to see that each of the matrices corresponding to s above normalizes
T , the full diagonal group, and acts as a 2-cycle on the set of 1-spaces spanned by the given
basis. Hence NG(T ) induces the full symmetric group Symn on the set of 1-spaces spanned
by basis elements.
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We wish to record one more piece of information about SLn(K) . For a matrix g ∈
SLn(K), consider what can be achieved by applying elementary row operations. Such an
operation is just multiplication by a matrix of the form Uij(c). We perform row reduction
by such matrices with i > j. That is we multiply row j by c and add it to row i, a lower
row. Since g is invertible we can find a matrix u, a product of elementary matrices, so that
ug has the property that for each i there is a row with first nonzero entry in column i and
all entries lower in this column are 0. Now we can apply a suitable permutation matrix, to
get a matrix in upper triangular form. That is nug = b−. So g ∈ BNB−. Now, B− = Bw

for some permutation w. So in fact, we have proved G = BNBw, and multiplying by the
inverse of w we have G = BNB.

By a simple algebraic group we mean a nonabelian irreducible algebraic group G having
no closed normal subgroups of positive dimension. This definition allows for finite normal
subgroups. However, G has no closed normal subgroups of finite index, so it must act
trivially by conjugation on any finite normal subgroup. So G may have a finite center,
but one shows that G/Z(G) is abstractly simple. So our definition allows for SLn(K) as a
simple algebraic group.

The theory of simple algebraic groups leads to many of the above concepts. In particu-
lar, if G is a simple algebraic group, then one shows that all Borel subgroups are conjugate
and that given a maximal torus T < G, the group NG(T )/T ∼= W , the Weyl group, is a
group generated by reflections. W is associated with a root system Σ and to each root
α ∈ Σ there is a corresponding root subgroup Uα < G. The reflections act as usual:
sα(β) = β − < β,α > α. Moreover, T normalizes each root group, so elements of the Weyl
group permute the root subgroups just as they do the corresponding roots. One shows that
W = 〈s1, . . . , sn〉, where the si are the fundamental reflections. The length of a Weyl group
element is the minimal length of the element as a product of fundamental reflections. The
following result is a generalization of the above example and shows how the fundamental
reflections arise.

Proposition 2.3 If N = NG(T ), then N/T ∼= W . Moreover, the isormorphism can
be chosen such that for each root α a representative of sα can be taken to be nα =
Uα(−1)U−α(1)Uα(−1)

So for each root α we can think of sα as the coset nαT . More generally, for each w ∈ W ,
we can choose an element nw ∈ N and regard identify w with the coset nwT .

At the level of Lie algebras we can express elements uniquely as a linear combination of
basis elements. Things are more complicated at the level of algebraic groups, but we next
describe a variation of this idea. We require one additional piece of notation. For w ∈ W
let U−

w denote the product of all root groups Uβ such that β is a positive root and w(β) is
a negative root. Then U−

w is a subgroup and we have the following fundamental result

Theorem 2.4 Let G be a simple algebraic group. Then
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i) G = BNB =
⋃

w∈W BnwB.
ii) G =

⋃
w∈W UTnwU−

w with uniqueness of expression of elements.

The above theorem says two important things. (i) shows that there are only finitely
many double cosets of B in G or, equivalently, B has only finitely many orbits in the action
on G/B. As advertised, (ii) provides a unique expression for each element of G. In the
context of Lie algebras, the unique expression of elements also tells us how to add elements.
Of course group multiplication is more complicated than addition. So how do we multiply
group elements? Well, from (i) this comes down to knowing something about multiplying
elements from double cosets of B. The following result provides an indication of how this
occurs.

To ease notation write BwB instead of BnwB. This is an abuse of notation, but since
B contains T the expression is independent of the choice of coset representative.

Proposition 2.5 If si is a fundamental reflection and w ∈ W , then (BsiB)(BwB) ⊂
BwB ∪BsiwB. Moreover, if l(siw) > l(w), then (BsiB)(BwB) = BsiwB.

This might appear confusing, but in principle one can use these results to work out
the multiplication table of G. Indeed, the commutator relations tell us how to find the
structure of U and we have seen how to conjugate elements of U by elements of T . This
determines the structure of B and the additional information follows from the above result.

We are almost ready to state the classification theorem, but we first have to face the
issue of how to differentiate between two groups which differ only by a finite center such
as SLn(K) and PSLn(K). We need one more ingredient. Let T be a maximal torus of G
and set X(T ) = Hom(T,K∗). Then X(T ) is a Z-lattice such that ZΣ ≤ X(T ) ≤ Λ, where
ZΣ is the root lattice and Λ is the weight lattice. The two extremes of this containment
are both free abelian groups of rank n and ZΣ/Λ is a finite group, so that there are only
finitely possibilities for X(T ).

Theorem 2.6 Let G be a simple algebraic group over an algebraically closed field. If T is
a maximal torus of G, then G is determined up to isomorphism by the pair (Σ, X(T )).

So the classification theorem shows that the simple algebraic groups are very closely related
to simple Lie algebras over the complex numbers. They are more or less determined by a
root system. The above result can be stated more generally, so as to classify semisimple
and reductive groups. A connected group is called semisimple if it does not not contain a
connected solvable normal subgroup and reductive if it does not contain a connected normal
unipotent subgroup. Semisimple groups turn out to be commuting products of simple
groups and reductive groups can be expressed as a commuting product of a semisimple
group and a torus.

If we fix Σ and take the simple group corresponding to Λ, then we obtain what is called
the simply connected group of type Σ, say Ĝ, which is universal in the sense that there is
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a natural surjection π : Ĝ → G for any simple algebraic group of the same type. We note
that SLn is simply connected.

2.4 Parabolic subgroups and subsystem subgroups

In this section we discuss two types of subgroups of a simple algebraic group G which arise
naturally from the root system.

Parabolic subgroups. A parabolic subgroup is defined to be a subgroup containing a
Borel subgroup. In the case of SLn these are just the stabilizers of a flag of subspaces of the
usual module. If P is such a subgroup, then P = QL, where Q is a unipotent group which
can be defined by inducing the identity on quotients of successive terms in the filtration
and L is block diagonal. L is called a Levi subgroup and it roughly speaking a product of
smaller SL′s.

Parabolic subgroups occur quite naturally in simple algebraic groups. Namely, let B =
UT be a Borel subgroup. So T determines a set of root groups and U is the product of root
groups for positive roots. Given any subset J ⊆ Π, set P = PJ = 〈B, si : αi ∈ J〉. Then P
is a parabolic subgroup and all parabolic subgroups are conjugate to precisely one group of
this type. Thus the conjugacy classes of parabolic subgroups is in bijective correspondence
with subsets of Π. We can think of parabolic subgroups as being obtained by removing
some subset of nodes from the Dynkin diagram. The Levi subgroup of a parabolic contains
the commuting product of simple groups one for each connected component of the diagram
after the nodes have been removed. Maximal parabolic subgroups occur by removing a
single node.

We highlight one special feature of parabolic subgroups and illustrate with the case of
maximal parabolics. Assume J = Π − {αi} and write P = PJ = QL. If α is a positve
root we can write α =

∑
j cjαj . Then Q =

∏
α Uα, such that ci ≥ 1. Moreover, for each

j > 0, let Q(j) denote the product of all root groups Uα such that ci ≥ j. It follows
from the commutator relations that Q(j) is a normal subgroup of PJ for each j. To state a
uniform result we rule out cases where the Dynkin diagram of G has a double bond and the
characteristic is 2 (also 3 for G2). Then we can state the following result which combines
results of [4] and [36].

Proposition 2.7 For each positive integer j the quotient V (j) = Q(j)/Q(j + 1) has the
structure of an irreducible module for the Levi subgroup L of P and L has finitely many
orbits on this module.

Subsystem subgroups. Let Σ be a root system. A subset ∆ is said to be closed
if it satisfies two conditions: (i) α ∈ ∆ if and only if −α ∈ ∆; (2) If α, β ∈ ∆ and
α + β ∈ Σ, then α + β ∈ ∆. If ∆ is closed, then using the above information we can show
that G(∆) = 〈Uα : α ∈ ∆〉, is a T -invariant semisimple group. Except for some special
situations in characteristic 2 and 3 (the latter only for G2), these are the only semisimple
groups normalized by T . The group G(∆) is called a subsystem subgroup of G.
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Let’s consider a couple of examples. Let G = SLn(K) and consider a subgroup of
the form SLk(K) × SLn−k(K). It is a subsystem group, in fact, it is the semisimple
part of a Levi subgroup. Now consider the symplectic group. Certainly Sp2n(K) >
Sp2k(K) × Sp2n−2k(K), corresponding to an orthogonal decomposition of the underlying
space. However, this is not part of a Levi subgroup. Similarly for the orthogonal groups.
However, these groups are subsystem groups.

There is a lovely algorithm of Borel and de Siebenthal that determines all subsystem
groups. Start from the Dynkin diagram and form the extended diagram by adding the
negative of the root of highest height. Remove any collection of nodes and repeat the pro-
cess with each of the connected components of the resulting graph. All diagrams obtained
in this way are Dynkin diagrams of subsystem groups and there is one conjugacy class of
subsystem groups for each such subsystem.

We illustrate with some examples. First consider Sp2n(K). The extended diagram
adds a long root at the end of the diagram adjacent to the short root α1. If we remove
any short node, we will get a subsystem of type Ck × Cn−k. So this accounts for the
subgroups described above. Let’s do the same thing for E8. In this case the negative of
the root of highest height can be joined to α8. We can remove any of the 8 other nodes
to get subsystems. Here is a list of some of the subsystems we obtain in this manner:
D8, A8, A4A4, A2E6, A1E7.

The five subsystem subgroups of E8 listed above turn out to be maximal among closed
connected subgroups, but they are not necessarily maximal among closed subgroups. This
is because three of the subgroups are proper in their normalizers. We record these normal-
izers for future reference

NG(A8) = (A8)Z2

NG(A2E6) = (A2E6)Z2

NG(A4A4) = (A4A4)Z4

3 Morphisms of algebraic groups

In this section our focus will be on morphisms of algebraic groups. The finite groups of Lie
type are introduced as fixed points of certain morphisms of algebraic groups.

We begin with a simple algebraic group G defined over an algebraically closed field of
characteristic p. Let σ be a nontrivial endomorphism of G. Since G is simple modulo a
finite center and G = G′, it follows that σ is an isomorphism of G viewed as an abstract
group. However, the inverse map need not be a morphism of algebraic groups. How could
this happen? Consider the example of G = K+, where K has positive characteristic p > 0.
Of course, this not a simple group, but it will serve as an example. We consider morphisms,
σ1 and σ2 of K+ as follows. For 0 6= s ∈ K fixed, let σ1 : c → sc. Now let σ2 : c → cp. It is
easy to see that σ1 is an isomorphism (the inverse sends c → s−1c). On the other hand, σ2

is an isomorphism of K+ as an abstract group, but there is no algebraic inverse. Indeed,
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the comorphsm, σ∗2, sends x to xp and hence is not surjective. The following fundamental
result of Steinberg clarifies the situation.

Theorem 3.1 Assume σ is an endomorphism of the simple algebraic group G. Then one
of the following holds:

i) σ is an automorphism of G.
ii) Gσ is finite.

Endomorphisms of type (ii) are called Frobenius morphisms. The difference between
the types of endomorphisms can be detected at the level of Lie algebras. Let σ be an
endomorphism. Then ∂σ is either an isomorphism of L(G) or nilpotent, according to
whether σ is an automorphism or a Frobenius morphism.

The following general result of Steinberg is another key ingredient in understanding
endomorphisms of simple algebraic groups.

Proposition 3.2 Let σ be an endomorphism of the simple algebraic group G. Then σ
stabilizes a Borel subgroup of G.

3.1 Automorphisms

So what are the automorphisms of a simple algebraic group G? First, there are the inner
automorphisms. Since G is simple modulo a finite center, analyzing the different types
of inner automorphisms is roughly equivalent to analyzing elements of G and conjugacy
classes.

There is a Jordan decomposition for elements of G just like for simple Lie algebras.
If g ∈ G, then we can write g = su = us, where s has the property that it can be
diagonalized in all representations of G, whereas u is represented by a unipotent matrix
in all representations of G. Moreover, the expression is unique, so the study of conjugacy
classes can be reduced to studying semisimple and unipotent classes. If G = SLn(K), then
the semisimple elements are just matrices of determinant 1 which are conjugate to diagonal
matrices, whereas the unipotent matrices are conjugate to lower triangular matrices with
1′s on the main diagonal.

What about conjugacy classes? A semisimple element in SLn(K) is described up to
conjugacy by the multiplicity of its eigenvalues. A unipotent element, can be put into
Jordan form. That is, the matrix is a product of blocks and each block is lower triangular
with 1′s on the main diagonal and subdiagonal and 0′s elsewhere. Both types of elements
yield partitions of n, but there are infinitely many semisimple classes because one can
assign different eigenvalues to each block (provided there are no coincidences), whereas
there are only finitely many classes of unipotent elements.

We will want to know about the fixed points of automorphisms, in particular central-
izers of elements of G. If G = SLn(K) and s is semisimple, then CG(s) is just the full
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group of block diagonal matrices corresponding to the partition. This is a Levi subgroup.
Understanding CG(u) is more complicated we will come back to this in a later section.

Something similar occurs for other types of groups. If s is a semisimple element of a
simple algebraic group G, then it can be shown that there is a maximal torus T of G with
s ∈ T . Hence, T ≤ CG(s). A general lemma shows that any T -invariant subgroup has its
connected component generated by root groups. So CG(s)0 is generated by the root groups
centralized by s. As s has inverse action on a root group and its negative, these come in
opposite pairs and one checks that CG(s)0 is a subsystem group, though perhaps not a
Levi subgroup. For example, in E8 we have observed the existence of a subystem group of
type A4A4. This group is the central product of two copies of SL5, so if the characteristic
is not 5, then there is a center of order 5 and we find that A4A4 = CG(s) for such a central
element.

Here is a general result regarding the semisimple classes of simple algebraic groups.
Note that it shows that a simple algebraic group has infinitely many conjugacy classes of
semisimple elements.

Proposition 3.3 Let G be a simple algebraic group and T a maximal torus of G.
i) Every semisimple conjugacy class meets T .
ii) Two elements of T conjugate in G are conjugate in N(T ) (i.e. by the Weyl group).

Proof We offer a proof of (ii) as an illustration of the use of the (BN)-pair structure
of G. Suppose t1, t2 ∈ T and g ∈ G with tg1 = t2. Write g = u1tnwu2, where u1 ∈ U ,
u2 ∈ U−

w , and t ∈ T . The equation tg1 = t2 can be rewritten to yield t1u1tnwu2 = u1tnwu2t2.

Rearrange each side to get u
t−1
1

1 t1tnwu2 = u1tnwt2u
t2
2 = u1tt

n−1
w

2 nwut2
2 . Now compare the

two extreme terms of this expression using uniqueness. We find that ui centralizes ti for
i = 1, 2. So tg1 = t2 reduces to t2 = ttnwu2

1 = tnwu2
1 and conjugating by u−1

2 we have tnw
1 = t2,

as required.

What about outer automorphisms of a simple algebraic group? Start with an automor-
phism σ. Proposition 3.2 shows σ normalizes a Borel subgroup, say B, and adjusting by
an inner automorphism we can assume that σ normalizes a maximal torus T of B. But
then σ permutes the minimal T -invariant unipotent subgroups, namely the root subgroups
of G. On the other hand, σ normalizes B, which is built from the positive root groups.
Further, if Q = Ru(B), then the root groups in Q−Q′ are the root groups for simple roots,
so these are permuted by σ. It follows that σ gives rise to a permutation of the Dynkin
diagram of G.

This sort of analysis ultimately shows that Aut(G) is generated by inner automorphisms
together with certain graph automorphisms, where the possibilities are visible from the
Dynkin diagram. Namely, the types An, Dn, E6 all have involutory automorphisms called
graph automorphisms. In type D4, there is a group of graph isomorphisms of type Sym3.
(Note also that for types B2, G2, F4, there is a symmetry of the diagram provided one
ignores the arrow. Such symmetries do play a role and we will discuss them later.)
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For each symmetry of the Dynkin diagram there is a corresponding graph automorphism
of G. Indeed, starting with a maximal torus T we can find an automorphism τ of G such
that for each fundamental root α, Uα(c)τ = Uβ(c), where β is the image of α under the
given symmetry of the Dynkin diagram. For the most part the above graph automorphisms
of simple groups are involutory, although for D4 graph automorphisms of order 3 also exist,
called triality automorphisms.

It is not difficult to determine the fixed points of a graph automorphism. Suppose for
example that τ is an involutory graph automorphism. If α is fixed by the symmetry, then
Uα < Gτ . Otherwise, one of Uα(c)Uβ(c), Uα(c)Uβ(c)Uα+β(−c2/2), or Uα+β is in Gτ . The
latter two cases occur only if α + β is a root, in which case the second case occurs if p 6= 2
and the third case if p = 2. It turns out that G0

τ is a simple algebraic group where the
Dynkin diagram has nodes corresponding to the orbits on simple roots, and the root groups
for fundamental roots are given above. The same holds for triality graph automorphisms
of D4, although orbits may have length 3. The fixed point groups of graph automorphisms
are given below, where we indicate a group simply by giving its Dynkin diagram.

(An)τ = C(n+1)/2 or Bn/2 (Cn/2 if p = 2), according to whether n is odd or even.
(Dn)τ = Bn−1

(E6)τ = F4

(D4)τ = G2, if τ is a triality graph automorphism.

If τ is a graph automorphism, there may be other types of involutions (or elements
of order 3) in the coset Gτ . Consider the case of Dn with char(K) 6= 2, viewed as the
orthogonal group SO2n. We can choose an orthonormal basis and consider the diagonal
matrix −1, 12n−1. This is an orthogonal matrix, but it is not in SOn. It is not difficult to
see that it’s connected centralizer in SO2n is SO2n−1 = Bn−1. Indeed, this matrix induces
an involutory graph automorphism, τ . However, adjusting this matrix by a diagonal matrix
in SO2n we get the matrix (−1)2k+1, 12n−2k−1 which has connected centralizer BkBn−k−1.
So in this case, Gτ contains several classes of involutions. It turns out each involution in
this coset is conjugate to one of the ones we just described.

The following result provides a complete analysis of the situation.

Theorem 3.4 Let G be a simple simply connected algebraic group. Suppose that τ is a
graph automorphism of G of order 2 or 3 (only for D4) and that char(K) 6= |τ |. Listed
below are the types of fixed points for elements of Gτ of the same order as τ . Each type of
fixed points corresponds to precisely one G-class in Gτ .

An(n even) : Bn/2

An(n odd): C(n+1)/2, D(n+1/2)

E6 : F4, C4

Dn : BkBn−k−1 for n− 1 ≥ k ≥ n/2
D4 : G2, A2

12



We have discussed several types of involutory outer automorphisms. Of course there are
also involutions within G. These involutions share a remarkable feature which is described
in the following result, first established in [34] and [51]. We will present an alternate proof
in a later section.

Proposition 3.5 Assume τ is an involutory automorphism of the simple algebraic group
G and char(K) 6= 2. Then |Gτ\G/B| < ∞, where Gτ denotes the fixed points of τ on G.
That is, there are finitely many orbits of Gτ on Borel subgroups.

3.2 Frobenius morphisms

We next discuss the other case of Theorem 1.1. Namely, consider an endomorphism, say
σ, of the simple algebraic group G for which Gσ is finite.

We begin with an example. Consider G = SLn(K), where K is an algebraically closed
field of characteristic p. View this group as a group of matrices and consider the morphism
σ : (aij) → (aq

ij), where q = pa. It is clear that Gσ = SLn(q), a finite group. Notice also,
that σ does have an inverse, but it is not a polynomial map and hence is not a morphism
of G as an algebraic group. Also, with σ as above, ∂σ is the 0 map.

As mentioned earlier, a morphism σ is a Frobenius morphism if and only if ∂σ : L(G) →
L(G) is nilpotent. It follows that if τ is any endomorphism of G, then the morphisms τσ
and στ must also be Frobenius morphisms. Indeed, it is easy to see that the differential
of each of these morphisms fails to be surjective, so Theorem 3.1 implies they are both
Frobenius morphisms.

In the the special case where τ is a graph automorphism of G = SLn(K), then Gστ =
SUn(q), the unitary group over the base field Fq2 . Thus the algebraic group SLn(K) gives
rise to two types of finite groups, SLn(q) and SUn(q), by taking fixed points of different
Frobenius morphisms. Of course, q can be taken as any power of the characteristic.

Let G be a simple algebraic group and σ a Frobenius morphism. Then Gσ is a finite
group. If G is taken to be simply connected, then excluding a small handful of cases, Gσ

is a simple group except for a finite center. We call Gσ a finite group of Lie type and
Gσ/Z(Gσ) a finite simple group of Lie type.

The classication theorem of finite simple groups states

Theorem 3.6 Let G be a finite simple group. Then one of the following holds
i) G is a simple group of Lie type.
ii) G ∼= Altn, an alternating group for n ≥ 5.
iii) G is isomorphic to one of 26 sporadic simple groups.

We next discuss the various types of groups Gσ that occur. For each type of simple
algebraic group there is a finite group of the same type, such as. SLn(q) = An−1(q). If
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there is a symmetry of the Dynkin diagram, then there is also a twisted group, such as
SUn(q) = 2An−1(q). For example, we obtain groups of type E6(q) and 2E6(q).

There is one other special situation to discuss. Consider the cases G = B2, F4, G2.
If one ignores the arrow on the diagram, then there is a symmetry of the graph. When
char(K) = p = 2, 2, 3, respectively, there is an exceptional morphism τ of G with the
following property. If αi corresponds to αj under the symmetry, then Uαi(c) → Uαj (c

ni),
where ni = 1 or p, according to whether αi is a long or short root. Here τ2 is a usual field
automorphism. Multiplying τ by various powers of this field morphism, we get additional
finite groups, 2B2(q), 2F4(q), 2G2(q)where q is an odd power of p.

In the following we list the possible types of groups Gσ. Throughout q is a power of
the characteristic of K.

Chevalley groups: An(q), Bn(q), Cn(q), Dn(q), E6(q), E7(q), E8(q), F4(q), G2(q)
Twisted types: 2An(q), 2Dn(q), 3D4(q), 2E6(q)
Special types: 2B2(22k+1), 2F4(22k+1), 2G2(32k+1)

The finite groups of Lie type play a central role in the theory of finite groups. One of
the best ways to study finite simple groups of Lie type is to first obtain results for simple
algebraic groups and then use the σ-setup to pass from the algebraic group to the finite
group. Many considerations are easier at the level of algebraic groups, due to the presence
of extra structure, and it is easier to obtain insight. For example, we have seen that both
SLn(q) and SUn(q) arise from the same algebraic group SLn(K). It follows that there are
connections between these groups that might not be apparent if one studies the groups
just as finite groups. The similarity is already apparent in the group order. For example,
for n even

|SLn(q)| = qn(n−1)/2(qn − 1)(qn−1 − 1)(qn−2 − 1) · · · (q3 − 1)(q2 − 1)
|SUn(q)| = qn(n−1)/2(qn − 1)(qn−1 + 1)(qn−2 − 1) · · · (q3 + 1)(q2 − 1)

There are many instances where a feature of SLn(q) can be translated to one of SUn(q)
by changing certain signs.

The finite groups of Lie type also have a (BN)-pair which is inherited from that of
the corresponding algebraic group. For example, SO+

2n(q) has Dynkin diagram of type Dn,
with all parts of the structure clearly related to the corresponding objects in the algebraic
group. If α is a root, then (Uα)σ = {Uα(c) : c ∈ Fq}, a group isomorphic to F+

q .
But now consider τσ. If α = αi for 1 ≤ i ≤ n−2, then (Uα)τσ = {Uα(c) : c ∈ Fq} ∼= F+

q ,
as before. On the other hand τσ interchanges Uαn−1 and Uαn and we get fixed points
(Uαn−1Uαn)τσ = {Uαn−1(c)Uαn(cq) : c ∈ Fq2} ∼= (Fq2)+. What we find here is that there
is again a BN-structure, but the Dynkin diagram is of type Bn−1. Moreover, the root
groups have different orders. Even though these two orthogonal groups have different BN-
structures, they still have closely related order formulas just as in the case of SLn(q) and
SUn(q).
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We next discuss a fundamental result concerning Frobenius morphisms which is often
referred to as Lang’s theorem.

Theorem 3.7 Assume G is a connected algebraic group and σ is a morphism of G with
Gσ finite. Then the map g → g−1σ(g) is surjective. So, in the semi-direct product G〈σ〉
the coset Gσ = σG.

An important application occurs when one considers orbits of a simple group G on
an algebraic variety V . Suppose that σ is a Frobenius morphism of G having compatible
action on V (i.e σ(gv) = σ(g)σ(v)). For v ∈ V, σ(v) = g(v) for some g ∈ G, so that g−1σ
fixes v. By Lang’s theorem g−1σ is a conjugate of σ, so it follows that Vσ is nonempty. It
is easy to see that Gσ acts on Vσ. But how many orbits are there in this action?

Suppose σ(v) = v and σ(w) = w. There exists g ∈ G such that g(v) = w. Then
σg(v) = g(v) and so g−1σg fixes v. Hence, g−1σg ∈ Gσ ∩ stab(v) = Gvσ. Suppose we
know that Gv is irreducible. Then Lang’s theorem tell us that g−1σg = hσh−1 for some
h ∈ Gv. Hence, gh ∈ Gσ. Then w = g(v) = gh(v) which implies that Gσ is transitive on
Vσ. That is, under the irreducibility assumption, an orbit of G gives rise to an orbit of the
finite group Gσ.

If we relax the assumption that Gv is connected, we can still apply a version of Lang’s
theorem, but we have to be more careful since it only applies to connected groups. There
is a completely general result in this direction which we now state.

Proposition 3.8 Let G be an irreducible algebraic group with Frobenius morphism σ and
suppose that G acts morphically and transitively on a variety V with compatible action of
σ. Then Vσ 6= ∅. Further, the number of orbits of Gσ on Vσ is in bijective correspondence
with the H classes in the coset Hσ, where H = Gv/G0

v and v is an element of Vσ.

The above result is of great importance for understanding the structure of the finite
groups of Lie type. We illustrate with a few examples. Consider a simple algebraic group,
G, with Frobenius morphism σ.

Maximal tori. Assume σ is a field morphism. Thus Gσ = G(q) is a finite group of Lie
type and has the same Dynkin diagram as G. Let T be a maximal torus of G. If α is a root,
then σ normalizes Uα and induces a field morphism. It follows that σ stabilizes the coset
Tsα. As this occurs for each root, we conclude that σ centralizes W = NG(T )/T . Now
NG(T ) is the stabilizer of a point in the action of G on TG. What does the above theorem
say in this case? Well, consider the orbits of Gσ on the fixed points of σ in this transitive
action. The last result shows that these orbits are in bijective correspondence with W
classes in Wσ. But since σ centralizes W , in fact the orbits are in bijective correspondence
with conjugacy classes in W . The fixed points of σ stable maximal tori of G are called
maximal tori of G(q). What do the maximal tori of G(q) look like?

We next describe a method for answering that question. We will work within the
present context of maximal tori, but the method is quite general. Let n ∈ NG(T ). Notice
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that nσ normalizes T . On the other hand, Lang’s theorem shows that nσ is conjugate of
σ. Hence, taking conjugates, there exists a σ-stable conjugate of T for which σ has fixed
points isomorphic to those of nσ on T .

Lets try this in G = GLm(K), regarded as matrices, with σ the q-power morphism.
We use GLm rather than SLm in order to simplify matters. Take T to be the invertible
diagonal matrices. Taking n = 1, Tσ consists of the diagonal matrices over Fq and thus
is isomorphic to (Zq−1)m. On the other hand, if n = nw corresponds to an m-cycle in
the symmetric group, then one checks that Tnσ

∼= (Fqm)∗ ∼= Zqm−1. This is often called
a Singer cycle. Of course, the general case is where n = nw corresponds to a product of
cycles corresponding to a partition m = m1 + · · ·+mk. Here Tnσ

∼= Zqm1−1×· · ·×Zqmk−1.
So clearly the maximal tori can have very different structures. The maximal tori in the
finite classsical groups can also be understand from linear algebra considerations. But for
exceptional groups the connection with algebraic groups provides the best approach for
understanding these important subgroups.

What is important here is that we are learning a great deal about important subgroups
of G(q) by considering a much easier structure in the algebraic group.

Subsystem subgroups. Exactly the same thing occurs if one consider other sorts of
orbits of G. Here is an interesting example. Let G = E8. We can see from the extended
Dynkin diagram that E8 > A4A4 > T . There is just one class of subgroups of this type.
Both factors are of type SL5, but they have the same center. We have already mentioned
that NG(A4A4) = A4A4Z4.

The group Z4 is generated by an element of the Weyl group. Taking σ to be a field
morphism we see that it centralizes a representative of each fundamental reflection, hence
centralizes NG(T )/T ∼= W , and hence we can take σ to centralize the Z4 factor. So we
conclude that Gσ has four orbits on fixed points of σ on (A4A4)G. We want to know the
structure of the fixed points of σ on representatives of the σ-stable orbits. We again use
the above method. If Z4 = 〈s〉, then we need to consider fixed points of σ, s2σ, sσ, s−1σ.
It turns out that s interchanges the A4 factors and s2 induces a graph automorphism on
each factor. Starting from the direct product of two copies of SL5 and replacing s by s−1,
if necessary, we obtain

(A4A4)σ
∼= SL5(q)SL5(q)

(A4A4)s2σ
∼= SU5(q)SU5(q)

(A4A4)sσ
∼= SU5(q2)

(A4A4)s3σ
∼= PGU5(q2).

If one was working entirely within the finite group E8(q), some of the above subgroups
would be very difficult to find. Yet, from the perspective of the algebraic group they are
easy to understand and one can predict what might happen.
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4 Maximal subgroups of classical algebraic groups

In this section we discuss the problem of determining the maximal connected subgroups
of the classical groups SL(V ), Sp(V ), SO(V ). Let M be maximal among closed connected
subgroups of I(V ), where I(V ) denotes one of the classical groups. Analysis of this prob-
lem began with work of Dynkin [14], in characteristic 0 and was redone and extended to
arbitrary characteristic by Seitz [41] and Testerman [47]

We begin with a reduction.

Proposition 4.1 Let M be maximal among closed connected subgroups of G = I(V ).
Then one of the following holds:

i). M = GW where W is a singular subspace, a non-degenerate subspace, or a nonsin-
gular 1-space (only if p = 2 with G orthogonal).

ii). V = V1 ⊗ V2 and M = I(V1) ◦ I(V2).
iii). M is a simple group and V ↓ M is irreducible and restricted (if p > 0)..

Proof We will sketch the proof and in the process describe the groups that arise in parts
(i) and (ii). In the SL(V ) case we consider V to have the trivial bilinear form.

First assume M is a reducible subgroup and let W be a proper M -invariant subspace,
which we can take to be minimal. If V is equipped with a non-degenerate form, then by
minimality W is either non-degenerate or totally singular under the bilinear form. If W is
singular (i.e. the bilinear form restricted to W is trivial), then, with one exception, GW is
a proper parabolic subgroup of G. The exception occurs when p = 2, G = O(V ) = Dn and
GW = Bn−1. On the other hand, if W is non-degenerate with respect to the bilinear form,
then V = W ⊥ W⊥, this is preserved by M , and hence M = I(W ) ◦ I(W⊥).

So now assume that V ↓ M is irreducible. Notice that this forces M to be reductive, else
M would act on the fixed points of the unipotent radical of M . Also, M is semisimple, since
otherwise M would act on the various weight spaces of a central torus. If M is a commuting
product of more than one simple factor, then M preserves a tensor product decomposition of
V . Indeed, irreducible representations of commuting products are just the tensor products
of irreducibles for the given factors. So we ask what is the full group preserving a tensor
product, V = V1 ⊗ V2. If G = SL(V ), then this is clearly SL(V1) ◦ SL(V2). Suppose
V has a nondegenerate form. Then each simple factor acts homogeneously on the space
and preserves the bilinear form. So the corresponding irreducible module for the simple
factor is self dual and the factor preserves a form on the corresponding tensor factor. An
irreducible group can preserve only one type of bilinear form up to scalar multiples, so the
bilinear form on V must be a multiple of the tensor product form. Thus M must be a
group such as Sp(V1)◦SO(V2) < Sp(V ) or Sp(V1)◦Sp(V2) < SO(V ). In this way we settle
the case where M is not simple.

Finally, suppose that M is a simple group. If p > 0, then the tensor product theorem
shows that V ↓ M is the tensor product of twists of restricted irreducibles. If there is
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more than one tensor factor then M is properly contained in a group of type (ii), against
maximality. Hence, there is just one factor. So the embedding is the composition of a
Frobenius twist of M followed by a restricted representation. The twist does not change
the image group, so as a subgroup of I(V ), the representation is restricted.

One now wants to determine which of the groups appearing in (i), (ii), and (iii) are
maximal in I(V ). This is not too difficult for the first two cases. The real mystery occurs
in part (iii). Here the problem is the following. Let X be a simple algebraic group and
consider a restricted irreducible representation of X. When is the image of X maximal in
a corresponding classical group? If this is not the case, then there is an embedding X < Y
of irreducible subgroups and the goal is to explicitly determine such containments.

Before continuing we recall some notation from representation theory. If X is a semisim-
ple algebraic group and λ is a dominant weight we let LX(λ) denote the irreducible module
for X with high weight λ. There is an expression λ =

∑
i aiωi, where the ωi are the fun-

damental dominant weights and the ai are nonnegative integers. Then λ determines a
labelling of the Dynkin diagram of X where the nodes are labelled by the integers ai.

A first goal is to understand when an irreducible representation is self-dual and then
determine what type of form is stabilized. The following lemmas largely settle these issues.

Lemma 4.2 Suppose X is a simple algebraic group and V = LX(λ) is an irreducible
representation.

i). V ∗ ∼= LX(−w0λ), where w0 is the long word in the Weyl group.
ii). All irreducible modules of X are self-dual unless the Dynkin diagram of X has type

An, Dn(n odd), or E6.
iii). If the Dynkin diagram of X has type An, Dn(n odd), or E6, then LX(λ) is self-dual

if and only if λ = τ(λ), where τ is the involutory graph automorphism.

Proof Here is a sketch of (i). Let V = LX(λ) and let B be a Borel subgroup of X
with maximal torus T . The T -weights of V ∗ are the negatives of the weights of V and
weights of V can be obtained by subtracting positive roots from λ. Hence the weights of
V ∗ all have the form −λ plus a sum of positive roots. Therefore, −λ is the lowest weight
of V ∗. Consequently, if w0 is the long word in the Weyl group, then Bw0 , the opposite of
B, stabilizes a 1-space of V which affords the weight −λ for T . Conjugating by w0 we then
see that B stabilizes a 1-space affording the weight −w0λ.

For (ii) consider the action of −w0 on roots. Aside from the special cases indicated,
one sees that w0 is −1 on a maximal torus, so sends each root to its negative. Hence −w0

is the identity and we get (ii). In the exceptional cases, −w0 affords the involutory graph
automorphism and (iii) holds.

The following lemma of Steinberg describes which form is fixed once the module is
self-dual.
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Lemma 4.3 Assume V = LX(λ) and V ∼= V ∗ and p 6= 2. Let z = Πα∈Σ+Tα(−1). Then
the representation is symplectic if λ(z) = −1 and orthogonal if λ(z) = 1.

Remarks. 1. Consider what happens forf X = SL2, where λ is restricted if p > 0.
Then λ = nλ1 and n < p, if p > 0. The corresponding irreducible module LX(n) has
dimension n+1. The element z in Lemma 4.3 generates center of SL2. Moreover, λ1(z) =
−1 and nλ1(z) = (−1)n, so that LX(n) is symplectic if n is odd and orthogonal if n is
even.

2. The situation for p = 2 is still open. In this case SO(V ) < Sp(V ), so one always has
an embedding in the symplectic group. But deciding when it is orthogonal is nontrivial.

The next lemma and its corollary set the stage for an inductive approach to the maximal
subgroup problem.

Lemma 4.4 (Smith) Let V = LX(λ) be an irreducible module for X and let P = QL be a
standard parabolic with unipotent radical Q and Levi subgroup L. Then VQ (the fixed points
of Q) affords an irreducible module for L of high weight λ.

Proof We give an argument only for characteristic 0. First note that if v is a weight
vector of weight λ, then v ∈ VQ. Also, U = QUL, where UL is a maximal unipotent
subgroup of L. Now, U has a one-dimensional fixed space on V , namely the span of v. So
the same must hold for the action of UL on VQ. But this implies the action is irreducible
of high weight λ,; otherwise the space would decompose into irreducibles and there would
be other fixed points.

Corollary 4.5 Suppose X < Y are simple algebraic groups, both irreducible on V . Assume
PX , PY are parabolic subgroups of X and Y such that PX = QXLX , PY = QY LY and
QX ≤ QY . Then VQX

= VQY
and both LX and LY are irreducible on this space.

Proof This is easy from the lemma. We have QX ≤ QY , so 0 < VQY
≤ VQX

. Also,
LX < PX ≤ PY , so LX normalizes QY and acts on VQY

. However, the lemma shows that
LX is irreducible on VQX

, so this is only possible if equality holds.

The case X = A1 is an important case. This case is important in its own right, but in
addition it forms a base for the induction. Fortunately, there are some nice features about
A1 that can be applied.

So now assume X = A1, V = LX(n), and X < I(V ), where I(V ) = Sp(V ) or SO(V ).
We are interested in whether or not X is maximal. So assume that X < Y < I(V ). How
can we find the possibilities for Y ?

One key point is that irreducible representations of SL2 have all weight spaces of
dimension 1. If X < Y and we choose a containment TX < TY of maximal tori, then the
same must hold for weight spaces of TY . This is a very strong condition and is of interest
independent of this particular problem.
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In certain cases we can get a quick contradiction and we illustrate with Y = A2. First
note that X cannot lie in a proper parabolic of Y , since parabolics of Y are reducible on
all modules for Y . So if Y = A2, then X would be irreducible on the natural 3-dimensional
module. It follows that if α is the fundamental root for X, then α1 ↓ TX = α2 ↓ TX = α
for each of the fundamental roots of Y . Suppose V has high weight λ = aλ1 + bλ2. If both
a, b > 0, then λ− α1 and λ− α2 are distinct weights of V with the same restriction to TX

a contradiction. Say a > 0 and b = 0. If a > 1, then λ− 2α1 and λ− α1 − α2 are distinct
weights restricting to λ− 2α on TX , again a contradiction. So this shows that λ = λ1 for
A2. But then SL(V ) = A2, so Y = SL(V ), a contradiction.

Eventually, we obtain the following result.

Proposition 4.6 Suppose X < Y < I(V ), where I(V ) = Sp(V ) or SO(V ) with X of type
A1 and V ↓ X and V ↓ Y are irreducible and restricted. Then Y = G2,dim(V ) = 7, and
I(V ) = SO7.

Consider what this means for the maximal subgroup problem.

Corollary 4.7 Let X be the image of SL2 under an irreducible restricted representation.
Then X is a maximal connected subgroup of either Sp(V ) or SO(V ) unless dim(V ) = 7
and X < G2 < SO(V ).

This is a stunning result because it shows that classical groups of arbitrarily large
dimension contain maximal subgroups of dimension 3.

Now we discuss some of the issues involved in dealing with higher rank configurations.
First we note that there is a major division in the analysis according to whether Y is a
classical group (Seitz) or an exceptional group (Testerman). Each case has its advantages
and disadvantages and the analysis is very long in either case. If Y is a classical group,
then the rank is unbounded, so there are infinitely many possibilities. On the other hand,
one can study the embedding X < Y by analyzing the action of X on the natural module
for Y . This is an important tool. By way of contrast, if Y is an exceptional group, then
Y has rank at most 8, so the rank of X is also bounded. Even so the possible embeddings
are difficult to understand due to the lack of a classical module.

We next discuss how to proceed with the induction. Recall the setup of Corollary 4.5.
Take one of our embeddings, X < Y , and choose a corresponding embedding of parabolic
subgroups PX < PY . Then both LX and LY are irreducible on the space VQX

= VQY
. We

do not necessarily have a containment of the Levi subgroups, but this does hold modulo
QY , so there is a containment of the acting groups and we proceed as if there were a
containment.

One proceeds by taking a convenient choice for PX , usually a maximal parabolic corre-
sponding to an end node. Then L′

X is a simple group of rank one less than that of X. On
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the other hand, a priori we do not have much information on L′
Y . All we can say is that

L′
Y = L1 × . . .× Lr, for some product of simple groups.

Now VQX
is irreducible for both L′

X and L′
Y and the former acts as a restricted module.

These are nearly always tensor indecomposable so this implies that at most one simple
factor of L′

Y can act nontrivially, say Li. So this means that all the other simple factors
act trivially, implying that there are a certain number of 0′s in the labelling of the high
weight for Y . Now consider πi(L′

X) ≤ Li, the image of the projection map. These two
groups both act irreducibly on the fixed point space. So we are set up for induction. But
we must always allow for the possibility that this containment is an equality.

In order get more information we dig a little deeper.

Lemma 4.8 Let X be simple and let V = LX(λ). If P = QL is a standard parabolic
subgroup then V/[V,Q] is irreducible of high weight wL

0 wG
0 (λ).

Proof Here is the idea of the proof. Let V ∗ denote the dual module of high weight
λ∗ = −wG

0 λ. We already know that VQ is irreducible for L of high weight λ. Now consider
the annihilator in V ∗ of this fixed point space. An easy argument shows that this annihilator
is [V ∗, Q]. Thus VQ and V ∗/[V ∗, Q] are dual modules for L. Hence the high weight of the
latter is −wL

0 λ. Now do the same for V/[V,Q], which is dual to V ∗
Q. We conclude that this

module is irreducible of high weight −wL
0 λ∗ = wL

0 wG
0 λ. This is the desired result.

For technical reasons it will be helpful to make one additional observation. Suppose
that in the last result we replaced the standard parabolic subgroup P = QL by the opposite
to P . Namely let P− = Q−L be the parabolic with the same Levi subgroup, but for which
the unipotent radical is the product of root groups for the negatives of those that appear
in Q. If we do this, then the irreducible module V/[V,Q−] affords VL(λ) for L and the
fixed points affords VL(wL

0 wG
0 (λ)).

We next lemma providing additional information obtained from the embedding of
parabolic subgroups. Say X < Y are both irreducible on V and V ↓ X is restricted.
Suppose that PX < PY is an embedding of opposite standard parabolics such that the Levi
factor, L′

X is simple. Write L′
Y = L1 × . . .× Lr and recall that there is a unique factor Li

acting nontrivially and irreducibly on V/[V,QX ] = V/[V,QY ]. In the Dynkin diagram for
Y consider a node adjacent to Li. Since we are taking PY as the opposite of the standard
parabolic subgroup, the corresponding node is the negative of a fundamental root, say −δ.
Let γ = δ + β1 + . . . + βs, where the βi are the fundamental roots up to and including the
nonzero label of Li closest to −δ. We note that λ− γ restricts to a dominant weight of L.
We will present an example of all this following the statement of the lemma.

Lemma 4.9 Let X < Y be irreducible on V , suppose that PX < PY be an embedding of
opposite standard parabolics, and assume that PX is a maximal parabolic of X. Then

dim(V/[V,QX ]) · dim(QX/Q′
X) ≥ dim[V,QX ]/[V,QX , QX ] ≥ dimVLY

(λ− γ).
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If there happens to be more than one node adjacent to Li then the argument gives a
sum of terms and stronger information.

We illustrate how 4.9 can be applied in a very specific configuration. Say X < Y
are both irreducible on V with X = A2 and V ↓ X = LX(aλ1 + bλ2), with the weight
restricted. Take PX so that the action on V/[V,QX ] is irreducible for L′

X = A1 of high
weight a. Write LY = L1L2 . . . Lk with k > 1, ordered such that L2 . . . LX acts nontrivially
on V/[V,QX ] = V/[V,QY ]. Assume there is just a node −δ adjacent to both L1 and L2.

One possibility arising from induction is that L1 = A1 and this factor acts the same
way on V/[V,QX ] as L′

X . To be definite we assume L2 has type Ak and the label on −δ is
nonzero. Then λ− δ affords the module of high weight(a+1)λ1 for L1 and the high weight
of a natural module for L2. So 4.9 reads

(a + 1) · 2 ≥ (a + 2)(k + 1),

unless a = p− 1, where we use a slightly different argument. This gives a contradiction.

There are several additional levels of analysis and we briefly mention one of these.
Given an embedding of parabolics PX < PY , one can obtain information on how a root
group Uβ ≤ QX sits in QY . Indeed, one obtains precise information regarding how Uβ(c) is
expressed in terms of root elements of Y . In turn this provides information on how certain
roots in the root system of Y restrict to a maximal torus of X. In some sense this links
the group theory to the representation theory. It is a very important tool.

The ultimate result determines all possibilities for X < Y , assuming Y 6= SL(V ), Sp(V )
or SO(V ). There are a number of configurations. Nonetheless, the main point is that if one
considers an irreducible restricted representation of X, then the image is usually maximal
in the smallest classical group containing it.

To complete the discussion we provide a few examples that occur. We refer the reader to
[41] for a complete statement. Let X < Y both be irreducible on V , acting via restricted
representations. Let λ denote the hight weight and let TX < TY be a containment of
maximal tori of the respective groups.

(X, Y ) = (On, SLn) (natural embedding). The wedge powers of the natural module for
SLn are irreducible for both groups, provided p 6= 2.

(X, Y ) = (Spn, SLn) (natural embedding). The restricted symmetric powers of the
natural module for SLn are irreducible for both groups.

(X, Y ) = (An, A(n2+n−2)/2), where the embedding is obtained from the wedge square
of the natural module for X. The wedge square of the natural module for Y remains
irreducible for X, provided p 6= 2.

(X, Y ) = (E7, C28), with λ ↓ TX = ω2 + ω4 and λ ↓ TY = ω5, and p 6= 2, 3, 5.
(X, Y ) = (F4, E6), with λ ↓ TX = (p − 2)ω3 + ω4 and λ ↓ TY = (p − 2)ω5 + ω6, where

2 6= p > 0.
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5 Maximal subgroups of exceptional algebraic groups

In this section we discuss the problem of finding the maximal, closed, connected, subgroups
of simple algebraic groups of exceptional type. Here the large group has bounded rank (at
most 8) and consequently the goal is a complete list of the maximal subgroups. The analysis
of this problem began with Dynkin who settled the case where K has characteristic 0 [15].
Seitz extended the work to positive characteristic, but subject to some mild characteristic
restrictions. Very recently, Liebeck and Seitz [26] completed the analysis. So there now
exist results for exceptional groups in arbitrary characteristic. Each of the papers is very
long.

Below is a simplified version of the main theorem which covers only connected maximal
subgroups. The more general result in [26] also covers disconnected maximal subgroups of
positive dimension and also allows for the presence of certain morphisms of G, so that the
result can be applied to yield information about the finite groups of Lie type.

Theorem 1 Let G be a simple algebraic group of exceptional type. Let X < G be max-
imal among proper closed connected subgroups of G. Then X is a parabolic subgroup, a
semisimple subgroup of maximal rank, or X is in the table below.

Table

G X simple X not simple
G2 A1 (p ≥ 7)
F4 A1 (p ≥ 13), G2 (p = 7), A1G2 (p 6= 2)
E6 A2 (p 6= 2, 3), G2 (p 6= 7), A2G2

C4 (p 6= 2), F4

E7 A1 (2 classes, p ≥ 17, 19 resp.), A1A1 (p 6= 2, 3), A1G2 (p 6= 2),
A2 (p ≥ 5) A1F4, G2C3

E8 A1 (3 classes, p ≥ 23, 29, 31 resp.), A1A2 (p 6= 2, 3), G2F4

B2 (p ≥ 5)

The maximal parabolic subgroups are easy-they correspond to removing a single node
from the Dynkin diagram. Similarly, the maximal rank subgroups are well-known. Except
for a few special cases in characteristic 2 ( 3 for G2) they are just subsystem subgroups
and correspond to removing nodes from the extended Dynkin diagram. Beyond this, there
are remarkably few types of maximal subgroups and most of these have rather small rank
in comparison with the rank of G. In particular, notice that maximal subgroups of type
A1 occur. Of course this should not surprise us at this point, as we have seen this behavior
for classical groups as well.
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In the following we describe some of the main ideas involved in the proof of the main
theorem. The complete proofs are very long, but it is not so difficult to understand the
overall strategy. Assume G is of adjoint type.

From now on assume that X is not a proper parabolic subgroup or a group of maximal
rank.

Lemma 5.1 The following conditions hold.
i). X is semisimple.
ii). CG(X) = 1
iii). CL(G)(X) = 0
iv). X = NG(L(X))0.
v). CG(L(X)) = 1.

Proof This is relatively easy. For (i) first note that Ru(X) = 1 as otherwise X would
lie in a proper parabolic subgroup of G. So X is reductive. If X is not semisimple,
then it centralizes a torus, whose full centralizer is a Levi subgroup. Hence (i) holds. If
CG(X) > 1, then X centralizes either a unipotent or an semisimple element. In the former
case, X is contained in a proper parabolic subgroup and in the latter X lies in a maximal
rank subgroup (as the semisimple element lies in a maximal torus of G). This gives (ii)
and essentially the same idea gives (iii). For (iv) we certainly have X ≤ NG(L(X))0, so the
equality follows from maximality. For (v), let C = CG(L(X)). We argue that X ∩ C = 1,
so maximality implies that C is finite. But then X centralizes C and so (ii) implies that
C = 1.

We next describe an important 1-dimensional torus of X. Fix a maximal torus TX of
X and a system of TX -invariant root subgroups of X, one for each root in the root system
Σ(X) of X. Let Π(X) be a system of fundamental roots. If γ ∈ Σ(X)+ and if Uγ , U−γ are
the corresponding TX -root subgroups of X, then we let Tγ(c) be the image of the matrix
diag(c, c−1) under the usual surjection SL2 → 〈Uγ , U−γ〉.

For c ∈ K∗ set

T (c) = Πγ∈Σ(X)+Tγ(c),

and

T = 〈T (c) : c ∈ K∗〉.

Lemma 5.2 (i) T (c)eα = c2eα for each α ∈ Π(X).
(ii) T (c)h = h for all h ∈ L(TX).

Proof (ii) is immediate since T ≤ TX and TX acts trivially on L(TX). For (i) fix
α ∈ Π(X). Then T (c)eα = creα, where r =

∑
γ∈Σ(X)+〈α, γ〉. Let Σ(X)∗ denote the dual

root system consisting of roots δ∗ = δ/(δ, δ), for δ ∈ Σ(X). Then r = Σγ∈Σ(X)+〈γ∗, α∗〉 =
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2〈ρ∗, α∗〉, where ρ is the half-sum of positive roots in Σ(X). But it is well known that ρ
is the sum of all fundamental dominant weights of Σ(X)∗ and α∗ is a fundamental root in
Σ(X)∗. (i) follows.

Since each root in Σ(X) is an integral combination of roots in Π(X) the previous lemma
determines all weights of T on L(X), showing, in particular, that these weights are all even.

We next pass to weights of T on L. Consider T ≤ TX < TG, with TG a maximal torus
of G. Then for β ∈ Σ(G), eβ is a weight vector of T and we write

T (c)eβ = ctβeβ ,

where tβ is an integer.

Lemma 5.3 (i) The TX-weights on L are each integral combinations of elements of Σ(X).
(ii) There exists a system of fundamental roots Π(G) of Σ(G) such that tβ = 0 or 2 for

each β ∈ Π(G).

Proof Here is a sketch of the proof. Consider the action of X on L(G) Using repre-
sentation theory we can write L(G) = I ⊕ J , where 0 6= I is the sum of all weight spaces
for TX where the corresponding weights are integral combinations of roots and J is the
sum of the remaining weight spaces. One argues that the full stabilizer of I is a group of
maximal rank. Indeed, I is stabilized by the group generated by TG and all root groups
corresponding to roots that restrict to TX as an integral combinations of roots of X. This
contradicts maximality of X, unless I = L(G). So this gives (i).

We can choose a system of fundamental roots for G such that each of the root vectors
affords a nonnegative (even) weight for T . We must show that the corresponding weights are
only 0 or 2. The idea here is to take the Levi subgroup generated by all such fundamental
roots and their negatives, then argue using Lemma 5.2 that L(X) is contained in the Lie
algebra of this Levi. If this is a proper Levi, then it is centralized by a torus, which
contradicts Lemma 1.1(iv).

Let’s now consider what the above lemma says. Given X we obtain a labelled Dynkin
diagram for G, where the labels are the weights of T on fundamental roots. From such a
labelling we can easily obtain all weights of T on L(G). In particular, the largest T weight
on L(G) is bounded by twice the height of the highest root in the root system of G. We
also know that each composition factor of X on L(G) has all weights being combinations
of roots of X. Restricting to T we get a collection of T -weights. Combining these over
all composition factors we must get T weights which are precisely those from the given
labelling. This, then, is a restriction on the possible composition factors that can appear.
In particular, there are only finitely many possible composition factors that can occur!

At this point we have narrowed our search to some degree. To go further we separate
the analysis according to whether or not X is simple.
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Suppose first that X is not simple. Say X = X1 · · ·Xr, with r > 1 and each Xi

a simple group. One can see from the statement of the theorm, there are a number of
possibilities that occur, so this cannot be a trivial step. How do we get some insight to
this problem? Well at the outset we can use maximality to see that if we take any proper
subproduct of the X ′

is, then the remaining terms comprise the full connected centralizer
of this subproduct. This simple observation gives us something to work with.

For example, fix i and write X = XiX
i. Let T i be a maximal torus of Xi. Then

CG(T i) = L is a Levi subgroup and Xi ≤ L′. Maximality implies that T i = Z(L)0. On the
other hand, Xi = CG(Xi)0 ≥ CG(L′)0. Now we know all about centralizers of Levi factors
and hence obtain the following lemma.

Lemma 5.4 Either Xi contains a root subgroup of G or Xi has rank at most 2.

Actually more is available, since in the second case we have explicit candidates for L. If
we know that Xi contains a root group of G we are in a very nice situation. Indeed, we can
argue that Xi, actually some Xj , contains a fundamental SL2 generated by opposite root
groups of G. We know the precise composition factors of such an SL2 on L(G) and from
this we can deduce detailed information about the action of Xj on L(G), which provides
information about the embedding of Xj and hence its centralizer.

In the other case, Xi has rank at most 2 and we obtain the possibilities for L′. Here
we can study the embedding of Xi in L′ to obtain further information. Also, we work with
other factorizations X = XjX

j . Ultimately this analysis comes down to cases where r = 2
with both factors of small rank, usually with one factor, say X1, of type A1. If T1 is a
maximal torus of this A1 factor, then CG(T1) is the Levi factor of a maximal parabolic
subgroup. We can choose this parabolic so that a T1-invariant unipotent subgroup of X1

is contained in the unipotent radical. Using the fact that X2 centralizes this group we
eventually obtain precise information on both simple factors of X.

Now suppose that X is a simple group. The labelled diagram is particularly effective
here. There is a computer program that does the following. For each possible labelling
and each possible X, it determines the possible composition factors on L(G), allowing for
different characteristics.

We have progressed from knowing very little about our maximal subgroup to having a
finite number of possibilities for the composition factors on L(G). There are a few situations
where the information is not very useful. For example, when X = A1 with p = 2 there
are hundreds of possibilities and they provide little insight. But for most cases the list is
manageable.

The first thing to look for are trivial composition factors. For if we have one, then
there is a chance of getting a fixed point, a contradiction. The problem is that in positive
characteristic, a trivial composition factor need not give rise to a fixed point because of
the presence of certain indecomposable modules. We therefore require precise information
on the structure of Weyl modules for certain dominant weights.
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In the first pass we reduce to cases where X either has no trivial composition factors or
where they exist but there exist other composition factors that could prevent the existence
of fixed points. At this point the role of the characteristic is clearly in evidence. In charac-
teristic 0 one automatically has fixed points whenever there is a trivial composition factor,
since the relevant modules are all completely reducible. If one assumes mild characteristic
restrictions (e.g. p 6= 2, 3), then many of the most serious problems are avoided. This may
help explain the evolution of the results from Dynkin, to Seitz, to Liebeck-Seitz.

We now consider what one can do when faced with the possibility of trivial compositon
factors but no fixed points. When this occurs we are typically in small characteristic and
it is common to find composition factors of the form V q, a module twisted by a nontrivial
Frobenius morphism. These modules are centralized by L(X), so any such submodule is
contained in A = CL(G)(L(X)). It is very fortunate that the most troublesome cases for
finding fixed points often force A 6= 0 and this provides a wedge into handling these cases.

Lemma 5.5 Let A = CL(G)(L(X)).
i). A is a subalgebra of L(G).
ii). Excluding the cases X = A1, B2, C3 with p = 2, we have A ≤ L(D), where D =

〈TG, Uβ : eβ ↓ T is a multiple of 2p〉.

We can find D explicitly from the labelling of the Dynkin diagram of G determined by
T . Moreover, the action of T determines a labelling of the diagram of D. Information on
submodules of the form V q implies the existence of certain weight vectors of A lying in
L(D). Such a weight vector centralizes L(X). Now, in certain situations we can choose such
a nonzero nilpotent weight vector n ∈ A and “exponentiate” to get a unipotent element
g ∈ G having exactly the same fixed points as n. Then 1 6= g ∈ CG(L(X)). However, this
contradicts Lemma 1.1(v).

A simple example might be helpful. Say p = 5 and D = A4 with all labels 10 = 2p.
If we happened to know that V q had 40 as T -weight, then we could see that this weight
vector must be a root vector of L(G). Indeed, it corresponds to the root of highest height
in the system for D. Hence a corresponding root element in G has precisely the same fixed
points on L(G).

This turns out to be a powerful method, although the examples that actually occur are
considerably more elaborate than the one given and require more care in the exponentiation
process.

Employing all the techniques mentioned so far we greatly narrow our seach for maximal
subgroups. There are a handful of possibilities that either turn out to be maximal subgroups
of G or require a great deal of effort to eventually place them in a larger group. For these
cases we usually work hard to determine the Lie algebra of X up to conjugacy in G and
then determine the full stabilizer of this algebra. Most of the simple groups listed in the
statement of the theorem fall into this category and were constructed by various authors
(Testerman, Seitz, and Liebeck-Seitz).
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There are a few cases that we have yet to address, the most notable of these is X = A1

with p = 2. This is a case that required a somewhat different approach. Eventually it was
shown that such a group cannot be maximal, but this was not so easy.

We indicate some of the special considerations that can be used here to again highlight
the important role of Lie algebra considerations in small characteristic.

First, consider the structure of L(X). We have X = A1. If X = SL2, then as p = 2, we
see that L(X) has a nontrivial center and X has a fixed point on L(G), a contradiction.
Hence X = PSL2. Here, I = L(X)′ = 〈e, f〉, where [ef ] = 0.

Lemma 1.1(iv) can be extended slightly to see that CG(I) = 1. We then proceed by
first getting a labelled diagram as before and get e ∈ L(Q), where Q is the Levi subgroup
of the corresponding parabolic subgroup (the one with Levi subgroup CG(T )).

Let δ be the root in Σ(G) of highest height. Then [eeδ] = 0. We consider [feδ]. If
this is also 0, then eδ centralizes I and we argue that a corresponding root element also
centralizes I, a contradiction. So suppose it is nonzero. Then we have

[e[feδ]] = [[ef ]eδ] + [f [eeδ]] = 0.

We then try to argue that [f [feδ]] = 0. A careful analysis shows that [feδ] is usually
either a multiple of a root vector or a linear combination of two orthogonal root vectors
G and that the commutator is 0. At this point we argue that it is again possible to
exponentiate to get a group element centralizing I, a contradiction.

Similar analysis must be carried out in a couple of other situations with p = 2, partic-
ularly X = B2.

Altogether, it is a long, fascinating, story involving an intricate blend of group theory
and representation theory.

6 On the finiteness of double coset spaces

In this section we discuss a problem concerning double cosets in algebraic groups. Through-
out G will be a simple algebraic group over an algebraically closed field K of characteristic
p.

Main Problem. Determine pairs, X, Y , of closed subgroups of G such that |X\G/Y |
is finite.

What makes this problem fascinating is the range of examples coming from group
theory and representation theory. We begin the discussion with several types of examples.

Parabolic subgroups. Let B denote a fixed Borel subgroup of G and write B = UT
where U = Ru(B) is the unipotent radical of B and T is a maximal torus. The root system
of G will be denoted by Σ with Π a fixed base of Σ. We take U to be the product of T -root
subgroups corresponding to positive roots.
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The fundamental result
G =

⋃
w∈W

BwB.

immediately implies that
|PJ\G/PK | < ∞

for all pairs of subsets J,K ⊂ Σ. Taking conjugates of PJ , PK we obtain our first family
of configurations.

Finite orbit modules. Another type of example occurs as follows. Given a semisimple
group G we consider an irreducible representation of G on a module V and obtain an
embedding G < SL(V ). Suppose that G has only finitely many orbits on subspaces of
dimension k. Then

|G\SL(V )/Pk| < ∞

where Pk is the stabilizer in SL(V ) of a k-space of V , a parabolic subgroup of SL(V ).

Proposition 2.7 shows that parabolic subgroups lead to modules for the Levi subgroup
on which there are only finitely many orbits on vectors. These are called internal modules.
We note that here the semisimple part of the Levi subgroup then has finitely many orbits on
1-spaces of these modules. So the internal modules provide a good supply of configurations
where we have an irreducible subgroup X < SL(V ) such that |X\SL(V )/P1| < ∞.

In the special situation where the unipotent radical is abelian, there is a very nice
connection between the number of orbits of L on Q and the number of double cosets of the
given parabolic. The following result appears in a paper of Richardson-Röhrle-Steinberg.

Theorem 6.1 [38]. Assume P = QL is a parabolic subgroup and Q = Ru(P ) is abelian.
If p = 2, assume that the Dynkin diagram is simply laced. Then the number of orbits of L
on Q is precisely |P\G/P |.

For example, if G = E7 and P is the parabolic subgroup with Levi factor of type
E6, then Q is abelian and affords a 27 dimensional irreducible module for E6. Let P1

be the stabilizer of a 1-space in SL27(K) and regard E6(K) < SL27(K). We then have
|E6\SL27/P1| = |P\E7/P | = 4.

Involution centralizers. In an earlier section we stated the following result of Matsuki
[34] and Springer [51]

Theorem 6.2 Let τ be an involutory automorphism of the simple algebraic group G and
assume that the underlying field does not have characteristic 2. Then |CG(τ)\G/B| < ∞.
That is, there are finitely many orbits of K on Borel subgroups.

Of course Theorem 6.2 implies |CG(τ)\G/P | < ∞ for all parabolic subgroups P of G.
We will prove this result in the next section, but let’s first consider a couple of examples. If

29



G = SL(V ) one can choose τ such that CG(τ) = SO(V ) or Sp(V ), the latter when dimV
is even. If the parabolic subgroup of SL(V ) is taken as Pk, the stabilizer of a k-space of
V , then we are looking at the action of SO(V ) or Sp(V ) on k-spaces of V . From Witt’s
theorem it follows that two k-spaces are in the same orbit if and only if, under the bilinear
form, their radicals have the same dimension.

Consequently, Theorem 6.2 can be regarded as an extension of Witt’s theorem. It
provides many interesting examples, even for exceptional groups. For example, consider
the case G = E8. Here (assuming charK 6= 2) there is an involution τ ∈ G such that
CG(τ) = D8. We conclude that |CG(τ)\G/B| < ∞, where B is a Borel subgroup of E8.
We note that there is barely room for a dense orbit of D8 on G/B, as both have dimension
120.

6.1 Proof of Theorem 6.2

In this section we sketch a proof of the result of Matsuki-Springer result, due to the author.
Form the semidirect product Ĝ = G〈τ〉 and define an action of Ĝ on B × B, where B

denotes the set of Borel subgroups of G. The action is as follows. For g ∈ G, g : (B1, B2) →
(Bg

1 , Bg
2), while the action of τ is given by τ : (B1, B2) → (Bτ

2 , Bτ
1 ).

Fix the Borel subgroup B < G. Then a typical element of B×B has the form (B1, B2) =
(Bg1 , Bg2), where g1, g2 are arbitrary elements of G. Letting ∼ denote G-equivalence, we
have

(B1, B2) = (Bg1 , Bg2) ∼ (B,Bg2g−1
1 ) ∼ (B,Bb1nwb2),

where b1, b2 are elements of B and nw ∈ NG(T ) corresponds to w ∈ W . We then have

(B1, B2) ∼ (B,Bnwb2) ∼ (B,Bnw) = (B,Bw).

Hence we have shown that G has only finitely many orbits on B × B.
Consider the fixed points of τ in this action. Notice that τ fixes the pair (Bg, Bgτ ) for

each g ∈ G. Also, τ permutes the G-orbits on B × B, fixing any orbit which contains a
fixed point.

We will apply the following lemma.

Lemma 6.3 Let H be an algebraic group over an algebraically closed field of characteristic
other than 2. Then H has only finitely many conjugacy classes of involutions.

Proof If Q is a unipotent group in H normalized by the involution t, then it is well-known
that all involutions in Qt are conjugate to t (e.g. Claim 5 p.64 of [49]). Consequently we
may assume H0 is reductive. By 5.16 of [45] each involution of H normalizes a maximal
torus so it will suffice to show that NH(T ) contains just finitely many conjugacy classes
of involutions. And to see this it suffices to show that T 〈t〉 has finitely many classes of
involutions for all involutions t ∈ NH(T ). Thus we may now assume H = T 〈t〉.
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Now T is isomorphic to the direct sum of finitely many copies of the multiplicative
group of K, so contains only finitely many involutions. Hence we are left with the case
where t /∈ T and we must show that the coset Tt contains just finitely any classes of
involutions.

Let I = {x ∈ T : xt = x−1}. Then I is a closed subgroup of T and I0 is a torus. Then
It is the set of involutions in Tt. Since I0 has finite index in the abelian group I, it suffices
to show that I0t has finitely many classes of involutions, under the action of I0. However,
if x ∈ I0, then since I is a torus, there is an element y ∈ I0 such that y2 = x. As y is also
inverted by t we have ty

−1
= xt, completing the argument.

We are now in position to complete the proof. Let g ∈ G. Then τ fixes (Bg, Bgτ ), so
τ g−1

fixes (B,Bgτg−1
). The second term of this pair can be rewritten as Bx for some x ∈ G

and writing x = b′wb, using the Bruhat decomposition, we find that τ g−1b−1
fixes (B,Bw).

Now D = stabĜ(B,Bw) = (B ∩Bw)〈γw〉, where γw ∈ Gτ .
The lemma shows D, and hence B ∩ Bw, have only finitely orbits on τG ∩ D. Say

τ g1,w , ..., τ gkw,w are representatives of the latter orbits. Consequently, for some 1 ≤ i ≤ kw

and some x ∈ (B ∩ Bw) ⊆ B we have τ g−1b−1
= τ gi,wx. So there is an element c ∈ CG(τ)

such that g−1b−1 = cgi,wx. It follows that g ∈ Bg−1
i,wCG(τ). Since g ∈ G was arbitrary, this

completes the proof.

6.2 The Reductive Case.

In this section we consider configurations of the main problem where the subgroups X and
Y are both reductive. We call this the Reductive Case. We begin with a result of Brundan
whose work was motivated by the following result of Luna for algebraic groups over fields
of characteristic 0.

Theorem 6.4 [31] Assume charK = 0 and X, Y are reductive subgroups of G. Then the
union of closed (X, Y ) double cosets in G contains an open dense subset of G.

This result has a stunning corollary which highlights the importance of factorizations for
the reductive case of the main problem

Corollary 6.5 Assume charK = 0 and that X, Y are reductive subgroups of G with
|X\G/Y | < ∞. Then G = XY .

Brundan tried to obtain a similar result for algebraic groups in characteristic p > 0.
He established a variation of the above Corollary and the following is a special case of his
result.

Theorem 6.6 ([6], [7]) Let X, Y be reductive subgroups of the simple algebraic group
G, with each subgroup either maximal connected or a Levi subgroup of a parabolic. If
|X\G/Y | < ∞, then G = XY .
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Brundan’s work centered on closed double cosets. It follows from the Mumford conjec-
ture that if there are at least two closed (X, Y ) double cosets in G, then there is no dense
double coset and hence infinitely many double cosets. Thus one wants to find methods of
producing closed double cosets. The following lemma of Brundan illustrates where these
might come from.

Lemma 6.7 Let TX ≤ X and TY ≤ Y be maximal tori and suppose that TX ≤ TY . Then
the double coset XnY is closed for each n ∈ NG(TY ).

The following corollary settles the case when X = Y is reductive.

Corollary 6.8 Let X be a proper connected reductive subgroup of G. There does not exist
a dense (X, X)-double coset. In particular, |X\G/X| = ∞.

Proof. Lemma 6.7 shows that the double coset XnX is closed for each n ∈ NG(TX)
where TX is a maximal torus of X. So it suffices to show that NG(TX) 6≤ X. Let TG

be a maximal torus of G containing TX . If TX < TG, then there is nothing to prove. If
equality holds, then X is a reductive maximal rank subgroup of G and NG(TX)/X is the
Weyl group of G. Since X is proper and connected in G it is now easy to check that its
Weyl group must also be proper.

The results of Brundan show that to obtain complete information on the reductive case
one only has to study factorizations. A reasonably complete analysis of factorizations was
obtained in [32]. A first lemma, based on the connectedness of G, implies that we may
take X, Y to be connected and we shall assume this in the following.

For exceptional groups, factorizations are rare, and the following result from [32] gives
all factorizations iinvolving connected subgroups.

Theorem 6.9 [32] Let G = XY with G of exceptional type and X, Y connected. Then
one of the following holds:

(i). p = 3 and G = G2 = A2Ã2.
(ii). p = 2 and G = F4 = B4C4 = D4C4 = B4D̃4 = D4D̃4.

Remark. The groups A2 < G2 and D4 < F4 are those subgroups corresponding to the
subsystem given by all long roots. In the latter case there is a containment D4 < B4 < F4.
When p = 3, 2, respectively, there is also a subgroup corresponding to the subsystem of
short roots and these are the subgroups in the theorem indicated by a tilde. These occur
as images of the previous subgroups under a special isogeny of G, which only exists for
these characteristics. In the F4 case there is a containment D̃4 < C4 < F4.

The situation with classical groups is considerably more complicated as there are many
more factorizations. The following result provides a complete list of factorizations when
the subgroups involved are maximal.
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Theorem 6.10 [32] Suppose G is of classical type and let V be the (irreducible) natural
module. Assume G = XY where X, Y are maximal among closed connnected subgroups of
G. Then one of the following occurs.

(1). Parabolic factorizations.
SL2m = Sp2mP1.
SO2m = N1Pm = N1Pm−1.
SO8 = B3P1 = B3Pi, with i = 3 or i = 4, (V ↓ B3 = LB3(λ3)).
SO7 = G2P1.
Sp6 = G2P1(p = 2).

(2). Reductive factorizations, p arbitrary.
SO4m = (Sp2m ⊗ Sp2)N1.
SO16 = B4N1, (V ↓ B4 = LB4(λ4)).
PSO8 = B3B

τ
3 = B3(Sp4 ⊗ Sp2), ( V ↓ B3 = LB3(λ3) and τ a triality).

SO7 = G2N1.

(3). Reductive factorizations, small characteristic.
p = 3, SO25 = F4N1, (V ↓ F4 = LF4(λ4)).
p = 3, SO13 = C3N1, (V ↓ C3 = LC3(λ2)).
p = 2, Sp2m = SO2mN2k, 1 ≤ k ≤ m− 1.
p = 2, SO56 = E7N1, (V ↓ E7 = LE7(λ7)).
p = 2, SO32 = D6N1, (V ↓ D6 = LD6(λi), i = 5 or 6.)
p = 2, SO20 = A5N1, (V ↓ A5 = LA5(λ3)).
p = 2, Sp6 = G2N2 = G2SO6.

To prove Theorem 6.10 one must first reduce to the configurations listed and then show
that these all occur. The first part makes use of work on the maximal subgroups of simple
algebraic groups. The existence of the factorizations is in some cases far from obvious.

6.3 The Parabolic Case.

In view of the results of the previous section, for purposes of resolving the maximal config-
urations of the main problem we may now assume that one of the groups X, Y is a maximal
parabolic. Say Y = P is a maximal parabolic subgroup of G. If X is a maximal reductive
group, we call this the Parabolic Case.

We begin with the case G = SL(V ), where V is a finite dimensional vector space over
K. If X is maximal and reductive, then X is irreducible on V and the parabolic case occurs
if |X\SL(V )/Pk| < ∞ for some k. That is, X has finitely many orbits on k-dimensional
subspaces of V .

Note that if dimV = n and this holds for k, then it also holds for n − k. For we can
identify the k-spaces of V with the (n − k)-spaces of V ∗ and V ∗ can be obtained from V
by an automorphism of X. Hence it suffices to consider k ≤ n/2.
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A complete analysis of such situations, assuming only that X is irreducible rather than
maximal, is presented in [16]. The case k = 1 is of particular interest. Note that X has
finitely many orbits on 1-spaces of V if and only if XK∗, the group obtained by adjoining
scalars, has finitely many orbits on vectors. In this situation we call V a finite orbit module.

The finite orbit modules for charK = 0 were determined by Kac [18] in connection with
a study of nilpotent orbits. Of course, if there are finitely many orbits, then there is also
a dense orbit, so the problem is closely related to the theory of prehomogeneous spaces,
studied by Sato and Kimura [50] for fields of characteristic 0 and by Chen [10], [11] in
positive characteristic.

Theorem 1 of [16] gives a complete analysis of finite orbit modules. It is shown that
such a module is either an internal module or one of several explicit exceptions. The
following result which, for simple groups, connects the notions of finite orbit modules with
prehomogeneous spaces.

Theorem 6.11 ([16], Cor. 1) Assume X is a simple algebraic group and V is a rational
irreducible module for X. Then X has finitely many orbits on P1(V ) if and only if it has
a dense orbit on P1(V ).

We note that there are examples showing that the above corollary fails to hold when
X is semisimple, but not simple,

The next result together with the reductive case completes the analysis of the main
problem when G = SL(V ) and X < SL(V ) is reductive and maximal. The results of
[16] go well beyond just the maximal configurations, but the statements are a little more
complicated.

Theorem 6.12 ([16], Thm 3) Let dimV = n and G = SL(V ). Suppose X is maximal
reductive and |X\SL(V )/Pk| < ∞ for some 1 ≤ k ≤ n/2. Then one of the following holds:

(i). X is a classical group and V is the natural module for X.
(ii). X0 = (GLn/r)r ∩G, with r|n, and either r ≤ 3, k arbitrary; or r ≥ 4, k = 1.
(iii). X0 = SLr ⊗ SLs with one of k = 1; or k = 2, r ≤ 3, s arbitrary; or k = 3, r =

2, s ≥ 3 arbitrary.
(iv). X0, V, k are as follows (up to duals):

X0 = An, V = L(λ2), k = 1.
X0 = An(p 6= 2), V = L(2λ1), k = 1.
X0 = An(n = 6, 7), V = L(λ3), k = 1.
X0 = A3(p = 3), V = L(λ1 + λ2), k = 1.
X0 = Dn(n = 5, 7), V = L(λn), k = 1.
X0 = A2(p 6= 2), V = L(2λ1), k = 2.
X0 = An(n ≤ 6), V = L(λ2), k = 2.
X0 = A4, V = L(λ2), k = 3, 4.
X0 = D5, V = L(λ5), k = 2, 3.
X0 = E6, V = L(λ1), k = 1, 2.
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What about other classical groups? One would like analogs of the above results, re-
placing SL(V ) by Sp(V ) and SO(V ), but such results have yet to be achieved. There
are some interesting examples. Consider G = G2 in its action on V , the 14-dimensional
adjoint module (assume charK 6= 3), regarded as L(G). Let T be a maximal torus of
G2 and consider L(T ) a 2-dimensional subspace of V . An argument like that of Proposi-
tion 3.3(ii) shows that two 1-spaces in L(T ) in the same G-orbit are actually in the same
NG(T )-orbit. However, T is trivial on L(T ) and NG(T )/T = W is finite. Consequently,
|G2\SL(V )/P1| cannot be finite. On the other hand, using the fact that there are only
finitely many nilpotent orbits, one can argue that there are only finitely many orbits on
singular 1-spaces.

Spherical subgroups and maximal rank subgroups

If X is a reductive subgroup of G with |X\G/B| < ∞, then X is said to be spherical.
The possibilities for X are known in characteristic 0 but the situation is open in positive
characteristic. One interesting result here is that sphericality and the existence of a dense
double coset with B are equivalent.

Spherical subgroups must have large dimension, at least the codimension of B, so
these subgroups are often maximal rank subgroups. A complete classification of spherical
subgroups of maximal rank subgroups has been obtained by Duckworth [13].

We conclude this section with the a result of Duckworth [13] which gives considerable
insight into the parabolic case when the reductive subgroup involved is a maximal rank
subgroup. In this theorem Duckworth assumes that the corresponding subgroup occurs for
all groups of the same type, independent of characteristic. So he excludes certain situations
where there is a multiple bond in the Dynkin diagram and the characteristic is 2 (also 3
for G2).

Theorem 6.13 Let G be a simple algebraic group, X a maximal rank subgroup of G, and
P a parabolic subgroup of G. If G = F4, then assume P is not an end node parabolic. If
|X\G/P | < ∞, then either X is spherical or a Levi subgroup of P is spherical.

This result has the following nice corollary. Again assume X is a maximal rank subgroup
of G which occurs in all characteristics.

Corollary 6.14 If |X\G/P | < ∞ with P < G a nonmaximal parabolic subgroup, then X
is spherical. That is, if X has finitely many orbits on the cosets of a nonmaximal parabolic
of G, then it has finitely many orbits on the cosets of each parabolic subgroup of G.

7 Unipotent elements in classical groups

In this section and the next we discuss some current work of Liebeck and the author [30]
aimed at obtaining a better understanding of the unipotent classes of simple algebraic
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groups. In this section we discuss the case of classical groups. While the results here are
not new, our approach is somewhat novel and is formulated so as to blend with a similar
treatment of unipotent classes in exceptional groups.

Let G = GL(V ), Sp(V ), O(V ) and assume char(K) 6= 2 when G = Sp(V ) or O(V ).
The symplectic and orthogonal groups appear as fixed points of involutory autorphisms of
GL(V ) and this will play a prominent role in the approach to follow.

Let u ∈ GLn be a unipotent element. That is, in some basis u has 1′s on the main
diagonal and 0′s above the main diagonal. Our goal is to discuss the conjugacy classes of
such elements in the groups GLn, Spn, On and to determine their centralizers

First consider GLn where the conjugacy classes correspond to the different types of
Jordan forms. That is, if V denotes the natural module, then V ↓ u =

⊕
Jri

i , where Ji

denotes the i by i matrix with 1′s on the diagonal and subdiagonal, but 0′s elsewhere. Up
to the order of the terms, this determines the classes in GLn and we see that the conjugacy
classes of unipotent elements corresponds to partitions of n.

The Jordan blocks can be thought of as the building blocks for all unipotent classes
in GLn. Our first lemma concerns the existence of these blocks in the corresponding
symplectic and orthogonal groups.

Lemma 7.1 Let τ be the standard graph automorphism of G = SLn. Let u = Jn.
i) Gτ = Spn or SOn, according to whether n is even or odd.
ii) G〈τ〉 contains an involutory automorphism of G inducing the inverse transpose map

and the fixed points of this map is the orthogonal group.
iii) Gτ contains conjugates of u.
iv) If n is even, SOn does not contain conjugates of u.

Proof The structure of the fixed point group is a standard result on algebraic groups.
We will not have time to discuss (ii) other than to say that one can argue that when n is
even, the inverse transpose map is conjugate to τ times a certain diagonal element. The
graph automorphism sends root elements Uα1(1) to Uαn−1(1), etc. If n is even, then it fixes
Uαn/2

(1). Taking a fixed point from each of these orbits and multiplying (in any order) it is
readily seen that this gives an element which is conjugate to Jn (try it for n = 4). Suppose
n is odd. Here the same thing works except it is slightly more complicated as you reach
the middle of the Dynkin diagram. So look at the smallest case: n = 3. Here one checks
that τ fixes Uα1(1)Uα2(1)Uα1+α2(1/2). The other orbits are as before, so this gives (iii).

(iv) There are a number of ways to establish this. The argument to follow emphasizes
the role of the graph automorphism. Assume n is even and let u ∈ Gτ

∼= Spn be a
conjugate of Jn as guaranteed in (iii). One calculates that CG(u) = U ×Z(G), where U is
the unipotent group with equal entries on the various subdiagonals. Work in Ḡ = G/Z(G)
and view τ as acting on this quotient. Then CḠ〈τ〉(u) = Ū〈τ〉. One then argues, sort of a
Sylow theorem argument, that there is just one class of complements to Ū and hence only
one type of involution can centralize u, namely the conjugates of τ . So this gives (iv).
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7.1 Conjugacy classes

In this section we describe the conjugacy classes of unipotent elements, illustrating their
connection with Jordan blocks. We begin with an easy reduction of the problem, which
works both for classical and exceptional groups. It is the basis of a well-known result of
Bala-Carter. We require the following definition. A unipotent element of a simple (or
semisimple) group H is distinguished if CH(u)0 is a unipotent group.

Lemma 7.2 Let G be a simple algebraic group. There exists a bijection between the set of
unipotent classes of G and the G-classes of pairs (L,CL) where L is a Levi subgroup of G
and CL is a distinguished unipotent class in L′.

Proof Choose u unipotent and let T0 denote a maximal torus of CG(u). Then CG(T0)
is a Levi subgroup of G and of course u ∈ L′, as L = L′T0. Also, it is clear from the setup
that u must be distinguished in L′. The correspondence is

uG → (L, uL′
)G = (L, u)G.

The above lemma reduces the problem to finding the distinguished classes of simple
(hence semisimple) groups. This is easy for SL (same as for GL). Indeed, if V ↓ u =
Ji⊕Jj⊕· · ·, then there is a torus of SL in the centralizer. So SLn has a unique distinguished
class, namely Jn.

Our next lemma determines the distinguished unipotent classes in Sp(V ) or O(V ).

Lemma 7.3 i) If u ∈ Sp(V ) is distinguished, then V ↓ u = Jn1 ⊥ . . . ⊥ Jnr , where the ni

are distinct even integers and the sum is a perpendicular sum. So u ∈ Spn1 × · · · × Spnr .
(ii) If u ∈ O(V ) is distinguished, then V ↓ u = Jn1 ⊥ . . . ⊥ Jnr , where the ni are

distinct odd integers and the sum is a perpendicular sum. So u ∈ On1 × · · · ×Onr .

Proof Write V ↓ u =
⊕

Jri
i =

⊕
Vi, where for each i, Vi = Jri

i . We first claim that
iri = 1 for each i. For suppose ri > 1. We can write Vi = Wi ⊗Xi, where dimWi = i and
dimXi = ri. Also, SL(Vi) ≥ SL(Wi) · SL(Xi) and u ∈ SL(Wi). Hence CSLn(u) ≥ SLri .
Consequently, CSLn(u) is nonsolvable. Now let τ be an involutory autormorphism of G =
SLn such that Gτ is the desired classical group. Under the assumption that some ri > 1
one argues that CG(u)τ contains a torus. Indeed, to prove this one reduces consideration
to reductive groups and here the assertion follows from our discussion of automorphisms
of simple groups. Thus u is not distinguished in Gτ , establishing the claim. So write
V ↓ u = Jn1 ⊕ . . .⊕ Jnr

To complete the proof we must verify the conditions on the ni and show that the
sum is an orthogonal decomposition. For this we start by viewing u ∈ GL(V ) and write
G = GL(V )τ for an approriate involutory automorphism. Then u ∈ L = (SLn1 × . . . ×
SLnr)T0, a Levi subgroup of SLn, where T0 is a maximal torus of CGL(V )(u) and u is
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distinguished in L′. We can assume T0 is τ invariant, so that τ leaves invariant the group
CGL(V )(T0)′ = SLn1 × · · · × SLnr . Then τ acts on each factor (as they have different
dimensions). Consider the action on the natural module. Each factor acts on a single
space of the given dimension and the fixed points of τ has the form Spni or SOni . This is
only possible if this gives an orthogonal decomposition with the fixed points of τ being a
sum of symplectic groups or orthogonal groups, according to whether SL(V )τ = Sp(V ) or
SO(V ). So all ni must be even in the symplectic case since u projects to a single Jordan
block in each summand, Lemma 7.1(iv) shows that all ni must be odd in the orthogonal
case.

At this point we can describe the unipotent classes of Sp(V ) and O(V ). We take u
unipotent and apply Lemma 7.2. So u ∈ L′, where L = CG(T0), a Levi subgroup. For
convenience take the symplectic case where L′ = SLa1 × · · · × SLat × Spd. What we now
have is that

V ↓ u = (Ja1 ⊕ Ja1) ⊥ · · · ⊥ (Jat ⊕ Jat) ⊥ (Jd1 ⊥ · · · ⊥ Jdr),

where the di are distinct even numbers adding to 2d. Note that all the odd blocks occur
an even number of times. For orthogonal groups, we get just the opposite: the even blocks
occur an even number of times.

Theorem 7.4 Let G = Sp(V ) or O(V ).
i) Two unipotent elements of G are conjugate if and only if they are conjugate in SL(V )

( or GL(V )).
ii) u =

⊕
Jri

i is in a symplectic group if and only if ri is even for all odd i.
iii) u =

⊕
Jri

i is in an orthogonal group if and only if ri is even for all even i.

7.2 Centralizers

In this section we discuss centralizers of unipotent elements. Our first goal will be to
determine the dimensions of the centralizers. We first note that if u is a unipotent element
of GL(V ), then dimCGL(V )(u) = dimCMn(K)(u). This follows from the fact that GL(V ) is
open dense in Mn(K) and so the same holds by intersecting with centralizers. So to find
the dimension of the centralizer we need only count fixed points of u in its action on the
linear space Mn(K).

Now Mn(K) is isomorphic to the Lie algebra of GL(V ) and it is a general result that
if G is a simple algebraic group where the defining field has good characteristic, then
dimCG(u) = dimCL(G)(u). With this in mind we state a standard lemma describing the
Lie algebras of the classical groups.

Lemma 7.5 i). L(GL(V )) ∼= V ⊗ V ∗.
ii) L(Sp(V )) ∼= S2V
iii) L(O(V )) ∼= ∧2V
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The following result gives the dimensions of centralizers of unipotent elements in clas-
sical groups.

Proposition 7.6 Let u =
⊕

Jri
i be in the classical group G = GL(V ), Sp(V ), O(V ).

i) dimCGLn(K)(u) =
∑

i ir
2
i + 2

∑
i<j irirj ,

ii) dimCSpn(K)(u) = 1
2

∑
i ir

2
i +

∑
i<j irirj + 1

2

∑
i odd ri,

iii ) dimCOn(K)(u) = 1
2

∑
i ir

2
i +

∑
i<j irirj − 1

2

∑
i odd ri.

Proof Assume G = GL(V ). Then L(G) ∼= V ⊗ V ∗. Then as above, dimCG(u) =
dimCL(G)(u) = dimCV ⊗V ∗(u) So we must count the fixed points of u on V ⊗ V ∗. But

V ⊗ V ∗ ↓ u = V ⊗ V ↓ u = (
⊕

i

(Ji ⊗ Ji)r2
i )⊕ (

⊕
i6=j

(Ji ⊗ Jj)rirj ).

So we only need to find the fixed points of u on spaces such as Ji ⊗ Jj . But

dimHomu(K, Ji ⊗ Jj) = dimHomu(Ji, Jj) = min{i, j}

To see the last equality we can assume i < j. Any homomorphism must send Ji to a
Jordan subblock of Jj of size at most i. A moments thought shows that there are precisely
i possibilities. (i) follows.

A similar analysis leads to (ii) and (iii). In view of the above lemma one must work
with S2(V ) or ∧2(V ) according to whether G = Sp(V ) or O(V ). To carry out a calcula-
tion as for GL(V ) only ultimately requires information such as dimHomu(K, S2(V )) and
dimHomu(K,∧2(V )). This can be accomplished by first computing the centralizer of a
single Jordan block in the corresponding linear group and then counting fixed points under
graph automorphisms.

We next discuss the structure of the centralizers. To do this exploit a connection
between the unipotent elements of a classical group G and the nilpotent elements of its Lie
algebra, L(G). Namely, consider the following correspondences.

G = GL : u → u− 1

G = Sp,O : u → (1− u)/(1 + u)

Lemma 7.7 i) The above maps give G–equivariant maps between the set of unipotent
elements of G and the set of nilpotent elements of L(G).

ii) If u and e correspond under the above maps, then dim(CG(u)) = dim(CL(G)(u)) =
dim(CG(e)) = dim(CL(G)(e)).

We next introduce a certain torus. Let’s begin with a single Jordan block, u = Jr, set
e = u− 1 and let T be the torus where T (c) = diag(cr−1, cr−3, . . . , c−(r−3), c−(r−1)). Then
T (c)(e) = T (c−1)eT (c) = c2e. More generally, we have this whenever u is distinguished
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in a Levi subgroup, by working in each of the simple factors and then taking the diagonal
torus. Using this it follows that for each unipotent element in a classical group, u and its
nilpotent correspondent e ∈ L(G), we have a 1-dimensional torus with T (c)(e) = c2e for
each c ∈ K∗. This is because T can be taken to Lie in the relevant classical group. Note
that T normalizes CG(e), since all nonzero multiples of e have the same centralizer in G.

We remark that such a torus can be obtained for all simple algebraic groups defined
over fields of good characteristic. We then obtain the following key result.

Proposition 7.8 Given u and e as above. T can be chosen such that CG(u) = CG(e) =
V (CG(T ) ∩ CG(e)), where V = Ru(CG(e)).

The proof of the above proposition is not too difficult, but we will not discuss it here.
The idea is to observe that T acts on CG(e) and with proper choice T it centralizes CG(e)
modulo its unipotent radical. Then a Frattini argument gives the result.

In fact one can show that the product in the Proposition is actually a semidirect
product, so that CG(T ) ∩ CG(e) is a complement to V and thus is the reductive part
of the centralizer. We will see a sample of this in the following.

Consider G = GL(V ). Let u ∈ G be given such that V ↓ u =
⊕

Jri
i =

⊕
Vi. For each

i, write Vi = Wi ⊗Xi, where u ↓ Vi = Ji ⊗ 1. Set

J = ΠiSL(Wi) = ΠiSLi R = ΠiGL(Xi) = ΠiGLri .

Then u ∈ J, T < J, e ∈ L(J), and R < CG(J) < CG(u).
Let’s calculate the dimension of CG(e) ∩ CG(T ). One checks that

dim(HomT,e(K, Ji ⊗ Jj)) = dim(HomT,e(Ji, Jj)) = δij

and hence
dim(CG(T ) ∩ CG(e)) = Σir

2
i .

On the other hand, we have R = ΠiGLri centralizes J and hence is contained in CG(e) ∩
CG(T ). So this shows that (CG(T ) ∩ CG(e))0 = ΠiGLri . An additional argument shows
that the connected component sign is not needed here and this gives the precise structure
of CG(u).

To complete the discussion we indicate the necessary changes required for the symplectic
and orthogonal groups. Take u ∈ G = Sp(V ), O(V ). Write V ↓ u =

⊕
Jri

i =
⊕

Vi, a
perpendicular sum, where Vi = Jri

i . Now we observe the following facts:

G = Sp(V ) :
For i even, Sp(Vi) ≥ SpiOri

For i odd, Sp(Vi) ≥ OiSpri

G = O(V):
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For i even, O(Vi) ≥ SpiSpri

For i odd, O(Vi) ≥ OiOri .

The embeddings are obtained using a product form. Using the above techinques we
obtain the following theorem. A key idea of the proof is to obtain information about
Spn and On by starting from GLn and then taking fixed points under appropriate graph
automorphisms.

Theorem 2 Let G = GLn(K), Spn(K) or On(K), where K is an algebraically closed
field. Assume char(K) 6= 2 when G is symplectic or orthogonal. Let u =

⊕
i J

ri
i ∈ G be a

unipotent element.
(i) Two unipotent elements of G are G-conjugate if and only if they are GLn(K)-

conjugate (i.e. they have the same Jordan form).
(ii) If G = Spn(K), then ri is even for each odd i; and if G = On(K), then ri is even

for each even i.
(iii) We have

dimCGLn(K)(u) =
∑

i ir
2
i + 2

∑
i<j irirj ,

dimCSpn(K)(u) = 1
2

∑
i ir

2
i +

∑
i<j irirj + 1

2

∑
i odd ri,

dimCOn(K)(u) = 1
2

∑
i ir

2
i +

∑
i<j irirj − 1

2

∑
i odd ri.

(iv) We have CG(u) = V R, where V = Ru(CG(u)) and

R =
∏

GLri , if G = GLn(K),
R =

∏
i odd Spri ×

∏
i even Ori , if G = Spn(K),

R =
∏

i odd Ori ×
∏

i even Spri , if G = On(K).

(v) Write C = CG(u). Then C/C0 = (Z2)k, where

k = 0, if G = GLn(K),
k = |{i : i even, ri > 0}|, if G = Spn(K),
k = |{i : i odd, ri > 0}|, if G = On(K).

8 Unipotent classes in exceptional groups

In this section we are concerned with the unipotent elements in simple algebraic groups
of exceptional type. The goal is to describe the conjugacy classes and obtain precise
information on centralizers of unipotent elements. There do exist papers in the literature
providing complete results, but the results are spread over several papers, using different
notation and methods. Moreover, some of the papers, particular the ones dealing with the
groups E6, E7, E8 are not in satisfactory shape. For these reasons a number of authors
(Liebeck-Seitz, Lawther-Testerman) have undertaken revisions of the material. Here we
report on the approach of Liebeck-Seitz. To date the analysis has been carried out for the
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exceptional groups in characteristic p 6= 2, 3. We hope to work through the cases p = 2, 3
using a similar approach.

Let X be a simple algebraic group defined over an algebraically closed field of charac-
teristic p. We say p is good for X provided p 6= 2 if X has type Bn, Cn, Dn, p 6= 2, 3 if X
is of exceptional type, and p 6= 5 if X = E8.

In this section we describe the approach for G an exceptional group over a closed field
of characteristic p, a good prime for G.

8.1 Conjugacy classes

As in the case of classical groups we describe conjugacy classes using a method of Bala-
Carter which is based on a result of Richardson. Recall that a unipotent element of a
simple (or semisimple) group H is distinguished if CH(u)0 is a unipotent group. Here again
is the result from last time.

Lemma 8.1 Let G be a simple algebraic group. There exists a bijection between the set of
unipotent classes of G and the G-classes of pairs (L,CL) where L is a Levi subgroup of G
and CL is a distinguished unipotent class in L′.

The next step is to analyze the distinguished classes. We need a definition. A parabolic
subgroup P = QL of a semisimple group is distinguished if dimL = dim(Q/Q′). For
example, a Borel subgroup is distinguished and in some cases (e.g. An) these are the only
distinguished parabolic subgroups.

Proposition 8.2 Let u be a distinguished unipotent element in a semisimple group H
defined over a field of good characteristic. Then there is a distinguished parabolic subgroup,
P = QL of H such that u ∈ Q and uP is dense in Q. Moreover, in this case, CH(u)0 =
CQ(u)0 and has dimension equal to dim(L).

Proof Here is a sketch of a proof in characteristic 0. Using exponentiation techniques we
can embed u in a subgroup X = A1 of G. Then L(G) ↓ X is a direct sum of irreducible
restricted modules of type V (n). Now u is contained in a unique Borel subgroup of X with
maximal torus T . Let e be a generator of the Lie algebra of the corresponding unipotent
group, so that T (c)e = c2e for all nonzero scalars c.

Now C = CL(G)(X) is the sum of all trivial modules. One can argue that this module
is nondegenerate under the Killing form and from here conclude that CG(X) is a reductive
group of dimension equal to that of C. However, u is distinguished, so C = 0. So each
of the irreducible summands has the form V (n) with n > 0. It then follows that ad(e) :
L(G)0 → L(G)2 is a bijective map, where the subscripts refer to weights of T .

Consider the parabolic subgroup P = QL determined by T . That is, L = CG(T ) and
T acts on Q acting by positive weights on the quotients of the derived series. In particular
L(L) = L(G)0 = L(P )0. Recall Richardson’s result showing that P has a dense orbit on Q.
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It follows that L has a dense orbit on Q/Q′. At the Lie algebra level, there is an element
l ∈ L(Q) such that [L(P ), l] = L(Q).

We use an argument of Jantzen to show that all weights of T are even. Write l = Σi>0li
for li ∈ L(Q)i. Now intersect the equality of the last paragraph with L(P )1 + L(P )2. We
have [L(P )0, l1+l2]+[L(P )1, l1] = L(P )1+L(P )2. Suppose L(P )1 6= 0. Then as l1 ∈ L(P )1
we have dim([L(P )1, l1] < dim(L(P )1).. But then dim([L(P )0, l1 + l2])+dim([L(P )1, l1]) <
dim(L(P )0) + dim(L(P )1 = dim(L(P )2) + dim(L(P )1), a contradiction

It follows that all weights of T are even, so that X ∼= PSL2. At this point we have
shown that P is a distinguished parabolic and from the above bijection we see that e is in
the dense orbit of L on L(Q/Q′)). A little extra work shows that x is in the Richardson
orbit on Q.

Corollary 8.3 The unipotent classes in G are in bijective correspondence with the classes
of distinguished parabolic subgroups of Levi factors.

It is easy to find the possible Levi factors and it is not difficult to find the distinguished
parabolic subgroups of Levi factors. The Borel subgroup is always distinguished and this
corresponds to the regular class of the Levi. For this class the centralizer (in the Levi) has
dimension precisely equal to the semisimple rank. Now we already have lots of information
on unipotents in classical groups, so this provides information on the exceptional groups as
well. But ultimately we need to know the distinguished classes and parabolics of exceptional
groups. There are usually several of these. For example, in type E the parabolic with
labelling all 2′s except for a 0 over the triality node is a parabolic.

So far we have a description of the conjugacy classes of unipotent elements. But how do
we use this to find the centralizers? It turns out that we need some additional information
of the sort we talked about when discussing classical groups.

The next lemma is an extension of the correspondence between unipotent and nilpotent
classes that we used for classical groups.

Lemma 8.4 i) There exists a G–equivariant map (called a Springer map) between the set
of unipotent elements of G and the set of nilpotent elements of L(G).

ii) If u and e correspond under the above maps, then dim(CG(u)) = dim(CL(G)(u)) =
dim(CG(e)) = dim((CL(G)(e)).

The advantage of working with e is that we can associate a certain 1-dimensional torus
which stabilizes the 1-space e generates and hence acts on CG(e).

Lemma 8.5 If u is a distinguished unipotent element of the Levi subgroup L of G, then
there is a nilpotent element e which corresponds to u under a Springer map and a 1-
dimensional torus T < L′, such that T (c)e = c2e, for each nonzero c in the base field.
Inparticular, T normalizes CG(u) = CG(e).
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Here is the result we stated for classical groups, which holds for any simple algebraic
group.

Proposition 8.6 Given u, e, T as in the above lemma . Then CG(u) = CG(e) = V (CG(T )∩
CG(e)), where V = Ru(CG(e)).

Proof We will not go into much detail of the proof. However, in view of the importance
of this result we provide a sketch. We know that T acts on C = CG(e) and so T acts
on C/V where V = Ru(C). Now C/V is a reductive group and the outer automorphism
group of a reductive group is finite. Hence, there is 1-dimensional torus, say Z < CT , such
that Z centralizes C/V . Using the fact that T lies in L′, we argue that T centralizes C/V .
Then V T is a normal subgroup of CT . A Fratttini argument shows that This shows that
C = V (NC(T )). However, T acts on C and is not contained in C, so C = V (CC(T )) =
V (CG(T ) ∩ CG(e)), as required.

8.2 Dual pairs of reductive subgrops

The above proposition shows us how to find the reductive part of the centralizer. Namely,
we have to find T and then compute CG(T ) ∩ CG(e) = CG(T ) ∩ CG(u)). The trouble
is, that this intersection is not particularly convenient. If we knew T precisely, then it
would not be difficult to compute CG(T ). Indeed, we could just find the labelled diagram
corresponding to T and go from there. However, T and u do not commute, so u does not
act on CG(T ). So this is not the approach we will use.

We will work with certain reductive subgroups of G. The idea is to somehow determine
a pair of reductive groups J and R with the following properties:

R = CG(J)

J = CG(R)

u ∈ J

T ≤ J

CG(T ) ∩ CG(u) = R.

That is, we look for a particularly nice pair of reductive groups which are dual with
respect to taking centralizers. If L is a Levi in which u is distinguished, then we could
just set J = L′ and R = CG(L) = Z(L). In some cases this pair will satisfy the first four
conditions, but it rarely satisfies the last condition, which is the key one. Indeed, the above
proposition shows that R is a good candidate for the reductive part of CG(e) = CG(u). So
we have to be very careful in our choice.

So how do we go about finding a good pair of subgroups? Starting with the Levi L is a
good idea. Then look at N = NG(L′). This group acts on L′. The induced group involves
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inner automorphisms (from L′) and finite group or outer automorphisms. We argue that
the class of u in L′ is stablilized under this action. So CN (u) covers the finite group. What
we now do is choose a semisimple subgroup J ≤ L′ such that u ∈ J and CN (J) also covers
the finite group.

Example: The best way to understand this procedure is to work through an example.
Say for example, that we are in G = E8 and L = D7T1. We know how to find the
distinguished classes in D7. If we think in terms of the classical group O14, then we simply
choose an element with Jordan blocks which are of distinct odd size. So, let’s take the
class of u to correspond to J13. This is the regular class and the unipotent element lies in
a subgroup B6 < D7. This will be our group J . Notice, also that in the full orthogonal
group J centralizes an involution acting as 113(−11). The full outer automorphism group
of D7 has order 2 and the long word in the Weyl group of E8 does act on our Levi. So we
conclude that the centralizer of J does cover the group of outer automorphisms.

The next issue to locate R. Of course, Z(L) = T1 contained in the centralizer. We
can do better, but before we do so, let’s make one observation which will work in general.
We claim that CG(J) has rank equal to dimZ(L). Certainly Z(L) is a torus contained
in CG(J). If it was properly contained in a maximal torus of CG(J), then this maximal
torus would lie in CG(Z(L)) = L and centralize u. However, u is distinguished in L′, a
contradiction. So know the rank of CG(J).

Now consider the subgroup D8 < E8 (recall the extended diagram). This group cer-
tainly contains a subgroup B6B1. It is easy to argue that the first factor is conjugate
to J , so we see that CG(J) ≥ B1. Note also, that this group does contain an involution
which normalizes T1 and acts on CG(T1) = L = D7T1. So this accounts for the extra
automorphism of D7.

Set R = B1. So far, so good. How do we choose T? Well, just as we did for classical
groups. It is a diagonal group in B6 < D7 with weights 12, 10, . . . , ,−10,−12 on the natural
module. We now want to verify some of the above points. The approach will be to study
the action of JR = B6B1 on L(G). We start with D8.

L(G) ↓ D8 = L(D8)⊕ VD8(λ8)

The last summand is one of the spin modules for D8. Now we want to restrict to B6B1.
The first summand is no problem, once we identify the Lie algebra of D8 with the wedge
square of the natural module. We get

L(D8) ↓ B6B1 = L(B6)⊕ L(B1)⊕ (VB6(λ1)⊗ VB1(2λ1)

Also, it is known that the spin module restricts to our subgroup as the tensor product of
the spin modules for the factors.

VD8(λ8) ↓ B6B1 = VB6(λ6)⊗ VB1(λ1).
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What do we see from here? Well, first we see that CL(G)(B6) = L(B1) and that
CL(G)(B1) = L(B6). So this shows that CG(J)0 = R and CG(R)0 = J .

Now let’s try to compute CL(G)(T ) ∩ CL(G)(e). One can prove a lemma showing that
there is a decomposition of the Lie algebra into Jordan blocks for e which is compatible
with the weights of T . That this, there is basis for each Jordan block can be chosen so
that T has weights s, s− 2, . . . ,−(s− 2),−s on the block and e sends the vector of weight
r to the weight r + 2, In particular, e fixes the vector of weight s. Given such a basis, then
the intersection we are after is precisely the set of blocks of size 1.

How does this play out in the above example? Well, start with the spin module for
B6. Expressing λ6 in terms of fundamental roots and noticing that T affords weight 2
on all fundamental roots of B6, one checks that high weight vector affords weight 21. All
other weights are obtained by subtracting roots. It follows that all weights of T on the
spin module are odd. Hence T has no fixed points on this spin module and hence none on
VD8(λ8). This was lucky - we do not even have to work out the Jordan blocks of e in this
case. However, we will eventually want to have this, so I will just say that e has 5 Jordan
blocks and the corresponding fixed points have high weights 21, 15, 11, 9, 3. Note that there
are total of ten fixed points of T, e on VE8(λ8) because of the other tensor factor. What
about the other summands of L(E8)? Well, T < B6 and e ∈ L(B6), so both centralize
L(B1). Also, VB6(λ1) is a single Jordan block of length 13, so we get no fixed points
from this summand. So we need only consider L(B6). But e (also u) is regular in B6, so
it’s centralizer (modulo center) is unipotent of rank 6. On the other, hand T is diagonal
with distinct eigenvalues on the natural module, so CB6(T ) is a maximal torus of B6. So
CB6(T ) ∩ CB6(e) = Z(B6). Putting this altogether we see that

CL(G)(T ) ∩ CL(G)(e) = L(B1).

It follows that (CG(T ) ∩ CG(e))0 = B1. Now we can argue that NG(B1) = B6B1. This
implies that we have found the reductive part of CG(e) = CG(u).

Noice that we can also count the total number of fixed points of e on L(G). There are
6 from L(B6), 3 from L(B1), 3 from the tensor product of the two orthogonal module, and
10 from trom VD8(λ8). Hence,

dim(CG(u)) = 22

and
CG(u) = U19B1

This approach works in all cases, although there are some tricky points. For example, in
some of the distinguished cases we have to work to find the component group. In particlar,
there is a case where R = Sym5 that takes some effort.

We remark that once we carry out the analysis for E8, we get the results for other
groups as well. This is because the other groups occur as centralizers of certain nice groups
in E8. For example E7 = CE8(A1) and E6 = CE8(A2).
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Additional information is available from the above approach. In particular, one can get
the precise action of R on successive factors of a certain filtration of V (the filtration is
defined by the weights of T ).

Centers of centralizers. If u is unipotent element then we know that CG(u) = CG(e)
for a suitable nilpotent element of L(G). Now, e and ce have precisely the same centralizer
in G for all nonzero scalars c. And each of these multiplies of e correspond to unipotent
elements in G. It follows that Z = Z(CG(u)) has positive dimension. The question is,
what is this dimension? The above approach does yield the following

Lemma 8.7 With notation as above, Z ≤ Z(CJ(u)).

Proof This is easy. Indeed, Z = Z(CG(u)) and R is the reductive part of CG(e). Hence,
Z ≤ CG(R) = J . Also, CJ(u) ≤ CG(u), so Z is central in this group.

The lemma suggests that one can obtain information on Z by shifting attention to J ,
a smaller group. However, the containment in the lemma is not always an equality, so
this is not the whole story. Additional information is available using the action of R as
described above, but at this writing there remain some questions to resolve. We note that
in unpublished work Lawther-Testerman have determined the dimension of the center of
the connected center of CG(u).

Bad characteristic. Perhaps the most important issue to resolve is how to best
deal with the bad primes. Several parts of the above analysis break down. For example,
the Springer map is no longer available. Indeed, the number of nilpotent and unipotent
classes can differ. Also, the Bala-Carter theorem breaks down. At the same time much
is the same. Many of the same techniques can be applied, but one must allow for a few
additional classes. The case of classical groups in characteristic 2 is already nontrivial.
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