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ABSTRACT

Numerical studies of the vector electromagnetic fields in plano-concave microresonators have recently revealed
that a photonic analogue of spin-orbit coupling can occur in paraxial geometries. Laguerre-Gauss modes with
circular polarization are then no longer the correct eigenstates, even if the resonator is axially symmetric. A
crucial role in this effect is played by the presence of a boundary (e.g., a Bragg mirror) whose reflectivity at non-
normal incidence is polarization-dependent. Aiming for an analytical treatment that can incorporate both form
birefringence and non-paraxiality, we explore the Born-Oppenheimer method as an alternative to the paraxial
approximation. The conditions for the validity of these two approaches are different, but in a regime where they
overlap we show that all the major results of paraxial theory can also be derived from the Born-Oppenheimer
method. We discuss how this new approach can incorporate the Bragg stack physics in a way that can overcome
the limitations of paraxial theory.

Keywords: Dome microresonator, Born-Oppenheimer approximation, paraxial approximation, Gaussian beam,
Bragg reflector, polarization

1. INTRODUCTION

For applications of microresonators in quantum optics, it is essential to know the the spatial and spectral
properties with a high degree of accuracy. For this purpose, we have developed a set of numerical methods1 that
are able to calculate the vectorial electromagnetic fields in dome-shaped cavities with mixed boundary conditions
over a large range of cavity shapes and size scales. In the present report, we focus on a geometry which at first
sight appears to be treatable completely within the framework of standard paraxial theory,2 and which therefore
was expected to be useful mainly for the purposes of validating the numerics.

For a theoretical treatment of dome-shaped cavities, the standard paraxial approximation provides a natural
starting point, not least because the free-space modes to which the resonator ultimately couples are often Gaussian
beams. However, as has been reported elsewhere,3 the high finesse achievable in realistic microcavities makes
it possible to observe non-paraxial mode splittings which in larger resonators are washed out by the modal
linewidths. We have studied the spectral fine structure that arises at frequencies well below the transverse mode
splittings induced by the Gouy phase. This splitting of degenerate manifolds labeled by the transverse mode
order N of Gaussian-beam theory is due to the non-conservation of orbital angular momentum, even when the
cavity has exact axial symmetry.

This is an effect that does not occur if all boundaries of an axially symmetric cavity are treated as ideal
metals. But orbital angular momentum ceases to be conserved as soon as one of the boundaries is replaced
by a Bragg mirror. The reason is that reflectivities at a dielectric interface are polarization dependent, and
circularly polarized light is reflected from such an interface with elliptic polarization except at precisely normal
incidence. This form birefringence amounts to coupling of orthogonal circular polarization states and indirectly
translates into coupling of orbital angular momenta. This is qualitatively understandable within the paraxial
approximation provided one retains the polarization information. However, the paraxial approximation has
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Figure 1. (a) Sketch of the cavity geometry. The vertical axis is z, and the radial distance from the z axis is r. (b) Sketch
of a paraxial mode; the Born-Oppenheimer potential VBO is repsonsible for the transverse confinement of the mode; it is
created by the r-dependent cavity height, whose maximal value is h.

drawbacks for quantitive predictions, mainly because of the limited amount of detail it incorporates about
varying dome curvature and angle-dependent reflectivity of the Bragg mirrors.

We have applied a different technique to the paraxial cavity problem, which is able to reproduce the results
of paraxial Gaussian-beam theory when applied to constant-curvature mirrors with constant reflectivity, but
can also applied when the latter assumptions are dropped. Our method is analogous to the Born-Oppenheimer
approximation of molecular physics,4 and its most immediate benefit is to offer an alternative viewpoint of the
Laguerre-Gauss beams and their relation to the two-dimensional harmonic oscillator, a topic of recent interest.5

In particular, our approach makes it straightforward to map mirrros with varying curvature onto anharmonic
oscillators, and can even be applied to geometries that do not have an obvious beam axis (as found in axially
symmetric cavities).

2. ADIABATIC METHOD FOR THE HELMHOLTZ EQUATION

As shown in Fig. 1, we consider a plano-convex resonator with axial symmetry around the z axis. For definiteness,
assume dimensions of R = 100µm and h = 10µm. Although our numerical simulations take into account losses
due to finite mirror transmittivity, we shall assume below that |r|2 = 1, because the aim here is an approximate
analytic treatment. For the same reason, we begin with the scalar Helmholtz equation and add polarization
information below.

Because we think of z as the beam axis, we write the wave equation as

∇2ψ(x) + k2ψ = 0

⇒ ∂2ψ

∂z2
+ ∇2

⊥ψ(x) + k2ψ = 0.

where ∇2
⊥ is the Laplacian in the xy plane. We now solve this equation with the boundary conditions that the

bottom mirror has a unimodular reflectivity exp(iφ), and that the top mirror satisfies ψ(x, y, z = zM (x, y)) = 0.
Here, zM (x, y) is the perpendicular cavity height as a function of the transverse coordinates x and y.

The z coordinate will assume a special role, but in contrast to the paraxial approximation, it will not enter the
wave equation as a time-like variable. In particular, we will derive Gaussian-beam type modes without resorting
to a parabolic differential equation. A sketch illustrating the type of cavity modes to be described is shown in
Fig. 1 (b). In particular, there is a maximum cavity height h which in a conventional cavity coincides with the
location of the beam axis.

The central step is to assume with Born and Oppenheimer4 that the x, y variation is of long wavelength, and
use the envelope ansatz ψ = η(z;x, y)χ(x, y) in the wave equation:

χ(x, y)
∂2η(z; r)

∂z2
+

(
∂2

∂x2
+

∂2

∂y2

)

η(z;x, y)χ(x, y) + k2η(z;x, y)χ(x, y) = 0.



In the lowest (adiabatic) approximation, we neglect the dependence of η on the parameters x, y. This allows us
to separate off the equation for η:

−χ(x, y)
∂2η(z;x, y)

∂z2
= η(z;x, y)

(
∂2

∂x2
+

∂2

∂y2

)

χ(x, y) + η(z;x, y)k2χ(x, y)

⇒ − 1

η(z;x, y)

∂2η(z;x, y)

∂z2
≡ k2

z(x, y) ≡ 1

χ(x, y)

(
∂2

∂x2
+

∂2

∂y2

)

χ(x, y) + k2

Here, kz has been introduced as the separation constant. Now we determine kz(x, y) by solving the first equation
for a given (x, y),

∂2η(z;x, y)

∂z2
= −k2

zη(z;x, y)

with the boundary conditions stated at the outset, i.e., η(zM (x, y), x, y) = 0. The solutions are of the form

η(z;x, y) = e−ikzz + eiφeikzz (1)

where φ and kz may depend on x, y parametrically. For Dirichlet boundary conditions on the bottom mirror, we
have φ = π = const. At a given (x, y), the condition fixing kz is then

0 = η(zM ;x, y) = e−ikzzM + eiφeikzzM ⇒ kz =
1

zM (x, y)

(

νπ +
π

2
− φ

2

)

(2)

where ν is an integer. Returning to the x, y equation, we get

(
∂2

∂x2
+

∂2

∂y2
+ k2

)

χ(x, y) = k2
z(x, y)χ(x, y)

≈ 1

z2
M (x, y)

(

νπ +
π

2
− φ

2

)2

χ(x, y) (3)

Now we sort the terms into constant and x, y-dependent ones to get a form similar to the two-dimensional
Schrödinger equation, with the units chose such that ~

2 ≡ 2 and mass M = 1:

−
(
∂2

∂x2
+

∂2

∂y2
+ k2

)

χ(x, y) +

(
1

z2
M (x, y)

− 1

h2

)(

νπ +
π

2
− φ

2

)2

χ(x, y) (4)

=

(

k2 − 1

h2

(

νπ +
π

2
− φ

2

)2
)

χ(x, y) (5)

= K2χ(x, y), (6)

where the last line defines K as a new constant that will be determined by the eigenvalue problem for χ. Here,
we have added a term proportional to 1/h2 on both sides, producing on the left-hand side the term

VBO(x, y) ≡
(

1

z2
M (x, y)

− 1

h2

)(

νπ +
π

2
− φ

2

)2

, (7)

which we shall call the Born-Oppenheimer potential. In summary, we have the equation

−
(
∂2

∂x2
+

∂2

∂y2
+ k2

)

χ(x, y) + VBO(x, y)χ(x, y) = K2 χ(x, y) (8)

Note, however, that the separation constant K as defined in Eq. (6) is a true constant only if the reflection phase
φ is a constant as well.



3. 2D HARMONIC OSCILLATOR PROBLEM

To clarify the meaning of VBO in (7) and to make contact with known results, we consider here a specific example
geometry in which the top mirror is a spherical shell, see Fig. 1 (a): The gray hypothenuse of length R then
satisfies the equation

R2 = r2 + (R− h+ zM )2 ⇒ zM (r) = h+
√

R2 − r2 −R.

For small radial distances from the axis (where zM = h), this can be expanded to yield

zM (r) ≈ h+R

(

1 − r2

2R2

)

−R = h− r2

2R
(9)

1

z2
M (r)

≈ 1

h2

(

1 +
r2

hR

)

(10)

The approximations here are based on r ≪ R. Inserting the last result into VBO(x, y), we get the particular form

VBO(r) =
r2

h3R

(

νπ +
π

2
− φ

2

)2

≡ 1

2
Ω2

νr
2 (11)

which identifies VBO(r) as a harmonic-oscillator potential with minimum at r = 0, and with a natural frequency

Ων =

√

2

h3R

(

νπ +
π

2
− φ

2

)

. (12)

In other words, the frequency Ων characterizing the confining potential VBO(r) takes on discrete values labeled
by the longitudinal quantum number ν of the mode, defined in Eq. (2). The paraxial Gaussian beams will arise
as bound states of this potential VBO(r), by solving the transverse wave equation, Eq. (5):

−
(
∂2

∂x2
+

∂2

∂y2
+ k2

)

χ(x, y) +
1

2
Ω2

νr
2 χ(x, y) = K2χ(x, y). (13)

The harmonic-oscillator solutions in Cartesian coordinates are the Gauss-Hermite functions, appearing in the
product form

χµµ′;ν(x, y) =

√

2

πw2
ν2µ+µ′µ!µ′!

Hµ(
√

2
x

wν
) e−x2/w2

ν Hµ′(
√

2
y

wν
) e−y2/w2

ν , (14)

where the harmonic-oscillator quantum numbers labeling the Hermite polynomialsHµ andHµ′ are µ, µ′ = 0, 1, . . .
The length wν appearing in this equation is related to our fictitious oscillator “frequency” Ων of Eq. (12) by

wν =
23/4

√
Ων

(15)

=
√

2

√ √
h3R

νπ + π
2 − φ

2

This is just the mode waist radius at the focus, as can be seen by noting that wν measures the exponential decay
length of the harmonic-oscillator solutions (14).

The same result for the waist radius is obtained from paraxial theory in the limit h ≪ R, starting from the
textbook expression for the mode-waist radius

wparaxial =
√

2

(
h (R− h)

k2

)1/4

.



Putting Eq. (14) back together with the z-dependence of the field as contained in η(z;x, y) from Eq. (1), we
arrive at the standard Hermite-Gaussian modes,

HGµ,µ′;ν(x, y, z) = χµµ′(x, y)
(

e−ikz(r) z + eiφeikz(r) z
)

(16)

This includes the downward- and a upward-propagating waves making up the mode. The correspondence between
this result and the textbook form is established under the approximation h≪ R, and using the explicit form of
kz(r) as defined in (2) with zM (r) given by (9):

kz(r) ≈ 1

h

(

1 +
r2

2hR

)(

νπ +
π

2
− φ

2

)

(17)

=

√

hR

2
Ων

(

1 +
r2

2hR

)

(18)

The r dependence of kz due to the Born-Oppenheimer approximation now shows up as the wavefront curvature
in Eq. (16).

The spectrum of K in Eq. (13) is derived by simply transscribing the theory of the quantum mechanical 2D
harmonic oscillator. We get

K2
µ,µ′;ν =

√
2Ων(µ+ µ′ + 1) (19)

=
2√
h3R

(

νπ +
π

2
− φ

2

)

(µ+ µ′ + 1).

From this we can obtain the transverse mode mode splitting by solving the definition of K in Eq. (6) for the
mode wave number k. We have the relation

k2
µ,µ′;ν = K2

µ,µ′;ν +
hR

2
Ω2

ν = K2
µ,µ′;ν + k2

z(r = 0).

The last equality arises from (18) with r = 0. Taking the square root and assuming the transverse “energy”
K2

µ,µ′;ν to be much smaller than the longitudinal contribution k2
z(r = 0), we get

kµ,µ′;ν ≈ 1

h

(

νπ +
π

2
− φ

2

)

+
2√
hR

(µ+ µ′ + 1) =

√

hR

2
Ων + kG(µ+ µ′ + 1) (20)

The last term is the Gouy phase contribution to the wave number,

kG =
2√
hR

.

This result agrees with conventional resonator theory where the Gouy phase θG for a dome geometry is given by

cos θG = 1 − 2h

R

Since the radius of curvature R is large, θG will be close to zero and we can use a small-argument expansion to
get

θG ≈ 2

√

h

R

This reduces to kG as defined above when divided by h to turn the angle θG into a wavenumber.

A final property characterizing the modes is their “beam divergence”, which in the case of a confined cavity
really means the angular spectrum of their plane-wave content. Motivated by free-space optics, we first introduce
the paraxiality parameter θp. We define this to be the far-field divergence angle of the wave if continued to large



z. The smaller the spreading angle, the more paraxial the beam is. For a Gaussian beam, this divergence angle
is diffractively related to the beam waist, leading to

θp ≡ arctan
λ

πw
≈ λ

πw
=

2

kw
=

√
Ων

k
21/4

=
√

2

(
1

h3R

)1/4
1

k

√

νπ +
π

2
− φ

2

Inserting the explicit expression (23) for the wavenumber of the quantized modes, one finds approximately

θp ≈
√

2

(
h

R

)1/4
1

√

νπ + π
2 − φ

2

(21)

if the transverse mode splitting proportional to kG is neglected in the denominator (k). Thus, we can reduce the
paraxiality parameter arbitrarily by either making R large, h small, or considering modes with high longitudinal
quantum number ν.

Since the modal wave number in (20) depends only on the sum µ + µ′ of the harmonic-oscillator quantum
numbers in the x and y directions, one introduces the mode order

N ≡ µ+ µ′ (22)

and writes

kν,N ≈ 1

h

(

νπ +
π

2
− φ

2

)

+ kG(N + 1). (23)

The first term is the Fabry-Pérot quantization, and the second term breaks the degeneracy of the logitudinal
modes with equal number of nodes, ν. The resulting splittings are small if kG is small. However, the last term
still retains true degeneracies of multiplicity

DN = N + 1 (24)

Note that all modes in the degenerate manifold belonging to a given N have the same value of θp; this is true
even if we do not neglect the the transverse mode splitting in k due to the Gouy phase.

The calculations in this section have shown that the Born-Oppenheimer method is an alternative to the
paraxial approximation for calculating all the relevant properties of a Gaussian beam. The two approaches
become identical in the limit h ≪ R, but the Born-Oppenheimer approach can be applied to more general
geometries.

A useful property of the Hermite-Gaussians is that in a harmonic approximation, they remain the correct
scalar eigenfunctions if axial symmetry is broken: in that case, VBO = VBO(x, y) has different curvatures in
the x and y directions, and the lowest-order correction is simply to introduce two different natural frequencies

Ω
(x)
ν and Ω

(y)
ν for the independent harmonic oscillators making up χµµ′;ν(x, y) in (14). The degeneracy (24) is

therefore completely broken if the axial symmetry of the resonator is destroyed.

As is well-known, the degeneracy (24) affords the freedom to orthogonally transform the degenerate Gauss-
Hermite solutions of order N into an equally degenerate set of Gauss-Laguerre functions, using formulas explicitly
given in Ref. 6

Ψp,l;ν(r, ϑ) ≡
√

2p!

πw2
ν (p+ |ℓ|)! exp(− r2

w2
ν

)

(

2
r2

w2
ν

)|ℓ|/2

L|ℓ|
p (2

r2

w2
ν

) eiℓϑ (25)

where r is the cylindrical radius, ϑ the azimuthal angle and L
|ℓ|
p (u) is the associated Laguerre polynomial. Here,

ℓ is the orbital angular momentum and p the number of radial nodes in the transverse wave field. One finds that
the mode order is related to these new quantum numbers by

N = 2p+ |ℓ| .
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Figure 2. Effective potential for the Laguerre-Gauss modes, illustrating classical turning points and the role of K2 as
effective energy of the transverse oscillation. Shown as horizontal lines are three values of K2 for mode orders N = 0, 1, 2.
The three curves labeled by orbital angular momentum ℓ = 0, 1, 2 represent the effective radial potential ℓ2/r2 + Ω2r2/2
of the oscillator. They intersect the lines K2 = const at inner and outer turning points rmin, rmax of the Laguerre-Gauss
modes with a given N , ℓ; the intersections corresponding to allowed modes are marked by dots. Dashed vertical lines
indicate turning points. The points of tangency between the minima of the effective potential and the K2 = const lines
belong to ℓ = N + 1 which falls outside the range ℓ = −N, . . . N of allowed LG modes.

The allowed angular momenta are ℓ = −N, −N + 2, . . . N − 2, N , with the highest value |ℓ| = N occuring when
p = 0. The fact that ℓ varies in steps of ∆ℓ = 2 guarantees that the degeneracy of the Laguerre-Gaussians is
again given by Eq. (24), as it must. In the same way that the Cartesian solutions lead to the definition (16), we
obtain the Born-Oppenheimer version of the Laguerre-Gauss modes for our dome cavity as

LGp
ℓ;ν(r, ϑ, z) = Ψp,l;ν(r, ϑ)

(

e−ikz(r) z + eiφeikz(r) z
)

(26)

The radial part of the two-dimensional harmonic oscillator wave function Ψ satisfies the equation

−
(
∂2

∂r2
+

1

r

∂

∂r

)

Ψ +

(

ℓ2

r2
+

(

νπ +
π

2
− φ

2

)2
r2

h3R

)

Ψ = K2Ψ, (27)

where K2
N ;ν is the same as in (13). The first term is the kinetic energy and the second term the effective radial

potential, which differs from VBO by the characteristic centrifugal potential ℓ2/r2. This effective potential is
shown Fig. 2; it depends both on ν and on ℓ, but not on N .

Looking back at the Born-Oppenheimer derivation of the Gaussian profile for the scalar cavity fields, we made
additional approximations beyond the Born-Oppenheimer condition in order to arrive at the correspondence be-
tween the transverse wave equation and the two-dimensional harmonic oscillator. The goal was to retain only
quadratic r dependencies in the wave equation. This step, which is how we made contact with the paraxial ap-
proximation, also has the immediate consequence of making the wave equation separable in Cartesian coordinates
along the principal axes of the potential VBO(x, y), even if the mirror curvatures are not axially symmetric.

However, two effects could force us to abandon the harmonic approximation: (a) sufficiently curved mirrors
can cause a breakdown of the quadratic approximation in Eq. (10); (b) the reflection phase φ of the planar
bottom mirror may not be a constant and instead depend strongly on r. Case (b) can occur when the planar
mirror is a Bragg stack and the cavity modes are not fully paraxial. As will be argued in the next section, this can
be described within the Born-Oppenheimer approximation, by letting φ = φ(r) in Eq. (5); the resulting problem
may still be harmonic if φ(r) is at most quadratic in r, but a general reflectivity profile will not terminate at
order r2.



If we thus keep terms of higher order in r2/hR in the potential VBO of Eq. (11) or in the phase φ, we will
introduce cross terms that break separability of Eq. (8) in Cartesian coordinates; this arises even in a simple
potential term like r4 which still has axial symmetry. Consequently, it is problematic to consider Hermite-
Gauss beams and Laguerre-Gauss beams as exchangeable candidates for the description of modes in an axially
symmetric cavity: As soon as we are concerned with anharmonicities, whether in axially symmetric cavities or
not, the HGµ,µ′;ν modes of Eq. (16) are no longer solutions of the resonator problem. On the other hand, the
Laguerre-Gaussians are closer to the true solution in an anharmonic cavity geometry as long as axial symmetry
remains. The main reason is that the LG beams are symmetrized according to the irreducible representations
of the two-dimensional rotation group SO(2), which is the symmetry group that leaves the resonator geometry
invariant. Anharmonicities which preserve axial symmetry can be incorporated into our Born-Oppenheimer
potential picture without difficulty: in Fig. 2, the curves representing the effective radial potential will change
shape, but the physical picture of a one-dimensional well with discrete bound states remains unchanged.

4. RELATION TO BESSEL-WAVE EXPANSION

From a group-theoretical point of view, the degeneracy in Eq. (24) is “accidental”, since all its members are
labeled by different values of the conserved azimuthal angular momentum ℓ; this is a well-known feature of the
two-dimensional harmonic oscillator, which possess a hidden SU(2) symmetry4 where N/2 plays the role of a
fictitious total total angular momentum. This “hidden” symmetry is not even broken when we allow the reflection
phase φ in Eq. (1) to depart from constancy, as long as φ(r) = φ0 +α r2. However, if we take this idea seriously,
it must be kept in mind that the reflectivity of a realistic mirror is polarization-dependent. This dependence
vanishes at normal incidence, but may become significant at nonzero angles of incidence. We first discuss how
the scalar considerations outlined above can be combined to describe the degeneracy breaking of the vectorial
modes in terms of two possible orthogonal polarizations. Then we address the question of how a dependence
of reflection phase φ on incident angle translates into a dependence φ(r) of reflection phase on position in the
Born-Oppenheimer equation.

Scalar fields are often a good approximation to the vector modes of a paraxial resonator, especially when
the geometric length scales are much larger than the wavelength. In an axially symmetric cavity, the scalar
wave equation emerges as soon as one makes the assumption that all cavity modes can be written as products
of constant circular polarization vectors and scalar orbital parts. Using the Jones vectors σ± = (1,±i) /

√
2

to denote right- and left-circular polarizations, respectively, one would then obtain Eq. (26) for the orbital
wave functions, and consequently expect a degeneracy given by (24), multiplied by two to account for the two
orthogonal polarization states σ±. The vector Laguerre-Gauss beams are simply of the form LGp

ℓσ
±.

However, these simplifying assumptions can break down even in a paraxial geometry, when the boundary
conditions lead to coupling between different polarization states. As was noted in Ref. 3 this requires only the
presence of a dielectric Bragg mirror, and a sufficiently high finesse so as to resolve the resulting lifting of the
degeneracy (24). It is a rigorous result that the vectorial modes of a dome cavity bounded by a dielectric Bragg
stack do not in general have a well-defined orbital angular momentum ℓ, even when the resonator geometry is
axially symmetric. Instead, only the total angular momentum m is a conserved quantity; it differs from ℓ by the
photon spin s = ±1 characterizing the circular polarization state of a vector Laguerre-Gauss beam.

If two members of the original degenerate manifold (24) labeled byN have orbital angular momenta ℓ− = m−1
and ℓ+ = m+1, their radial node numbers are p− = (N− l−)/2 and p+ = (N− l+)/2. Since ℓ ranges over the set
ℓ ∈ {−N, −N + 2, . . . , N − 2 , N}, one has m ∈ {−N − 1, −N + 1, . . . , N − 1 , N + 1}. The true cavity modes
are no longer degenerate if they have different |m|. Modes with the same |m| but differing only in the sign of m
transform into each other under reflection and hence remain degenerate. See section 5 of Ref. 1 for a detailed
discussion; the analysis shows that cavity modes can typically be written as pairwise superpositions of LG

p±

ℓ±
σ∓

waves with different orbital angular momenta, ℓ = ℓ± as defined above, and opposite circular polarization σ∓.
If we denote the two possible orthogonal, non-degenerate superposition states as having (complex) electric field
vectors EA and EB , we can write their relation to the degenerate basis functions LG

p±

ℓ±
σ∓ in matrix form as

(
EA

Eb

)

=

[
cosα − sinα
sinα cosα

](
LG

p−

ℓ−
σ+

LG
p+

ℓ+
σ−

)
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Plane wave angle

Figure 3. Angular spectrum sin θ g(θ) of two vector Laguerre-Gauss beams, LG0
2σ

− (dashed) and LG1
0σ

+ (solid), obtained
by applying a Bessel-wave decomposition to the free-space travelling-wave result of standard paraxial theory. Both beams
are chosen to have paraxial spreading angle of θp = 0.065. Only the weight of the p-polarized Bessel wave component
is plotted. Vertical lines indicate the average plane-wave angles θ̄ of each wave; note that the averages are unequal, and
both are larger than the common θp.

where α is a mixing angle. In Ref. 3, we studied in particular the case N = 2 and m = 1, where ℓ− = 0
and ℓ+ = 2. Such a pairwise superposition of LG modes does not lead back to the Hermite-Gauss solutions,
because that transformation typically requires all N + 1 LG waves (not just two of them) to create a HG
pattern. The polarization of the doublet modes is not strictly homogeneous, but numerically one finds that E

is approximately linearly polarized, except at certain parameter combinations (varying cavity height h, dome
radius R or Bragg stack design) where the doublet splitting reaches a minimum. These are points of avoided
crossings in the parameter space, and they are characterized by α = 0 , leading to purely circular polarizations,
EA,B = LG

p±

ℓ±
σ∓.

The physical reason why this coupling between LG
p±

ℓ±
σ∓ in general leads to nonzero mixing angle α 6= 0 is

that even a paraxial beam has plane waves with non-normal angles of incidence in its angular spectrum. A Bragg
stack in turn imparts a different reflection phase on plane waves with different angles of incidence. But the plane-
wave content of the two LG

p±

ℓ±
σ∓ components is different, owing to their different orbital angular momentum.

Therefore, the LG
p±

ℓ±
σ∓ waves cannot be expected to remain degenerate. To illustrate this, Fig. 3 shows the

angular spectrum of the vector Laguerre-Gauss beams with N = 2, m = 1, and ℓ− = 0, ℓ+ = 2, relevant to Ref.
3.

To obtain a distribution g(θ) in terms of plane-wave angles θ, we start with a plane wave E
s/p
θ at incident

angle θ and linear polarization state s or p with respect to the plane of incidence at the bottom Bragg mirror;

from this wave, one obtains a Bessel beam J
s/p
m,θ of angular momentum m by symmetrization1; its electric field

in the xy plane is

J
s/p
m,θ(r, ϑ) ∝



Jℓ−(kr sin θ)eiℓ−ϑσ+ ±
︸︷︷︸

+ for s,−for p

Jℓ+(kr sin θ)eiℓ+ϑσ−



 eikr cos θ, (28)

where ℓ± is defined as above, Jℓ is a Bessel function, and ϑ denotes the azimuthal angle, as in Eq. (26). In
contrast to the circularly polarized LG

p±

ℓ±
σ∓ beams, the Bessel beam Js

m,θ acquires a well-defined phase shift

φ = φs(θ) upon reflection at the Bragg mirror; similarly, a phase shift φ = φp(θ) applies to Jp
m,θ. Each Laguerre-

Gauss beam can be written as a superposition of Js
m,θ and Jp

m,θ with fixed m but varying θ, and the squared

expansion coeffient of Jp
m,θ is what we plot in Fig. 3 (weighted by a factor sin θ to account for solid angle, so



that
∫ π

0
g(θ) sin θ dθ = 1). Because of the appearance of σ+ and σ− in Eq. (28), a circularly polarized wave

must contain both Jp
m,θ and Js

m,θ; in free space, their expansion coefficients must in fact be equal or opposite
(disregarding normalization constants), causing only the scalar Bessel functions of one single angular momentum
(either ℓ− or ℓ+) to appear. To understand the degeneracy lifting of the LG

p±

ℓ±
σ∓, we therefore have to first

address the simpler problem of decomposing the scalar functions LG
p±

ℓ±
into scalar Bessel waves.

While Fig. 3 clearly shows the differing angular spectra of two originally degenerate modes, it also suggests
that the average plane-wave angle θ̄ of the distribution does not capture much of its detail since there may be
several maxima and minima. In order to understand the degree of Bragg-induced coupling between the two LG
beams, we therefore should attempt to characterize the angular distributions g(θ) further. One important result
is that g(θ) for a circularly polarized LG beam (as well as for a scalar LG beam) has the same functional form

as the radial wave function |Ψp,l;ν(r)|2 in (25), with the substitution r = wνθ/θp:

g(θ) sin θ ∝ sin θ

[

exp(−θ
2

θ2p
)

(

2
θ2

θ2p

)|ℓ|/2

L|ℓ|
p (2

θ2

θ2p
)

]2

(29)

This expression, derived in Ref. 7 within the paraxial approximation, is valid for small θp, θ.

We now want to investigate the duality r ↔ θ and wν ↔ θp from the Born-Oppenheimer point of view, in
order to address how the presence of the cavity affects the angular distribution g(θ). A starting point is provided
by observing that Bessel waves are solutions to the Born-Oppenheimer wave equation, Eq. (8), in the limit of
flat mirrors, zM ≡ h, equivalent to R → ∞ in Eq. (27). At finite mirror curvature, the Born-Oppenheimer
approximation relies on the variation of zM (r) with r being slow, ultimately to introduce a position-dependent
wave number kz(r), cf. Eq. (1). Comparing the z-dependence of the traveling-wave components in Eq. (26)
with Eq. (28), we make the local plane wave approximation

cos θ(r) =
kz(r)

k
.

This constitutes a local approximation because it interprets θ as the angle of the cone corresponding to the Bessel
wave that we would obtain if the cavity had the same height zM (r) for all r.

For the wave number component kz(r), we use Eq. (18). Since most of the “energy” of the modes resides in
the longitudinal motion, we can approximate

θ(r) = arccos
kz(r)

k
≈
√

2
k − kz(r)

k

=

√

2

k

1

(hR)
1/4

√

2 (N + 1) −
(
r

wν

)2

(30)

= θp

√

2 (N + 1) −
(
r

wν

)2

(31)

Here, we have inserted the definition of the far-field spreading angle θp from Eq. (21). The Bessel-wave limit,
θ ≡ const, is recovered from this when wν → ∞. Although this limit makes θp go to zero, we can get finite θ
by simultaneously choosing N large. The term containing N in Eq. (31) originates from the transverse mode
splitting kG(N + 1) of Eq. (23), which depends on the Gouy phase θG.

Equation (31) is the relation between r and θ that we aimed for, motivated by Eq. (29). This expression
can now be inserted into the Bragg reflectivity to express its phase as φ(r) = φ(θ(r)). This is the crucial step
allowing us to treat the Bragg stack in the Born-Oppenheimer approximation.

Clearly, this expression can be valid only for a limited range of r, because the square root becomes imaginary
for large r. As illustrated in Fig. 2, there is in fact a well-defined interval of allowed r, delimited by the classical

turning points in the effective radial potential. In particular, the angle θ is largest when r takes on its smallest
value, rmin. This value depends on the angular momentum of the mode, as we expect from the well-known



transverse donut shape of higher-ℓ Laguerre-Gauss beams where the axis r = 0 is avoided. The calculation of
rmin and rmax is straightforward; it amounts to reading off the intersections of the potential curves in Fig. 2
with the lines of K2 = const, and inserting the results into Eq. (31). The inner and outer turning points of the
LG modes with ℓ = 0, 1, 2 are illustrated by the vertical dashed lines in Fig. 2. For ℓ = N = 0, we get rmin = 0
and rmax = wν , the conventional mode waist radius.

However, whereas (29) suggests the simple proportionality r = wνθ/θp, Eq. (31) predicts a monotonic decrease

of θ with increasing r. This difference is physically significant: e.g., for N = ℓ = 0 we find that there is a finite
angle of incidence θ =

√
2θp at r = 0. In the Born-Oppenheimer approach, the smallest angle of incidence with

respect to the normal occurs at large radial distance from the axis. This is what one also expects from the ray

picture. For the purposes of finding φ(r) as required for a Born-Oppenheimer treatment of the Bragg stack, we
therefore have to use Eq. (31).

5. CONCLUSION

The adiabaticity assumption inherent in the Born-Oppenheimer approximation is suitable for a wide range of
cavity geometries, including even VCSELs. We have explored this method with the motivation of addressing
the optical analogue of spin-orbit coupling which we observed numerically in a paraxial dome resonator.3 This
has led us to reconsider standard paraxial resonator optics from the Born-Oppenheimer point of view, providing
alternative and efficient derivations of key results from Gaussian beam theory. The flexibility of our analytic
method shows itself in particular in the possibility of including variable Bragg reflectivities. For this purpose,
we derived a local relation for the Bessel-wave angle of incidence as a function of position on the Bragg mirror.
Because we focused on the near-paraxial regime, we describe the breaking of transverse degeneracies due to spin-
orbit coupling in the basis of vector Laguerre Gauss modes, which in turn allowed us to make contact with the
physics of the 2D harmonic oscillator. In the Born-Oppenheimer approach, further extentions of this description
both to non-paraxial and to non-axially symmetric geometries can be implemented in an appealingly seamless
way.
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