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We develop and demonstrate two numerical methods for solving the class
of open cavity problems which involve a curved, cylindrically symmetric con-
ducting mirror facing a planar dielectric stack. Such dome-shaped cavities
are useful due to their tight focusing of light onto the flat surface. The first
method uses the Bessel wave basis. From this method evolves a two-basis
method, which ultimately uses a multipole basis. Each method is developed
for both the scalar field and the electromagnetic vector field and explicit
“end user” formulas are given. All of these methods characterize the ar-
bitrary dielectric stack mirror entirely by its 2 × 2 transfer matrices for s-
and p-polarization. We explain both theoretical and practical limitations to
our method. Non-trivial demonstrations are gi ven, including one of a stack-
induced effect (the mixing of near-degenerate Laguerre-Gaussian modes) that
may persist arbitrarily far into the paraxial limit. Cavities as large as 50λ
are treated, far exceeding any vectorial solutions previously reported.
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1. Introduction

There is currently considerable interest in the nature of electromagnetic (vector) modes
both for free space propagation [1, 2, 3, 4] and in cavity resonators [5]. In particular,
recent advances in fabrication technology have given rise to optical cavities which cannot
be modeled by effectively two-dimensional, scalar or pseudo-vectorial wave equations [6].
The resulting modes may exhibit non-paraxial structure and nontrivial polarization, but
this added complexity also gives rise to desirable effects; an example from free-space
optics is the observation of enhanced focusing for radially polarized beams [4]. This
effect is shown here to arise in cavities as well, among a rich variety of other modes that
depend on the three-dimensional geometry. The main goal of this paper is to present a
set of numerical techniques adapted to a realistic cavity design as described below.

Much work involving optical cavity resonators utilizes mirrors that are composed of
thin layers of dielectric material. These dielectric stack mirrors offer both high reflectivity
and a low ratio of loss to transmission, which are desirable in many applications. The
simplest model of such cavities treats the mirrors as perfect conductors (Etangential =
0, Hnormal = 0). In applications involving paraxial modes and highly reflective mirrors,
it is often acceptable to use this treatment. The mature theory of Gaussian modes (c.f.
Siegman [7]) is applicable for this class of cavity resonator. When an application requires
going beyond the paraxial approximation to describe the optical modes of interest, the
problem becomes significantly more involved and modeling dielectric stack mirrors as
conducting mirrors may become a poor approximation. Also, one is often interested in
the field inside the dielectric stack and for this reason must include the stack structure
into the problem.

In this paper we present a group of improved methods for resonators with a cylin-
drically symmetric curved mirror facing a planar mirror. The paraxial condition is not
necessary for these methods; tightly focused modes can be studied. Furthermore, the
true vector electromagnetic field is used, rather than a scalar field approximation. The
planar mirror is treated as infinite and is characterized by its polarization-dependent
reflection functions rs(θinc) and rp(θinc) for plane waves with incident angle θinc. Our
model encompasses both cavities for which the planar mirror is an arbitrary dielectric
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stack, and cavities for which the planar mirror is a simple mirror (conducting with
rs/p(θinc) = −1 or “free” with rs/p(θinc) = +1). The opposing curved mirror is always
treated as a conductor. It should be noted that, for most modes which are highly fo-
cused at the planar mirror, (modes which are likely to be of interest in applications),
this limitation can be expected to cause little error because the local wave fronts at the
curved mirror are mostly perpendicular to its surface. (Of course, for applications in
which the curved mirror is indeed conducting, our model is very well suited.) On the
other hand, the correct treatment of the planar mirror can be a great improvement over
the simplest model. Applications with both dielectric and conducting curved mirrors
have been and are currently being used experimentally [5, 8, 9].

The methods described here belong to a class of methods which we refer to as “basis
expansion methods”. In basis expansion methods, a complete, orthogonal basis (such
as the basis of electromagnetic plane waves) is chosen. Each basis function itself obeys
Maxwell’s equations. The equations that determine the correct value of the basis coef-
ficients are boundary equations, resulting from matching appropriate fields at dielectric
interfaces, setting appropriate field components to zero at conductor-dielectric interfaces,
and setting certain fields to be zero at the origin or infinity. In the usual application of
this method, each homogenous dielectric region is allocated its own set of basis coeffi-
cients. Our methods use a single set of basis coefficients; the matching between dielectric
layers is handled by the 2× 2 transfer matrices of the stack.

As dielectric stacks have nonzero transmission, optical cavities with this type of mirror
are necessarily open, or lossy. The methods described here deal with the openness due to
the stack and the solutions are quasimodes, with discrete, isolated complex wavenumbers
which denote both the optimal driving frequency and the resonance width1. While
the dielectric mirror is partially responsible for the openness of our model system, the
openness is not primarily responsible for mode pattern changes resulting from replacing
a dielectric stack mirror with a simple mirror. The phase shifts of plane waves reflected
off a dielectric stack can vary with incident angle, and it is this variation which can
cause significant changes in the modes, even though reflectivities may be greater than
0.99. Generally speaking, the deviation of |rs/p(θinc)| from 1 is not as important as the
deviation of arg(rs/p(θinc)) from, say, arg(rs/p(0)).

We develop two general methods, the two-basis method and the Bessel wave method.
The scalar field versions of both methods are also developed and are discussed first, acting
as pedagogical stepping stones to the vector field versions. The Bessel wave method uses
the Bessel wave basis which is the cylindrically symmetric version of the plane wave basis.
This method is described in Section 3. The two-basis method ultimately uses the vector
or scalar multipole basis. The multipole basis has an advantage in that it is the eigenbasis
of a conducting hemisphere, the “canonical” dome-shaped cavity. The unusual aspect of

1For many modes, there is also loss due to lateral escape from the sides of the cavity. While our model
intrinsically incorporates the openness due to lateral escape in the calculation of the fields (by simply
not closing the curved mirror surface, or extending its edge into the dielectric stack), this loss is not
included in the calculated resonance width or quality factor, Q. Because a single set of basis vectors
is used to describe the field in the half-plane above the planar mirror, this entire half-plane is the
“cavity” as far as the calculation of resonance width is concerned.
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the two-basis method is the intermediate use of the Bessel wave basis. The two-basis
method is developed in Section 4. We have implemented both methods and have used
them as numerical checks against each other. Various demonstrations and comparisons
are given in Section 5. Our implementations of all methods are programmed in C++, use
the GSL, LAPACK, SLATEC, and PGPlot numerical libraries, and run on a Macintosh
G4 with OS X. Limitations of our model and methods are discussed in Appendix A.
Appendix B discusses plotting modes that are associated with linear polarization and
Appendix C specifies dielectric stacks that are used in Section 5.

2. Overview of the Model and Notation

Figure 1: The cavity model.

A diagram of the model is shown in Figure 1. The conducting surface is indicated by
the heavy line. The annular portion of this surface extending horizontally from the dome
edge will be referred to as the “hat brim”. The dome is cylindrically symmetric with
maximum height z = R and edge height z = ze. The shape of the dome is arbitrary,
but in our demonstrations the dome will be a part of an origin-centered sphere of radius
Rs = R unless otherwise specified. The region surrounding the curved mirror will be
referred to as layer 0. The dielectric interface between layer 0 and layer 1 has height
z = z1. The last layer of the dielectric stack is layer N and the exit layer is called layer
X. The depiction of the stack layers in the figure suggests a design in which the stack
consists of some layers of experimental interest (perhaps containing quantum wells, dots,
or other structures [5, 8]) at the top of the stack where the field intensity is high, and a
highly reflective periodic structure below.
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At the heart of the procedure to solve for the quasimodes is an overdetermined, com-
plex linear system of equations, Ay = b. The column vector y is made up of the
coefficients of eigenmodes in some basis B. The field in layer 0 is given by expansion in
B using these coefficients. For a given wavenumber, k, a solution vector y = ybest can
be found so that |A(k) y − b|2 is minimized with respect to y. Dips in the graph of the
residual quantity, ∆r ≡ |A(k) ybest − b|, versus k signify the locations of the isolated
eigenvalues of k (theoretically ∆r should become 0 at the eigenvalues). The solution
vector ybest(k) at one of these eigenvalues describes a quasimode. The system of equa-
tions is made up of three parts (as shown below): M1 equations, M2 equations and an
arbitrary amplitude or “seed” equation.

Ay =


[

M1

]
[

M2

]
[
s. eqn.

]

 ·

y

 =



0
...

...
0
1


. (1)

Henceforth M1 refers to the planar mirror and M2 to the curved mirror.
The M1 boundary condition for a plane wave basis is expressed simply in terms of

the 2 × 2 stack transfer matrices Ts(θinc) and Tp(θinc), as suggested by the M1 region
(enclosed by the dashed line) in Fig. 1. In the scalar and vector multipole bases, a sort
of conversion to plane waves is required as an intermediate step. The dashed k vectors
in the figure (incoming from the bottom of the stack) represent plane waves that are
given zero amplitude, in order to define a quasimode problem rather than a scattering
problem. The plane waves denoted by the solid k vectors have nonzero amplitude.

The M2 boundary condition is implemented as follows. A number of locations on the
curved mirror are chosen (the “X” marks in Fig. 1). The width of the hat brim is wb as
shown. An“infinitesimal”hat brim (wb � λ) is introduced to give the dome a diffractive
edge. An “infinite” hat brim can be introduced theoretically and can make the model
more easily understandable in certain respects. More about the model in relation to the
hat brim is discussed in Appendix A.2. The M2 equations are the equations in basis B
setting the appropriate fields at these locations to zero. For a problem not possessing
cylindrical symmetry, these locations would be points. The simplification due to this
symmetry, however, allows these locations to be entire rings about the z axis, specified
by a single parameter such as the ρ coordinate. Finally, the seed equation sets some
combination of basis coefficients equal to one and is the only equation with a nonzero
value on the right hand side (b).

The cylindrical symmetry of the boundary conditions allows one to always find solu-
tions which have a φ dependence of exp(ımφ), where m is an integer. This in turn leads
to a dimensionally reduced version of the plane wave basis called the Bessel wave basis,
in which each basis function is a superposition of all the plane waves with the same
wavevector polar angle, θk. The weight function of the superposition is proportional to
exp(ımφk). We will refer to the non-reduced basis as the “simple plane wave basis”. The
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unadorned phrase “plane wave basis” (PWB; same abbreviation for plural) will refer
henceforth to either or both of the Bessel wave and simple plane wave bases. When
using the scalar or vector multipole basis (MB; same abbreviation for plural), cylindrical
symmetry allows the problem to be solved separately for each quantum number m of
interest2. The dimensional reduction in this case amounts to the removal of a summation
over m in the basis expansion.

The refractive index in region (layer) q is denoted ñq. Layers are also denoted with an
upper subscript in parenthesis: E(q) means the electric vector field in layer q. Sometimes
“fs” is used as a value of q, meaning “in free space” (e.g. ñfs), whether or not any of the
layers in the model we are considering actually are free space. We note here that ñfs = 1
only in “cavity type I” discussed below.

The symbol k, where not in a super/subscript and not bold nor having any su-
per/subscripts, always refers to what may be called the “wavenumber in free space”,
although it will have an imaginary part if M1 is a dielectric mirror. An imaginary part
in wavenumber, refractive index, and/or frequency is often introduced (as it is in this
problem) to turn open cavity problems into eigenvalue problems. The definition of k is
as follows. Define −k2

q as the constant of separation used to separate space and time
equations from the wave equation for layer q:

∇2X(q) =
ñ2

q

c2
∂2X(q)

∂t2
. (2)

Here X(q) may be a vector or scalar field. In a few steps, the selection of a global
monochromatic time dependence exp(−ıωt) reveals that the ratio kq/ñq is independent
of q. Then k is defined as k ≡ kfs, so that kq = nqk where nq ≡ ñq/ñfs. In the model,
the index ratios nq are assumed to be real. The single plane wave solution to (2) has the

form X(q) = C(q)eık(q)·xe−ıωt where C(q) is a constant vector or scalar and the complex
wave vector k(q) is given by k(q) ≡ kqΩ

(q)
k = knqΩ

(q)
k with Ω

(q)
k being the unit direction

vector of the plane wave, specified by θ
(q)
k and φk. The generally complex frequency is

given by ω = ckq/ñq. At a refractive interface, the angle θ
(q)
k changes as given by Snell’s

law.
To understand the meaning of a complex k, it is helpful to realize that the spatial

dependence of the quasimodes are identical3 in the following two physical cavities:

I : ñfs = 1, ñq = nq,

II : ñfs = Υ, ñq = Υnq,Υ ∈ C. (3)

2The modes with low |m| are likely to be of practical interest since they have the simplest transverse
polarization structure. The |m| = 1 family of vector eigenmodes is exceptional because the pro-
portionality of Eρ and Eφ to exp(ımφ) means that modes for |m| 6= 1 have no average transverse
electric field, even instantaneously. (It is straightforward to show that 〈ReEx〉φ = 〈ReEy〉φ = 0 if
|m| 6= 1.) Thus a uniformly polarized, focused beam centered on the cavity axis can not couple to
cavity modes with |m| 6= 1 !

3There is the minor difference for the magnetic field first noted in Eqn. (12). Since the discrepancy
is a constant factor multiplying H, however, this difference is not necessarily part of the spatial
dependence.
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(The shape and size of each dielectric and conducting region are the same for cavities
I and II.) Cavity I is composed of of conductors and zero-gain regions of real refractive
index. Cavity II is constructed by taking cavity I and multiplying the refractive index of
each region, including free space, by an arbitrary complex number Υ. The congruence
of the spatial quasimodes follows from separating the variables in (2). The values of k,
kq, and nq for a given quasimode are the same in cavities I and II. The frequency in
cavity II is ωII = ωI/Υ. If we henceforth consider only the specific cavity II for which Υ
= (1− ıg) where g is tuned to be the ratio (−Imk/Rek) (for a given quasimode), we see
that ωII = cRek = ReωI. While in cavity I the quasimode decays in time, in cavity II
the quasimode is a steady state because the gain exactly offsets the loss. Either of the
two cavity types may be imagined to be the case in our treatment. The only difference
is the existence of the decay factor exp(cIm(k)t) for cavity I. (The inequality Imk ≤ 0
always turns up for an eigenvalue problem with conducting and/or dielectric interface
boundary conditions.) We note that the relation of k to the free space wavelength (always
real) of a plane wave is k = (1 − ıg)2π/λ. The quality factor, Q, of the quasimode is
Rek/(2|Imk|) = 1/(2g).

We note that Snell’s law, ñq sin θ
(q)
k = ñq+1 sin θ

(q+1)
k , is independent of whether we

have a cavity of type I or II because the quantity (1 − ıg), if present, divides out. One
of the limitations of our method is the omission of evanescent waves in layer 0 and
in layers where nq ≥ n0 (see Appendix A.1). Snell’s law may cause θ

(q)
k to become

complex for layers with index ratios nq less than n0. In this case sin θ
(q)
k > 1 and

cos θ
(q)
k = ısgn(cos θ

(0)
k )[sin2 θ

(q)
k − 1]1/2.

In most cases the symbols ψ, E, and H stand for complex-valued fields. The time
dependence is exp(−ıωt) and it is usually suppressed. Physical fields are obtained by
multiplying by the time dependence and then taking the real part.

Throughout this paper, the common functions denoted by Ylm, Pm
l , Pl, Jn, jl, and nl

are defined as they are in the book by Jackson [10].
In the implementation, c and the related constants ε0, µ0, and Z0 are all unity, and

they will usually be dropped in our treatment. We also assume non-magnetic materials
so that µq = µ0 = 1.

3. Plane Wave Bases and the Bessel Wave Method

Although this major section describes the Bessel wave method, much of what is discussed
here is applicable to the two-basis method with little alteration. The discussion in Section
4 is greatly shortened due to this overlap of concepts and procedures.

3.1. The Field Expansion in the Simple Plane Wave Bases

3.1.1. Scalar basis

A single scalar plane wave in layer q has the form ψ = C exp (ık(q) · x− ıωt). For a
general monochromatic field, k and ω are fixed and the field can be expressed (due to
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the completeness of the scalar PWB) uniquely (due to the orthogonality of the scalar
PWB) as a sum over plane waves in different directions. In our treatment however, we
omit plane waves in layer q which would only exist as evanescent waves when refracted
into layer 0. The expansion for the field in layer q is

ψ(q)(x) =

∫ 2π

0

dφk

∫ π

0

dθ
(0)
k sin(θ

(0)
k )ψ̃

(q)
k eık(q)·x. (4)

Here the basis expansion coefficients are the ψ̃
(q)
k (continuous coefficients in the integral,

and discrete coefficients in implementation). The above expansion effectively propagates
each plane wave existing in the cavity down (whether forward or backward) into the stack

layers, and adds up all of their contributions. In order to express the ψ̃
(q)
k in terms of

ψ̃
(0)
k , it is first necessary to separate the coefficients with kz > 0 from those with kz < 0

and write the above expansion as

ψ(q) =

∫ 2π

0

dφk

∫ π/2

0

dα
(0)
k sin(α

(0)
k )

×
(
ψ̃(q)

u eık
(q)
u ·x + ψ̃

(q)
d eık

(q)
d ·x
)
. (5)

The u and d refer to the plane waves going upward or downward, e.i. ψ̃
(q)
u is the expansion

coefficient ψ̃
(q)
k for k

(q)
z > 0 (or k

(0)
z > 0, since sgn(k

(q)
z ) = sgn(k

(0)
z )) and ψ̃

(q)
d takes the

place of ψ̃
(q)
k for k

(0)
z < 0. The wavevector k(q) in cylindrical coordinates is (k

(q)
ρ , k

(q)
φ , k

(q)
z ),

for which the following relationships hold:

k(q)
ρ = kq sin θ

(q)
k = kn0 sin θ

(0)
k = kn0 sinα

(0)
k = k(0)

ρ ,

k(q)
z = kq cos θ

(q)
k = knqsgn(cos θ

(0)
k ) cosα

(q)
k

= knqsgn(cos θ
(0)
k )

√
1−

(
n0

nq

sinα
(0)
k

)2

,

k
(q)
φ = φk (indep. of q). (6)

This leads to

ψ(q) =

∫ 2π

0

dφk

∫ π/2

0

dα
(0)
k sin(α

(0)
k )eıϕρ

×
(
ψ̃(q)

u eıϕz + ψ̃
(q)
d e−ıϕz

)
, (7)

where

ϕρ ≡ ρkn0 sin(α
(0)
k ) cos(φ− φk),

ϕz ≡ zknq cosα
(q)
k . (8)
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From standard theory regarding plane waves and layered media[11], one can calculate

the 2 × 2 complex transfer matrix, T
(q)
s , that obeys the following equation(

ψ̃
(q)
d e−ıϕz

ψ̃
(q)
u eıϕz

)
= T (q)

s ·
(
ψ̃

(0)
d

ψ̃
(0)
u

)
. (9)

Defining the column sums +β
(q)
s ≡ T

(q)
s,12 + T

(q)
s,22 and +γ

(q)
s ≡ T

(q)
s,11 + T

(q)
s,21 allows us to

write the expansion of the scalar wave in the layers as

ψ(q) =

∫ 2π

0

dφk

∫ π/2

0

dα
(0)
k sin(α

(0)
k )

× eıϕρ

(
+β

(q)
s ψ̃(0)

u + +γ
(q)
s ψ̃

(0)
d

)
. (10)

The reason for the notation with the subscripts “+” and “s” will become apparent in the
vector discussion. The “s” refers to s-polarization.

The variables in the simple PWB for scalar fields are the complex ψ̃
(0)
u and ψ̃

(0)
d (the

superscript will often be dropped). Next we consider the simple PWB for vector fields.

3.1.2. Vector basis

We assume that for our purposes a general monochromatic electromagnetic field can be
expressed uniquely as a sum of vector (electromagnetic) plane waves. For every given
frequency and wavevector direction Ωk there are two orthogonally polarized plane waves
(as opposed to a single plane wave in the scalar case). Instead of a single coefficient ψ̃k for
each spatial direction we need two, S̃k and P̃k, which we can define as follows. S̃k is the
amplitude of the vector plane wave propagating in direction Ωk which has its electric
field polarized in the x-y plane (Ez = 0). Thus, this plane wave is an “s-wave” with
regard to the planar mirror. P̃k is the amplitude of the “p-wave”, the vector plane wave
in direction Ωk which has its electric field polarized in the plane of incidence (Eφ = 0).
The coefficients S̃k and P̃k will be separated into S̃u, S̃d, P̃u, and P̃d.

To specify the polarization of the fields we will use unit vectors denoted by ε. The
unit vector ε

(q)
s,k denotes the direction of the electric field associated with the plane wave

with wavevector k(q) and s-polarization. We take the direction of the unit vectors to be:

ε
(q)
s,k = −φ̂k

= x̂ sinφk − ŷ cosφk,

ε
(q)
p,k = θ̂

(q)
k sgn(cos θ

(q)
k )

= ρ̂ksgn(cos θ
(0)
k ) cos θ

(q)
k − ẑsgn(cos θ

(0)
k ) sin θ

(q)
k . (11)

In this phase convention (used by Yeh[11]), the projections of the ε
(q)
p,k vectors for the

incident and reflected waves onto the x-y plane are equal. The other common phase
convention has these projections being in opposite directions.
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The entire electric and magnetic field can be broken up into two parts: E(q) = E
(q)
s +

E
(q)
p and H(q) = H

(q)
s + H

(q)
p where H

(q)
s is the field with magnetic s-polarization

(Hz = 0) and H
(q)
p is the field with magnetic p-polarization (Hφ = 0). We can now

write down the most compact expansion of the vector field.

E(q)
s =

∫
dΩ

(0)
k S̃

(q)
k ε

(q)
s,ke

ık(q)·x,

E(q)
p =

∫
dΩ

(0)
k P̃

(q)
k ε

(q)
p,ke

ık(q)·x,

H(q)
s = −ñq

∫
dΩ

(0)
k P̃

(q)
k ε

(q)
s,ksgn(cos θ

(0)
k )eık(q)·x,

H(q)
p = ñq

∫
dΩ

(0)
k S̃

(q)
k ε

(q)
p,ksgn(cos θ

(0)
k )eık(q)·x. (12)

The factors of ñq in the H equations come from the physical relation of H to E for a
plane wave. Note that ñq is different for cavity types I and II (as given in Eqn. (3)).
Separating up and down coefficients yields

E(q)
s =

∫ 2π

0

dφk ε
(q)
s,k

∫ π/2

0

dα
(0)
k sin(α

(0)
k )eıϕρ

×
(
S̃(q)

u eıϕz + S̃
(q)
d e−ıϕz

)
,

E(q)
p =

∫ 2π

0

dφk

∫ π/2

0

dα
(0)
k sin(α

(0)
k ) eıϕρ

×
[
ρ̂k cos(α

(q)
k )
(
P̃ (q)

u eıϕz + P̃
(q)
d e−ıϕz

)
+ ẑ sin(α

(q)
k )
(
−P̃ (q)

u eıϕz + P̃
(q)
d e−ıϕz

)]
. (13)

These expressions explicitly use coordinate vectors only where necessary due to a de-
pendence of the εk vectors on the sign of cos θ

(0)
k . The expressions for H(q) are omitted

for brevity.
To relate S̃

(q)
u/d and P̃

(q)
u/d to S̃

(0)
u/d and P̃

(0)
u/d we can use the transfer matrices: Ts for

s-polarized light and Tp for p-polarized light. The transfer matrix used for the scalar
field in Eqn. (9) is the same matrix we will use here for s-polarization. These matrices
perform the following transformations(

S̃
(q)
d e−ıϕz

S̃
(q)
u eıϕz

)
= T (q)

s ·
(
S̃

(0)
d

S̃
(0)
u

)
,(

P̃
(q)
d e−ıϕz

P̃
(q)
u eıϕz

)
= T (q)

p ·
(
P̃

(0)
d

P̃
(0)
u

)
. (14)

We define

±β
(q)
s ≡ T

(q)
s,12 ± T

(q)
s,22,

±γ
(q)
s ≡ T

(q)
s,21 ± T

(q)
s,11,

11



±β
(q)
p ≡ T

(q)
p,12 ± T

(q)
p,22,

±γ
(q)
p ≡ T

(q)
p,21 ± T

(q)
p,11. (15)

Note +β
(q)
s and +γ

(q)
s are defined as before. The β and γ quantities are functions of z

and z1 and not of ρ or φ. They are functions of k and α
(0)
k but not of φk.

Now the field expansions become

E(q)
s =

∫ 2π

0

dφk ε
(q)
s,k

∫ π/2

0

dα
(0)
k sin(α

(0)
k )eıϕρ

×
(

+β
(q)
s S̃(0)

u + +γ
(q)
s S̃

(0)
d

)
,

E(q)
p =

∫ 2π

0

dφk

∫ π/2

0

dα
(0)
k sin(α

(0)
k ) eıϕρ

×
[
ρ̂k cos(α

(q)
k )
(

+β
(q)
p P̃ (0)

u + +γ
(q)
p P̃

(0)
d

)
+ ẑ sin(α

(q)
k )
(
−β

(q)
p P̃ (0)

u − −γ
(q)
p P̃

(0)
d

)]
,

H(q)
s = ñq

∫ 2π

0

dφk ε
(q)
s,k

∫ π/2

0

dα
(0)
k sin(α

(0)
k )eıϕρ

×
(
−β

(q)
p P̃ (0)

u − −γ
(q)
p P̃

(0)
d

)
,

H(q)
p = ñq

∫ 2π

0

dφk

∫ π/2

0

dα
(0)
k sin(α

(0)
k ) eıϕρ

×
[
ρ̂k cos(α

(q)
k )
(
− −β

(q)
s S̃(0)

u + −γ
(q)
s S̃

(0)
d

)
− ẑ sin(α

(q)
k )
(

+β
(q)
s S̃(0)

u + +γ
(q)
s S̃

(0)
d

)]
. (16)

The variables in the simple PWB for vector fields are the complex S̃
(0)
u , S̃

(0)
d , P̃

(0)
u , and

P̃
(0)
d (the superscript will often be dropped).

3.2. The Field Expansion in the Bessel Wave Bases

3.2.1. Scalar basis

We have already assumed a time dependence of exp(−ıωt). As mentioned in the Overview,
a cylindrically symmetric set of boundary conditions allows us to assume an azimuthal
dependence of exp(ımφ) with m being an integer. Consider the expansion (4). We wish

to find the conditions on ψ̃
(q)
k which cause the entire dependence of ψ(x) on φ to be

exp(ımφ).

The general Fourier series expansion of ψ̃
(q)
k is

ψ̃
(q)
k (θ

(0)
k , φk) =

∑
n

f (q)
n (θ

(0)
k ) eınφk . (17)

12



We can then write (4) as

ψ(q) =
∑

n

∫ π

0

dθ
(0)
k sin(θ

(0)
k )eıϕ̃zf (q)

n (θ
(0)
k )

×
∫ 2π

0

dφk e
ıρkn0 sin(θ

(0)
k ) cos(φ−φk)eınφk , (18)

where

ϕ̃z ≡ zknq cos θ
(q)
k . (19)

The last integral is of the solved form∫ 2π

0

eıy cos(φ
′−φ)eınφ

′

dφ
′
= 2π(ı)nJn(y)eınφ, (20)

where Jn denotes the regular Bessel function of order n (n can be negative). This yields

ψ(q) = 2π
∑

n

(ı)neınφ

∫ π

0

dθ
(0)
k sin(θ

(0)
k )

× eıϕ̃zJn(ρkn0 sin θ
(0)
k )f (q)

n (θ
(0)
k ). (21)

In order to have only exp(ımφ) dependence on φ, the integral on the right hand side

must be zero for n 6= m. Because f
(q)
n (θ

(0)
k ) cannot be a function of z or ρ, the only way to

have this for all z and ρ is to pick fn = 0 for n 6= m. Thus ψ̃
(q)
k (θ

(0)
k , φk) = f

(q)
m (θ

(0)
k )eımφk .

At this point we define the symbol ψ
(q)
k to mean the coefficient f

(q)
m . The cylindrically

symmetric expansion is

ψ(q) = ξ

∫ π

0

dθ
(0)
k sin(θ

(0)
k )eıϕ̃zJm(ρkn0 sin θ

(0)
k )ψ

(q)
k (θ

(0)
k ), (22)

where

ξ ≡ 2π(ı)meımφ. (23)

This is an expansion in scalar Bessel waves, defined to be

ξ exp(ızknq cos θ
(q)
k )Jm(ρkn0 sin θ

(0)
k ), (24)

with {ψ(q)
k (θ

(0)
k )} being the set of coefficients. Each Bessel wave is a set of simple plane

waves with fixed polar angle but having the full range (0 to 2π) of azimuthal angles,
φk. The weight factors of the plane waves are proportional to exp(ımφk). The final
cylindrically symmetric scalar expansion with up and down separated is

ψ(q)(x) = ξ

∫ π/2

0

dα
(0)
k sin(α

(0)
k )Jm(ρkn0 sinα

(0)
k )

×
(

+β
(q)
s ψ(0)

u + +γ
(q)
s ψ

(0)
d

)
. (25)

The ψ
(0)
u and ψ

(0)
d are the (complex) variables in the Bessel wave method for scalar fields;

they make up the solution vector y in (1).
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3.2.2. Vector basis

For cylindrically symmetric boundary conditions, the φ dependence of Eρ, Ez, Eφ, Hρ,
Hz, and Hφ can be taken (for a single mode) to be exp(ımφ).

Consider doing the φk integrations in (12) or (16). The unit vectors ε
(q)
s/p,k and ρ̂k

depend on φk. The z components do not depend on φk so we will look at these first.
There is no contribution to the z component of the electric field from E

(q)
s nor is there

any contribution to the z component of the magnetic field from H
(q)
s . We define

zP
(q)(x) ≡ E(q) · ẑ = E(q)

p · ẑ,
H
zP

(q)(x) ≡ H(q) · ẑ = H(q)
p · ẑ. (26)

Requiring that these quantities have an exp(ımφ) dependence produces results similar
to the scalar case. Defining

S
(q)
k eımφk ≡ S̃

(q)
k ,

P
(q)
k eımφk ≡ P̃

(q)
k , (27)

and using (16), we have the final, useful expansions for zP
(q) and H

zP
(q):

zP
(q) = ξ

∫ π/2

0

dα
(0)
k sin(α

(0)
k ) sin(α

(q)
k )

× Jm(ρkn0 sinα
(0)
k )
(
−β

(q)
p P (0)

u − −γ
(q)
p P

(0)
d

)
,

H
zP

(q) = − ξñq

∫ π/2

0

dα
(0)
k sin(α

(0)
k ) sin(α

(q)
k )

× Jm(ρkn0 sinα
(0)
k )
(

+β
(q)
s S(0)

u + +γ
(q)
s S

(0)
d

)
. (28)

To deal with the transverse part of the electromagnetic field it is helpful to use quan-
tities related to circular polarization. We define

±S
(q) ≡ ±ıE(q)

s · x̂−E(q)
s · ŷ

= e±ıφ(±ıE(q)
s · ρ̂−E(q)

s · φ̂),
H
±S

(q) ≡ ±ıH(q)
s · x̂−H (q)

s · ŷ

= e±ıφ(±ıH (q)
s · ρ̂−H (q)

s · φ̂),

±P
(q) ≡ E(q)

p · x̂± ıE(q)
p · ŷ

= e±ıφ(E(q)
p · ρ̂± ıE(q)

p · φ̂),
H
±P

(q) ≡ H(q)
p · x̂± ıH(q)

p · ŷ

= e±ıφ(H(q)
p · ρ̂± ıH(q)

p · φ̂). (29)

Inverting (29) yields

E(q)
s · ρ̂ =

−ı
2

( +S
(q)e−ıφ − −S

(q)eıφ),

E(q)
s · φ̂ =

−1

2
( +S

(q)e−ıφ + −S
(q)eıφ),
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E(q)
p · ρ̂ =

1

2
( +P

(q)e−ıφ + −P
(q)eıφ),

E(q)
p · φ̂ =

−ı
2

( +P
(q)e−ıφ − −P

(q)eıφ), (30)

with the magnetic field quantities having similar relations. Now we use (12) and (11)
with (29). The resulting electric field quantities are

±S
(q) =

∫ π

0

dθ
(0)
k sin(θ

(0)
k )eıϕ̃z

×
∫ 2π

0

dφke
±ıφkeıρkn0 sin(θ

(0)
k ) cos(φ−φk)S̃

(q)
k ,

±P
(q) =

∫ π

0

dθ
(0)
k sin(θ

(0)
k ) cos(θ

(q)
k )sgn(cos θ

(0)
k )eıϕ̃z

×
∫ 2π

0

dφke
±ıφkeıρkn0 sin(θ

(0)
k ) cos(φ−φk)P̃

(q)
k . (31)

It is the exp(±ıφk) factors in the integrands here that motivated the definitions of ±S/P
(29). We see that the substitution of (27) into (31) results in φk integrals of the form
(20). Performing this substitution, doing the integrals, and separating the up and down
parts gives the final expansions:

±S
(q) = ξ±

∫ π/2

0

dα
(0)
k sin(α

(0)
k )Jm±1(ρkn0 sinα

(0)
k )

×
(

+β
(q)
s S(0)

u + +γ
(q)
s S

(0)
d

)
,

±P
(q) = ξ±

∫ π/2

0

dα
(0)
k sin(α

(0)
k )Jm±1(ρkn0 sinα

(0)
k )

× cos(α
(q)
k )
(

+β
(q)
p P (0)

u + +γ
(q)
p P

(0)
d

)
,

H
±S

(q) = ξ±ñq

∫ π/2

0

dα
(0)
k sin(α

(0)
k )Jm±1(ρkn0 sinα

(0)
k )

×
(
−β

(q)
p P (0)

u − −γ
(q)
p P

(0)
d

)
,

H
±P

(q) = ξ±ñq

∫ π/2

0

dα
(0)
k sin(α

(0)
k )Jm±1(ρkn0 sinα

(0)
k )

× cos(α
(q)
k )
(
− −β

(q)
s S(0)

u + −γ
(s)
s S

(0)
d

)
, (32)

where

ξ± ≡ 2π(ı)m±1eı(m±1)φ. (33)

At this point one can quickly verify, using (30) and the above equations, that Eρ, Eφ,
Hρ, and Hφ do indeed have a φ-dependence of exp(ımφ).
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The S
(0)
u , S

(0)
d , P

(0)
u , and P

(0)
d are the (complex) variables in the Bessel wave method and

make up the solution vector y in (1). They are essentially coefficients of electromagnetic
Bessel waves, although we need not explicitly combine (32), (30), (28), and (26) to obtain
an explicit expression for the E and H vector Bessel waves as we did for the scalar case
(24).

3.3. The Linear System of Equations for the PWB

Until now the PWB coefficients have been treated as continuous, when in practice they
must be chosen discrete. Let us keep in mind this discrete nature in the following
subsections. We denote by Ndirs the number of directions α

(0)
k we choose. Thus there

are 2Ndirs coefficient variables for a scalar problem and 4Ndirs coefficient variables for a
vector problem. The distribution of the α

(0)
k on [0, π/2] need not be uniform, and the

effect of distribution choice will be briefly mentioned later.

3.3.1. The planar mirror (M1) boundary equations

The M1 equations (planar mirror boundary condition equations) in the PWB are very
simple. In fact, because of this simplicity, the M1 equations in the MB are basically a
transformation to and from the PWB with the M1 equations for the PWB sandwiched
between. The reflection of a plane wave off of a layered potential is a well known
problem. For the purpose of determining the field in layer 0, the entire dielectric stack
is characterized by the complex rs and rp coefficients acting at the first surface of the
stack. For the scalar case with the layer 0–layer 1 interface at z1 = 0, the boundary
condition is just ψ̃

(0)
u = rs(α

(0)
k )ψ̃

(0)
d where rs(α) is the stack reflection function. Since

Bessel waves are linear superpositions of many plane waves with the same θ
(0)
k parameter,

this equations is true for Bessel waves:

ψ(0)
u = rs(α

(0)
k )ψ

(0)
d . (34)

For a conducting mirror, set rs = −1 and for a free mirror set rs = 1.
If the interface is at a general height z1, then the same rs function is used at this

surface yielding

ψ(0)
u eız1kn0 cos α

(0)
k = rs(α

(0)
k )ψ

(0)
d e−ız1kn0 cos α

(0)
k ,

or

ψ(0)
u − r̄s(α

(0)
k )ψ

(0)
d = 0, (35)

where

r̄s/p(α
(0)
k ) ≡ rs/p(α

(0)
k )e−ı2z1kn0 cos α

(0)
k . (36)
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(The equation is given for both s- and p-polarization since we will shortly be using the

rp quantities.) The quantities rs/p(α
(0)
k ) are independent of z and z1. When M2 is a

dielectric stack mirror, the r̄s/p(α) are determined by T
(q=layer X)
s/p according to

r̄s/p(α) = −T (X)
s/p,21/T

(X)
s/p,22. (37)

For the vector case the equation for the s-polarized plane waves is

E(0)
u · ε(0)

s,u = r̄s(α
(0)
k )E

(0)
d · ε

(0)
s,d, (38)

where E
(0)
u/d is the total electric field of the two plane waves going in the direction specified

by αk, φk, and u or d. Shifting to our current notation and to Bessel waves, the equation
becomes

S(0)
u − r̄s(α

(0)
k )S

(0)
d = 0. (39)

For p-polarization there is an arbitrary conventional sign. In our phase convention
(chosen in (11)) the equation is

E(0)
u · ε(0)

p,u = r̄p(α
(0)
k )E

(0)
d · ε

(0)
p,d, (40)

or

P (0)
u − r̄p(α

(0)
k )P

(0)
d = 0. (41)

The vector ε
(0)
p,u/d is ε

(0)

p,k̃
with k̃ being k forced into the up/down version of itself.

For a simple mirror, set rp = rs = {−1 for conducting, +1 for free} and use (36)
instead of (37) to determine r̄s/p. Sometimes we will use cosαk as the explicit argument
to r̄s/p or rs/p instead of αk.

Equation (35) or Eqns. (39) and (41), given for each discrete α
(0)
k , form the M1

equations.

3.3.2. The curved mirror (M2) boundary equations

As mentioned in Section 2, the M2 equations come from setting the appropriate field
components equal to zero at some number of locations on the curved mirror and the hat
brim. If we chose individual points on the two dimensional surface, the φ-dependence
factor, exp(ımφ), could be divided away. Thus picking locations with the same ρ and z
but different φ yields identical boundary equations. Therefore we simply set φ = 0 (and
t = 0) and pick equations by incrementing a single parameter (such as ρ) on the one
dimensional curve given by the intersection of the conducting mirror and the x-z plane.
The number of locations, NM2 loc, determines the number of M2 boundary equations.
All of the locations are taken to lie in layer 0.

We obtain the M2 equations by, in effect, doing the α
(0)
k integrals in (25) or in (28) and

(32). Before making the integrals discrete, the distribution of representative directions
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must be chosen. If the interval ∆α
(0)
k between successive directions is not constant, the

integral over α
(0)
k must be transformed to an integral over a new variable, x, where ∆x

is constant. Such a transformation will generate a new integration factor. At this point
the integral is turned into a sum according to:

∫ b

a
→
∑

j , dx → (b − a)/N . Choosing

the direction distribution to be uniform in α
(0)
k requires no change in integration factor

and yields a “summation factor” of π/(2Ndirs).
Using (25) and (23), the M2 equations for the scalar problem are

2π

(
π

2Ndirs

)Ndirs∑
j=1

[
Jm(ρ∗kn0 sinα

(0)
kj

)

× sin(α
(0)
kj

)
(

+β
(0)
s

∣∣
z=z∗

ψuj
+ +γ

(0)
s

∣∣
z=z∗

ψdj

)]
= 0. (42)

An equation is added to the linear system for each chosen location specified by (ρ∗, z∗).
All phase factors have been divided out of (42) but the scale factor π2/Ndirs has been kept
for representative weighting. Of course there is also an effective weight produced by the
distribution of the evaluation locations on the conducting mirror. In our implementation,
we choose equal steps of θ to cover the dome and equal steps of ρ to cover the hat brim
(see Fig. 1).

For the vector problem there are three equations associated with each location: Eφ =
0, E‖ = 0, and H⊥ = 0. (Here the subscript “‖” refers to the direction that is both

tangential to the M2 surface and perpendicular to φ̂.) From (30) the Eφ = 0 equation is

−1

2

(
+S

(0) + −S
(0) + ı( +P

(0) − −P
(0))
)

= 0. (43)

The expansions for ±S/P in terms of the unknowns S/P
(0)
u/d in equation (32) must now

be used, along with the identical integral-to-sum conversion used in the scalar problem
(42). It is probably not beneficial to work out the long form of this boundary equation,
as its computer implementation can be done with substitutions.

The E‖ = 0 equation depends on the shape of the mirror. If η is the angle that the
outward-oriented surface normal makes with the z axis, then E‖ is given by

E‖ = Eρ cos η − Ez sin η, (44)

where Ez = zP
(0) and, using (30),

Eρ =
1

2

(
ı( −S

(0) − +S
(0)) + +P

(0) + −P
(0)
)
. (45)

Again equation (32) and the integral-to-sum conversion must be used to obtain the
explicit row equation. The H⊥ = 0 equation is obtained by doing the same type of
substitutions with

H⊥ = Hρ sin η +Hz cos η. (46)
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Here Hz = H
zP

(0) and

Hρ =
1

2

(
ı( H
−S

(0) − H
+S

(0)) + H
+P

(0) + H
−P

(0)
)
. (47)

For locations on the hat brim, η = 0.

3.3.3. The seed equation

All the M1 and M2 equations have no constant term. Thus the best numerical solution
will be the trivial solution ybest = 0. To prevent 0 from being a solution, an equation
with a constant term must be added. One simple type of equation sets a single variable
equal to 1, for instance Su(j=5) = 1. Another simple type sets the sum of all of the
coefficients equal to 1. A more complicated type sets the field (or a field component)
at a certain point in space equal to a constant. No one type of seed equation is always
best.

3.3.4. Solution of Ay=b

As depicted in (1), the matrix A is made up of the left hand sides of the M1, M2, and
seed equations. For the scalar case there are 2Ndirs columns and (Ndirs + NM2 loc + 1)
rows. For the vector case there are 4Ndirs columns and (2Ndirs +3NM2 loc +1) rows. The
value of NM2 loc is picked so that A has several times as many rows as columns. A value
of k is picked and the overdetermined system of equations is “solved” as well as possible
by a linear least squares method. The best such methods rely on a technique known as
singular value decomposition [12]. Our implementation relies on the function zgelsd of
the LAPACK fortran library. To find the eigenvalues of k, the imaginary part of k is
set to zero and the real part of k is scanned. As mentioned in the Overview, this results
in dips in the value of ∆r. Using Brent’s method [12] for minimization, the minimum
of the dip is found. The real part of k is now fixed and Brent’s method is used again
to find the best imaginary part of k. Then Brent’s method may again be used on the
real part of k. By this alternating method, the complex eigenvalue of k is found, along
with the eigenmode, y. In practice Brent’s method need only be used two to four times
per scan dip to get an accurate complex k. We usually normalize each row of A to 1
so that the normalized error per equation in the system can be expected to be around
∆n ≡ ∆r/[|y| × (number of rows in A)1/2]. ∆n is one indicator of the accuracy of the
solution.

3.3.5. Calculating the field from y

Once y is calculated for a quasimode, the values of the field in any layer can found by
using the expansion (25) for the scalar field and equations (32), (30), (28), and (26) for

the vector field. Of course the integrals over α
(0)
k must be made discrete as discussed

previously. Appendix B explains more regarding the plotting of the fields.
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4. Multipole Bases and the Two-Basis Method

As mentioned in the Introduction, the two-basis method ultimately uses the scalar or
vector MB. The MB is the eigenbasis for the closed, conducting hemisphere or sphere.
Both the vector and scalar multipole bases have known forms which we will use but
not derive. The basis functions already possess an azimuthal dependence of exp(ımφ)
and the dimensional reduction due to cylindrical symmetry is accomplished by picking
a value for m instead of summing over basis functions with many m.

The method of stepping along a one-parameter location curve to obtain the M2 equa-
tions is the same as for the PWB. Explicit formulas in the MB of course will be completely
different and will be given in this major section. The methods of solution to the linear
system of equations are the same as for the PWB. The development of the M1 equations
in the MB, however, requires considerable work. After the system of equations has been
solved, using the resulting solution vector y to calculate/plot the fields in layers other
than layer 0 also requires significant work. We use the term “two-basis method” because
of the role of plane waves in these two calculations. Figure 2 represents the linear system
of equations of the two primary methods and how they are related.

rs/p

MB
M2 eqns.

PWB
M2 eqns.

seed eqn.
seed eqn.

MB
M1 eqns.

PWB
M1 eqns.

al, bl

two-basis
  method

Su, Sd, Pu, Pd

Bessel wave
   method

Figure 2: Diagram for the two primary methods. The closed loops suggest the self-
consistency or “constructive interference” of the quasimode solutions. Grey
regions indicate intersection between PWB and MB methods. Size roughly
indicates the “post-basis-derivation work” required to get the equations. The
variable coefficients for the vector problem are shown.
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4.1. The Scalar Multipole Basis

The scalar MB functions we use are the ψlm = jl(kn0r)Ylm(θ, φ) where jl denotes the
spherical Bessel function of the first kind and Ylm is the spherical harmonic function.
The scalar MB functions, like the scalar PWB functions, satisfy the wave equation. We
assume the field in layer 0, in a region large enough to encompass the cavity, can be
expanded uniquely in terms of the scalar MB functions. Using the cylindrical symmetry
of the cavity to solve the problem separately for each value of m, we expand the field in
the cavity as

ψ(0)(x) =
lmax∑
l=|m|

cljl(kn0r)Ylm(θ, φ). (48)

The expansion coefficients, cl, are complex. One should never need to choose lmax much
larger than Re(k)n0rmax where rmax is the maximum radial extent of the dome (not the
hat brim). (Semiclassically, the maximum angular momentum a sphere or hemisphere of
radius Rs can support (for a given k) is ∼ Re(k)n0Rs, which corresponds to a whispering-
gallery mode.)

The scalar MB functions are the exact eigenfunctions of the problem of a hypothetical
spherical conductor specified by r = Rs = R, with eigenvalues given by the zeros of
jl(kn0R). The basis functions for which (l + m) is odd are the eigenfunctions of the
closed hemispherical conductor. This is because

Ylm has parity (−1)l+m in cos θ (49)

and thus is zero at θ = π/2. It can also be shown, using the power series expansion of
Pl(x) given in Ref. [13], that Ylm(π/2, φ) is nonzero if (l +m) is even.

4.2. The M1 Equations in the Scalar MB

The expansion of a plane wave in terms of the (monochromatic) scalar MB functions is
[10]:

eık·x = 4π
∞∑
l=0

l∑
m=−l

(ı)lY ∗
lm(θ, φ)jl(kr)Ylm(θk, φk). (50)

The inverse of this relation, the expansion of a scalar MB function in terms of monochro-
matic plane waves, is

jl(kr)Ylm(θ, φ) =

∫
dΩk

(
(−ı)l

4π
Ylm(θk, φk)

)
eık·x. (51)

This equation is easy to verify by inserting (50) into the right hand side. The use of
Ylm = (−1)mY ∗

l,−m and the orthogonality relation for the Ylm leads directly to the left
hand side. The expansion (51), applied to layer 0 (k → k0 = kn0), is the foundation for
this section and its counterpart for vector fields.
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Using (48) and (51) yields the scalar field expansion for a given m:

ψ(0) =

∫
dΩ

(0)
k eık(0)·x

(∑
l=|m|

cl
(−ı)l

4π
Ylm(θ

(0)
k , φk)

)
. (52)

The quantity in the curved brackets is ψk, the simple plane wave coefficient (compare
to Eqn. (4) with q set to 0). We can now use (35). For kz > 0, ψu = ψk and ψd = ψk′ ,
where in cylindrical coordinates k

′
= k

′
(k) ≡ (kρ, kφ,−kz). For kz < 0, ψd = ψk and

ψu = ψk′ . Using (49), one gets ψk′ =
∑

l clYlm(θ
(0)
k , φk)(−1)l+m(−ı)l/(4π). We can now

derive an equation that expresses (35) and holds for all Ω
(0)
k :

∑
l=|m|

cl
(−ı)l

4π
Ylm(θ

(0)
k , φk)

×
{

1− r̄s, l +m is even

sgn(cos θ
(0)
k ) (1 + r̄s) , l +m is odd

}
= 0. (53)

At this point there are two ways to proceed.

4.2.1. Variant 1

One way to construct the M1 portion of the matrix A is to pick some number NM1 dirs

of discrete directions, θ
(0)
k , and use (53) for each direction (the φk dependence divides

out). Inspection of the equation reveals that it is even in cos θ
(0)
k ; thus only polar angles

in the domain [0, π/2] are needed. Using α
(0)
k as before to denote this reduced domain,

the M1 equations in this variant become:

lmax∑
l=|m|

cl
(−ı)l

4π
Ylm(α

(0)
k , 0)

×
(
1− (−1)l+m rs(cosα

(0)
k )e−ı2z1kn0 cos α

(0)
k

)
= 0. (54)

We note for later comparison that for each α
(0)
k we need only evaluate a single associ-

ated Legendre function (inside the Ylm), because the recursive calculation technique for
computing Pm

lmax
(x) also computes Pm

l (x) for |m| ≤ l ≤ lmax. Since each step of this
recursive calculation involves a constant number of floating point operations, we may
say that the complexity associated with the Pm

l calculations for each α
(0)
k is O(l2max).

Generally NM1 dirs ∼ lmax so the Pm
l complexity is O(l3max) and the overall number of

evaluations of r̄s is O(lmax).

4.2.2. Variant 2

Rather than picking discrete directions to turn (53) into many equations, we could
project the entire left hand side onto the spherical harmonic basis, {Yl′m′}, (that is,
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integrate (53) against Y ∗
l′m′ (Ω

(0)
k ) in Ω

(0)
k ). Due to the uniqueness of the basis expansion,

the integral for each (l
′
,m

′
) pair must be zero. The integrals for m

′ 6= m are zero and
can be neglected. Thus the number of equations generated is Nl′ = l

′
max − |m| + 1. We

set l
′
max = lmax.

Since (53) is even in cos θ
(0)
k , integrating against Y ∗

l′m
gives 0 if l

′
+m is odd, halving

the number of equations. When l
′
+m is even the integration must be done numerically.

The most analytically simplified version of the coefficients of cl in the M1 equation
corresponding to l

′
(for l

′
+m even) is:

M1l
′
,l = ζ

∫ 1

0

P
|m|
l (x)P

|m|
l′

(x)
(
1− (−1)l+mr̄s(x)

)
dx, (55)

where

ζ ≡ (−ı)l

4π

(
(2l + 1)(2l

′
+ 1)

(l − |m|)!
(l + |m|)!

(l
′ − |m|)!

(l′ + |m|)!

)1/2

. (56)

This comes from using the properties of Ylm under a sign change ofm, using the definition
of Ylm, doing the φk integral, and halving the domain of the even integral over x =
cosα

(0)
k . Noting that the number of unknowns in the solution vector y is Nl = lmax −

|m| + 1, the number of (complex) coefficients that must be calculated is about N2
l /2.

Noting that M1l,l′ = (−ı)l
′−lM1l′ ,l when l+m and l

′
+m are both even, the calculation

is reduced to about 3N2
l /4 real-valued integrations.

While this variant of the method is in some ways the most elegant, the numerical
integrals are extremely computationally intensive. Our implementation used an adaptive
Gaussian quadrature function, gsl_integration_qag of the GSL. (Adaptive algorithms
choose a different set of evaluation points for each integration and achieve a prescribed
accuracy; in a sense the integral is done in a continuous rather than a discrete manner.)
For an adaptive algorithm, the complexity4 associated with the Pm

l calculation isO(l3+ν
max),

where ν ≥ 1. The number of evaluations of r̄s is O(l2+ν
max). In practice, variant 2 is much

slower than variant 1 even for cavities as small as R/λ ≈ 5 with simple mirrors. Checking
between the two variants has generally shown very good agreement.

4.3. The Linear System of Equations in the Scalar MB

The M1 equations have been given in the previous section. Using (48) yields an M2
equation

lmax∑
l=|m|

cljl(kn0r∗)Ylm(θ∗, 0) = 0, (57)

4The exponent ν is defined so that the number of integration points that must be sampled (for the
most complicated integrals where l ∼ l

′ ∼ lmax) to maintain a constant accuracy goes like lνmax.
(This definition may not be rigorous if ν is a function of lmax.) Since P 0

l (x) has O(l) zeros and the
Pm

l for m > 0 are even more complicated, it is reasonably certain that ν ≥ 1.
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for each location (r∗, θ∗). The discussions from Section 3.3 regarding the M2 equations,
the seed equation, and the method of solution to Ay = b apply here. The number of
columns in A is Nl and the number of rows is (NM1 dirs + NM2 loc + 1) for variant 1 or
about (Nl/2 +NM2 loc + 1) for variant 2.

4.4. Calculating the Field in the Layers with the Scalar MB

To calculate the complex field anywhere in layer 0 once a quasimode solution y has been
found, Eqn. (48) can be used directly. To calculate the field in the layers below the
cavity (q > 0) where the expansion does not apply, the Bessel waves must be used, along

with the T
(q)
s matrix that propagates them. Performing the φk integration in (52), using

(49), and then comparing with (9) and (25) with q = 0 in both of these yields the Bessel
wave coefficients:

ψ(0)
u =

∑
l

cl
(−ı)l

4π
Ylm(α

(0)
k , 0),

ψ
(0)
d =

∑
l

cl
(−ı)l

4π
Ylm(α

(0)
k , 0)(−1)l+m. (58)

Now (25) can be used with q > 0 yielding

ψ(q)(x) =
(ı)m

2
eımφ

∫ π/2

0

dα
(0)
k sin(α

(0)
k )

× Jm(ρkn0 sinα
(0)
k )
[∑

l

cl(−ı)lYlm(α
(0)
k , 0)

×
(

+β
(q)
s + (−1)l+m

+γ
(q)
s

)]
. (59)

This is a costly numerical integration to do with an adaptive algorithm. For every
sampled α

(0)
k , the quantities Ts, P

m
lmax

and Jm must be calculated once. For displaying
large regions of the field in the stack, it is sufficiently accurate to simply convert the
solved MB solution vector y into a PWB solution vector (with Ndirs ∼ lmax) by means
of a separate program using (58), and then use the discrete form of (25) to plot.

4.5. The Vector Multipole Basis

We expand the electromagnetic field in layer 0 (at least in a finite region surrounding
the cavity) in the vector multipole basis using spherical Bessel functions of the first kind
(jl). The multipole basis uses the vector spherical harmonics (VSH; same abbreviation
for singular), which are given by[14]

Mlm(x) = −jl(kn0r) x × ∇Ylm(θ, φ),

Nlm(x) =
1

kn0

∇ × Mlm. (60)
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The VSH are not defined for l = 0. The nature of the electromagnetic multipole ex-
pansion is developed in section 9.7 of the book by Jackson[10] using somewhat different
terminology. The multipole expansion of the electromagnetic fields is

E(0)(x) =
lmax∑

l=lmin

(−alNlm + ıblMlm) ,

H (0)(x) = ñ0

lmax∑
l=lmin

(ıalMlm + blNlm) , (61)

where cylindrical symmetry has been invoked to remove the sum over m, and lmin =
max(1, |m|). The al and bl are complex coefficients and there are Nl = lmax− lmin + 1 of
each of them. The al coefficients correspond to electric multipoles and the bl coefficients
correspond to magnetic multipoles. The explicit forms of the VSH are

Mlm(x) = θ̂
( ım

sin θ
jl(kn0r)Ylm(θ, φ)

)
+ φ̂

(
−jl(kn0r)

∂

∂θ
Ylm(θ, φ)

)
,

Nlm(x) = r̂

(
l(l + 1)

kn0r
jl(kn0r)Ylm(θ, φ)

)
+ θ̂

(
1

kn0r

∂

∂r
(rjl(kn0r))

∂

∂θ
Ylm(θ, φ)

)
+ φ̂

(
ım

kn0r sin θ

∂

∂r
(rjl(kn0r))Ylm(θ, φ)

)
. (62)

4.6. The M1 Equations in the Vector MB

The goal of the calculation here is to transform the M1 relations, (38) and (40), into
equations such that each dot product is written in the form

∑
l(alfa(k) + blfb(k)). The

resulting (two) equations will be the vector analogues of (53) and will hold for all Ω
(0)
k ,

leading to two variants of solution method in the same manner as before. First we must
Fourier expand E(0) as we expanded ψ(0) to get (52). The only Fourier relation we have
is (51) which expands the quantity jlYlm(x). We must therefore break Mlm into terms
containing this quantity.

Here we can make use of the orbital angular momentum operator L = −ı(x × ∇).
Using the ladder operators, L± = Lx ± ıLy, the VSH Mlm = −ıjlLYlm can be shown to
be

Mlm = (−ıjl)×
[
x̂

1

2

(
d+

lmYlm+1 + d−lmYlm−1

)
+ ŷ

ı

2

(
−d+

lmYlm+1 + d−lmYlm−1

)
+ ẑ (mYlm)

]
, (63)

where

d±lm ≡
√

(l ∓m)(l ±m+ 1). (64)
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Using (51) multiple times yields

Mlm =

∫
dΩ

(0)
k M̃lme

ık(0)·x, (65)

with

M̃lm = x̂
(−ı)l

8π
(−ı)e+lm + ŷ

(−ı)l

8π
(−1)e−lm

+ ẑ
(−ı)l

4π
mYlm(Ω

(0)
k ), (66)

where

e±lm ≡ d+
lmYlm+1(Ω

(0)
k )± d−lmYlm−1(Ω

(0)
k ). (67)

We can avoid the task of expanding Nlm into jlYlm terms by just using

Nlm =
∇ × Mlm

kn0

=

∫
dΩ

(0)
k

ı

kn0

k(0) × M̃lme
ık(0)·x. (68)

Performing the cross product and substituting into (61) using (65-66) yields

Ex(x) =

∫
dΩ

(0)
k eık(0)·x

{∑
l

(−ı)l

4π

[
al

(
−m sin θ

(0)
k sinφkYlm −

ı

2
cos θ

(0)
k e−lm

)
+ bl

(1

2
e+lm

)]}
,

Ey(x) =

∫
dΩ

(0)
k eık(0)·x

{∑
l

(−ı)l

4π

[
al

(
m sin θ

(0)
k cosφkYlm −

1

2
cos θ

(0)
k e+lm

)
+ bl

(−ı
2
e−lm

)]}
,

Ez(x) =

∫
dΩ

(0)
k eık(0)·x

{∑
l

(−ı)l

4π

[
al

( ı
2

sin θ
(0)
k cosφk e

−
lm +

1

2
sin θ

(0)
k sinφk e

+
lm

)
+ bl

(
mYlm

)]}
,

(69)

where Ylm is understood to mean Ylm(Ω
(0)
k ). The quantities inside the curly braces in

(69) will be denoted by Ẽx(k), Ẽy(k), and Ẽz(k), where the “(0)” superscript on k has
been dropped. We will also need Ẽ(k

′
) where k

′
(k) = (kρ, kφ,−kz) as before. Again

using (49) we find

Ẽx(k
′
) =

∑
l

(−ı)l

4π
(−1)l+m

[
al

(
−m sin θ

(0)
k sinφkYlm −

ı

2
cos θ

(0)
k e−lm

)
+ bl

(−1

2
e+lm

)]
,

Ẽy(k
′
) =

∑
l

(−ı)l

4π
(−1)l+m

[
al

(
m sin θ

(0)
k cosφkYlm −

1

2
cos θ

(0)
k e+lm

)
+ bl

( ı
2
e−lm

)]
,

Ẽz(k
′
) =

∑
l

(−ı)l

4π
(−1)l+m

[
al

(−ı
2

sin θ
(0)
k cosφk e

−
lm +

−1

2
sin θ

(0)
k sinφk e

+
lm

)
+ bl

(
mYlm

)]
.

(70)
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4.6.1. The M1 equations for s-polarization

We will now define flm and glm by

Ẽ(k) · εs,k ≡
∑

l

(−ı)l

4π
(alglm + blflm) . (71)

Performing the dot product using (11) yields

flm =
ı

2

(
d+

lmYlm+1e
−ıφk − d−lmYlm−1e

ıφk
)
,

glm =
1

2
cos θ

(0)
k

(
d+

lmYlm+1e
−ıφk + d−lmYlm−1e

ıφk
)

−m sin θ
(0)
k Ylm

=
1

2

√
2l + 1

2l − 1

(√
(l −m)(l −m− 1)Yl−1,m+1e

−ıφk

+
√

(l +m)(l +m− 1)Yl−1,m−1e
ıφk

)
. (72)

The simplification in the last step has been done using recursion relations for the Pm
l .

Performing the dot product for Ẽ(k
′
) yields

Ẽ(k
′
) · εs,k =

∑
l

(−ı)l

4π
(−1)l+m (alglm − blflm) . (73)

The M1 relation (from (38)) is Ẽ(k) · εs,k = r̄sẼ(k
′
) · εs,k for kz > 0 and Ẽ(k

′
) · εs,k =

r̄sẼ(k) · εs,k for kz < 0. These lead to an M1 equation that holds for all Ω
(0)
k :

lmax∑
l=lmin

(−ı)l

4π

{
als1glm + bls2flm, l +m even
als2glm + bls1flm, l +m odd

}
= 0, (74)

where s1 ≡ 1− r̄s(| cos θ
(0)
k |) and s2 ≡ sgn(cos θ

(0)
k )(1 + r̄s(| cos θ

(0)
k |)).

4.6.2. The M1 equations for p-polarization

The M1 equation for p-polarization is obtained the same way as above. The calculation
is simplified by temporarily switching phase conventions. We define the unit vector
ε̃p,k ≡ sgn(cos θ

(0)
k )εp,k (using (11)) so that

ε̃p,k = x̂ cos θ
(0)
k cosφk + ŷ cos θ

(0)
k sinφk − ẑ sin θ

(0)
k ,

ε̃p,k′ = − x̂ cos θ
(0)
k cosφk − ŷ cos θ

(0)
k sinφk − ẑ sin θ

(0)
k . (75)

The M1 relation is now Ẽ(k) · ε̃p,k = (−r̄p)Ẽ(k
′
) · ε̃p,k

′ for kz > 0 and Ẽ(k
′
) · ε̃p,k

′ =

(−r̄p)Ẽ(k) · ε̃p,k for kz < 0, where r̄p has not changed in any way. Performing the dot
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products, we find that

Ẽ(k) · ε̃p,k =
∑

l

(−ı)l

4π
(−alflm + blglm),

Ẽ(k
′
) · ε̃p,k′ =

∑
l

(−ı)l

4π
(−1)l+m(alflm + blglm). (76)

This leads to the M1 equation for p-polarization which holds for all Ω
(0)
k :

lmax∑
l=lmin

(−ı)l

4π

{
−alp2flm + blp1glm, l +m even
−alp1flm + blp2glm, l +m odd

}
= 0, (77)

where p1 ≡ 1 + r̄p(| cos θ
(0)
k |) and p2 ≡ sgn(cos θ

(0)
k )(1− r̄p(| cos θ

(0)
k |)).

4.6.3. Variant 1

Variant 1 for the vector case proceeds exactly as it does for the scalar case. The M1
equations (74) and (77) are seen to be even in cos θ

(0)
k , allowing us to pick directions only

in the domain [0, π/2]. Thus for each discrete direction α
(0)
k we get one equation (in the

M1 portion of A) for each polarization. No modification of (74) or (77) is needed, except

that we can take φk = 0 and cos θ
(0)
k = cosα

(0)
k ≥ 0.

The complexity of calculating the M1 portion of A is of the same order in lmax as it is
for the scalar MB. However, numerous constant factors make the computation time an
order of magnitude longer, as there are more Pm

l functions to compute and r̄p must be
computed in addition to r̄s.

4.6.4. Variant 2

In this minor section, we assume that m ≥ 0 (see Appendix B for plotting negative m
modes from positive m solutions). We follow the same procedure used in variant 2 for

the scalar field. Integrating (74) and (77) against Yl′m′ (Ω
(0)
k ) yields zero if either m

′ 6= m
or l

′
+m is odd. For m

′
= m and l

′
+m even, the M1 equation associated with each l

′

in {|m|, |m|+ 1, . . . , lmax} for s-polarization is

lmax∑
l=lmin

−1

2
ζ

[
al

∫ 1

0

(
1− (−1)l+m r̄s

)(
Pm+1

l−1 (x) + (l +m)(l +m− 1)Pm−1
l−1 (x)

)
Pm

l
′ (x) dx

+ bl(ı)

∫ 1

0

(
1 + (−1)l+m r̄s

)(
Pm+1

l (x)− (l +m)(l −m+ 1)Pm−1
l (x)

)
Pm

l′
(x) dx

]
= 0,

(78)
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and the M1 equation for p-polarization is

lmax∑
l=lmin

−1

2
ζ

[
al(−ı)

∫ 1

0

(
1−(−1)l+m r̄p

)(
Pm+1

l (x)−(l+m)(l−m+1)Pm−1
l (x)

)
Pm

l′
(x) dx

+ bl

∫ 1

0

(
1 + (−1)l+m r̄p

)(
Pm+1

l−1 (x) + (l +m)(l +m− 1)Pm−1
l−1 (x)

)
Pm

l′
(x) dx

]
= 0,

(79)

where P n
µ = 0 for |n| > µ. Note that if m = 0 the equations for l

′
= 0 are included. We

implemented this by calculating an array of each of the following types of integrals:∫ 1

0
Pm+1

µ Pm
ν dx,

∫ 1

0
Pm−1

µ Pm
ν dx,∫ 1

0
Pm+1

µ Pm
ν r̄s dx,

∫ 1

0
Pm−1

µ Pm
ν r̄s dx,∫ 1

0
Pm+1

µ Pm
ν r̄p dx,

∫ 1

0
Pm−1

µ Pm
ν r̄p dx.

The integrals in the first row can be calculated ahead of time and stored in a data
file. The other integrals must be calculated each time the matrix A is calculated. The
complexity of the calculation is of the same order in lmax as for variant 2 in the scalar
case. These integrals are very numerically intensive and in practice variant 2 takes
much longer than variant 1. We have found good agreement between the two variants,
indicating that variant 1 can be used all or most of the time.

4.7. The Linear System of Equations in the Vector MB

The M2 equations are found in the usual way, choosing locations (ρ∗, θ∗) with φ = 0
and constructing the equations Eφ = 0, E‖ = Eρ cos η − Ez sin η = 0, and H⊥ =
Hρ sin η + Hz cos η = 0. The fields E and H are found by substituting (62) into (61).
The derivatives in (62) are

∂

∂r
(rjl(kn0r)) = kn0rjl−1(kn0r)− ljl(kn0r), (80)

and, for m ≥ 0,

∂

∂θ
Ylm(θ, φ) =

1

2

[
(2l + 1)(l −m)!

4π(l +m)!

]1/2

×
(
Pm+1

l − (l +m)(l −m+ 1)Pm−1
l

)
eımφ, (81)

where P l+1
l = 0. (For negative m use Yl,−m = (−1)mY ∗

lm.) The number of columns in
A is 2Nl and the number of rows is (2NM1 dirs + 3NM2 loc + 1) for variant 1 and about
(Nl + 3NM2 loc + 1) for variant 2.
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4.8. Calculating the Field in the Layers with the Vector MB

To calculate the field in layer 0, the expansion (61) is used directly, with (62), (80), and
(81) being used to obtain the explicit form. As for the scalar case, there is no direct
expansion for the layers q > 0 in the MB, and we must use the Bessel wave basis. Using
(71), (73), and (76), the conversion is seen to be

Su =
lmax∑

l=lmin

(−ı)l

4π
(alglm + blflm)

∣∣∣∣
θ
(0)
k =α

(0)
k ,φk=0

,

Sd =
∑

l

(−ı)l

4π
(−1)l+m (alglm − blflm)

∣∣∣∣
θ
(0)
k =α

(0)
k ,φk=0

,

Pu =
∑

l

(−ı)l

4π
(−alflm + blglm)

∣∣∣∣
θ
(0)
k =α

(0)
k ,φk=0

,

Pd =
∑

l

(−ı)l

4π
(−1)l+m (alflm + blglm)

∣∣∣∣
θ
(0)
k =α

(0)
k ,φk=0

. (82)

This is the vector case analogue of Eqn. (58).

At this point the Bessel wave coefficients Su, etc., are continuous functions of α
(0)
k ,

not discrete as they were in the Bessel wave method. These continuous coefficients are
substituted into the integrals (32), and finally (30) is used to give the vector fields in the
layers. As in the scalar case, however, doing the integrals with an adaptive algorithm is
impractical if one is plotting the vector fields in a sizable region. In this case, it is best
to make the Bessel wave coefficients discrete and use a simple integration method, or, as
was suggested in the scalar case, to pick a Ndirs and create a PWB solution vector that
can then be plotted via a PWB plotting routine.

5. Demonstrations and Comparisons

In this section we will demonstrate, but not thoroughly analyze, several results that
we have obtained using our model and methods. The modes shown here all have
∆n < 0.0002 and do not contain large amounts of high-angle plane waves, which in
principle can cause problems (see Appendix A.1). The authors expect to publish a sep-
arate paper focusing on the modes themselves. In this section we will also compare our
implementations of the two-basis method and the Bessel wave method. Before reading
this section it may be helpful to look at Appendix B.

5.1. The “V”Mode: A Stack Effect

As mentioned several times in the Introduction, the correct treatment of a dielectric
stack can be essential for getting results that are even qualitatively correct5. One of

5It is not always essential however, see Note Added in Proof.
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Figure 3: Contrast-enhanced plot of ReEx in the y-z plane for a “V” mode (m = 1, k =
8.1583 − ı0.000019). M2 is spherical and origin-centered; R = 40; z1 = 0.3;
ze = 3; M1 = stack II; ks = 8.1600; Ns = 20. In this and other side view plots,
the field outside the cavity has been set to zero.

Figure 4: An x-y cross section of the mode in Fig. 3 at z = 1.58. Units are in µm
as usual. For m = +1, the forward time evolution is simply the counter-
clockwise rotation of the entire vector field. If m = +1 and m = −1 are mixed
to create a cosine mode, the arrow directions remain fixed and their lengths
simply oscillate sinusoidally in time so that the mode is associated with x
polarization. The inset shows the location of the cross section in the view of
Fig. 3. (The field is plotted only in layer 0.)
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the most remarkable differences that we have observed when switching from simple to
dielectric M1 mirrors occurs right where someone looking for highly-focused, drivable
modes would be interested: the widening behavior of the fundamental Gaussian mode
(the 00 mode). A Gaussian mode of a near-hemispherical cavity will become more and
more focused (wide at the curved mirror and narrow at the flat mirror) as z1 is decreased
(from a starting value for which the Gaussian mode is paraxial). As the mode becomes
more focused, of course, the paraxial approximation becomes less valid and at some
point Gaussian theory no longer applies. We have found, using realistic Al1−xGaxAs–
AlAs stack models (stacks I and II described in Appendix C), that the 00 mode splits
into two parts, so that in the side view a “V” shape is formed. Figure 3 shows a split
mode and Fig. 4 shows the physical transverse electric field, ReET ≡ ReExx̂ + ReEyŷ,
for this mode near the focal region. Figure 5 shows the values of Re(kR) as z1 is changed
from 0.3 to about 0.63. Figure 6 shows a zoomed view of the field at the focus of the
mode at z1 = 0.63, where it is qualitatively a 00 mode. If a conducting mirror is used,
the central cone simply grows wider and wider, but does not split. The V mode is
predominately s-polarized and appears in the scalar problem as well. Thus it appears
that the V mode is a result of the non-constancy of arg(rs(α)) for a dielectric stack.
We note here that following the 00 mode as z1 is changed is an imperfect process: it
is possible that the following procedure may skip over narrow anticrossings that are
difficult to resolve. However, the character of the mode is maintained through such
anticrossings.

The apparent splitting of the central cone/lobe for higher order Gaussian modes has
also been observed. In the next section we look at some higher order Gaussian modes,
focusing not on what occurs at the breaking of the paraxial condition, but on what is
allowed and observed for modes that are very paraxial.

5.2. Persistent Stack-Induced Mixing of Near-Degenerate
Laguerre-Gaussian Mode Pairs

As mentioned in the previous section, we do observe the fundamental Gaussian mode
for paraxial cavities with both dielectric and conducting planar mirrors. The situation
becomes more interesting when we look at higher order Gaussian modes. It is true
that, as modes become increasingly paraxial, Gaussian theory must apply. However,
the way in which it applies allows the design of M1 to play a significant role. Here
we will demonstrate the ability of a dielectric stack (stack II) to mix near-degenerate
pairs predicted by Gaussian theory into new, more complicated near-degenerate pairs
of modes. We must provide considerable background to put these modes into context.
Our discussion applies to modes with paraxial geometry, modes for which the paraxial
parameter h ≡ λ/(πw0) = w0/zR is much less than 1. (Here w0 is the waist radius and
zR is the Rayleigh range, as used in standard Gaussian theory.) In this section, the
solutions we are referring to are always the +m or −m modes discussed in Appendix B,
and never mixtures of these, such as the cosine and sine modes discussed in the same
section.
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Figure 5: Following kR as z1 is varied. The points of the two graphs correspond one-to-
one, with the parameter z1 increasing from left to right in both graphs. The
peaks in resonance width have not yet been analyzed.

5.2.1. Paraxial Theory for Vector Fields

From Gaussian theory, using the Laguerre-Gaussian (LG) basis, we expect that the
transverse electric field of any mode in the paraxial limit is expressible in the form:

ET =
N∑

j=0

[
A+

j

(
1
ı

)
+ A−j

(
1
−ı

)]
LG2j−N

min(j,N−j)(x). (83)

Here N ≥ 0 is the order of the mode. The A±j are complex coefficients and
(

1
ı

)
and(

1
−ı

)
are the Jones’ vectors for right and left circular polarization, respectively. The

explicit forms of the normalized LG2j−N
min(j,N−j) functions are given in Ref. [15] as “uLG

nm”

with the substitutions n→ N−j and m→ j. The important aspects of the LG2j−N
min(j,N−j)

functions are that the φ-dependence is exp(ı(2j −N)φ), and the ρ-dependence includes

the factor L
|2j−N |
min(j,N−j)(2ρ

2/w(z)2) where Ll
p is a generalized Laguerre function and w(z) is

the beam radius. In the paraxial limit the vector eigenmodes of the same order become
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Figure 6: The field in layers 0–X for the mode at z1 = 0.63. The inset shows the entire
mode. The“V”nature of the mode has been lost as it has become more paraxial
and more like the fundamental Gaussian. ReET everywhere lies nearly in a
single direction at any instant (here it is in the x direction). The x-z plane is
shown here, although the plots of Ex in any plane containing the z axis are
very similar. Here k = 8.2098− ı0.0000401.

degenerate. There are 2(N+1) independent vector eigenmodes present in the expansion
(83).

Independent from the discussion above, ET = Eρρ̂ + Eφφ̂ can be written as

ET =
1

2
(Eρ + ıEφ)︸ ︷︷ ︸
∝ exp(ımφ)

eıφ
( 1
−ı
)

+
1

2
(Eρ − ıEφ)︸ ︷︷ ︸
∝ exp(ımφ)

e−ıφ
(1
ı

)
. (84)

Since the Eρ and Eφ fields have a sole φ-dependence of exp(ımφ), comparing with (83)
reveals that, for a given m, at most two terms in (83) are present: the A−

j
′
+

and A+

j
′
−

terms where j
′
± = (N +m± 1)/2. Explicitly,

(Eρ ± ıEφ)/2 ≈ A∓
j
′
±
LGm±1

[N+min(m±1,−m∓1)]/2. (85)

If the solution (84) has both terms nonzero for almost all x, the constraints 0 ≤ j ≤ N
force N to have a value given by N = |m|+1+2ν, ν = 0, 1, 2, . . . . However, if only right
(left) circular polarization is present in the solution, N = |m|−1 is also allowed, provided
that m ≥ +1 (m ≤ -1). So, given a (paraxial) numerical solution with its m value, we
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Table 1: Vector Laguerre-Gaussian modes.

can determine which orders the solutions can belong to. The reverse procedure, picking
N and determining which values of m are allowed and how many independent vector
solutions are associated with each m, can be done by stepping j in (83) and comparing
with (84) or (85). The results for the first four orders are summarized in Table 1. The
LG0

0

(
1
ı

)
and LG0

0

(
1
−ı

)
modes are the fundamental Gaussian modes.

Since the cavity modes are not perfectly paraxial, the 2(N +1)-fold degenerate modes
from the Gaussian theory are broken into N + 1 separate degenerate pairs. The truly
degenerate pairs for m 6= 0 of course consist of a +m and a −m mode which are related
by reflection (see Appendix B). The pairings are shown in the last column of Table 1.

The dashed boxes in Table 1 enclose pairs of modes which may be mixed in a single
solution for fixed m (Eqn. (84)). Only the mixable m = 0 modes are exactly degenerate
and may be arbitrarily mixed. For the other mixable pairs, the degree of mixing will
be fixed by the cavity, in particular by the structure of M1. We now discuss our results
regarding the mixing of the two modes with N = 2 and m = +1.

5.2.2. A demonstration of persistent mixing

Figure 7 shows the cross sections of two near-degenerate m = 1 modes found for a
conducting cavity. Here z1 = ze = 0 and M2 is spherical with radius Rs = 70 but is
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BA

Figure 7: 8 × 8 µm cross sections of modes of a conducting cavity near maximum
amplitude (z = 0.25). kA = 7.89285 and kB = 7.89290. The inset plots show
ReEx in the x-z plane with horizontal and vertical tick marks every 1 µm.

centered at z = −59.5 instead of the origin, so that R = 10.5. The paraxial parameter h
is at least as small as 0.1 (see the side views in the inset plots). Mode A corresponds very
well to the pure LG0

1

(
1
ı

)
mode, while mode B corresponds very well to the pure LG2

0

(
1
−ı

)
mode. These are mixable modes, as indicated in Table 1, and the conducting cavity has
“chosen” essentially zero mixing. Note that mode B would have zero overlap with an
incident fundamental Gaussian beam centered on the z axis, while mode A would have
nonzero overlap.

Pictures C and D in Figure 8 are cross sections of near-degenerate m = 1 modes for a
cavity with stack II. To show that the transverse part of these modes are mixtures of A
and B, we have added and subtracted the solution vectors yA and yB to create the new
(non-solution) vectors:

yC
′ = yA + ηyB, yD

′ = yA − (0.225)ηyB, (86)

and have plotted these fields (C
′

and D
′
) using k = (kA + kB)/2. (The scaling factor

η, here ≈ 0.07, is unphysical and related to the effect of the seed equation on overall
amplitude.) Comparing C

′
and D

′
with C and D shows that we have reconstructed the

mode cross sections quite well (up to a constant factor). Modes C and D are not pure
Hermite-Gaussian (HG) modes, but their resemblance to the HG02 and HG20 modes is
not an accident. Mode conversion formulas in Ref. [15] show that LG2

0 is made of the
HG02, HG11, and HG20 modes while LG0

1 contains only HG02 and HG20. Note that both
modes C and D would couple to a centered fundamental Gaussian beam.

An interesting property of the mixed modes C and D is that their general forms
appear to be persistent as h is varied, provided that the paraxial approximation remains
sufficiently applicable. Furthermore, we do not have to be particularly careful about
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DC

C' D'

Figure 8: Cross sections of true modes (C and D) of a cavity with stack II near maximum
amplitude (z = 0.05), and constructed modes (C

′
and D

′
) near their maximum

amplitude (z = 0.25). The constructed cross sections are nearly identical to
the true cross section. kC = 7.74685−ı0.00005415, kD = 7.74680−ı0.00005516,
and the constructed modes are plotted with kC

′
/D

′ = 7.8929, the average of kA

and kB. The inset plots show ReEx in the x-z plane. The stack parameters
are Ns = 22 and ks = 7.746814.

setting λs to correspond very closely to 2π/Rek. The modes shown in Figure 9 are not
nearly as paraxial as the C and D modes. Here ks = 8.1600 which is not close to the
k values of the modes. Furthermore, stack I was used which is missing the spacer layer
of stack II. Nevertheless the modes of Fig. 9 bear a strong resemblance to the more
carefully picked C and D modes.

5.3. Modes with m 6= 1

The m = 0 modes may be circularly polarized, such as the paraxial m = 0 modes of
Table 1. The more interesting polarization, perhaps, is the m = 0 analogue of x and y
polarization: radial and azimuthal polarization. The mode shown in Fig. 10 is radially
polarized, although it is impossible to tell this from the plots because the left and right
circularly polarized modes are radial (identical to the plot) at t = 0 and azimuthal

37



Figure 9: Cross sections of neighboring, poorly paraxial modes near maximum am-
plitude (z = 1.33). M2 is spherical and origin-centered with R = 10. M1
is stack I with Ns = 20, ks = 8.1600, and z1 = ze = 1.0. The mode
on the left has k = 8.51160 − ı0.0002491 and the mode on the right has
k = 8.51540− ı0.0003184.

(like a vortex) at ωt = π/2. The radial or azimuthal polarizations are easier to obtain
numerically than the right or left polarizations because radially (azimuthally) polarized
modes have all of the bl (al) MB coefficients equal to zero and thus can be selected by
the seed equation (see Appendix B).

Figure 11 shows a m = 2 mode that corresponds to the LG1
1

(
1
ı

)
mode from Gaussian

theory. We also have completed theN = 2 near-degenerate family by finding the LG2
0

(
1
ı

)
(m = 3) mode for both the cavity used in Fig. 7 (k = 7.8926 ≈ kA ≈ kB) and the cavity
used in Fig. 8 (k = 7.7466−ı0.00005466 ≈ kC ≈ kD). The cross sections of this mode for
the two cavities, which are not shown to conserve space, appear identical, as predicted
by the absence of a m = +3 near-degenerate partner for this mode (Table 1).

5.4. Ndirs and lmax: Comparing the Two Primary Methods

The authors of this paper first implemented the more complicated two-basis method,
believing that many more PWB coefficients than MB coefficients would be required to
expand dome-shaped cavity fields. When the Bessel wave method was implemented as
a check, it was discovered that the PWB works surprisingly well, with usable values
of Ndirs being of the same order of magnitude as usable values of lmax. The choice
of seed equation, Ndirs or lmax, and other parameters can both affect the depth and
narrowness of the dips in the graph of ∆r versus Rek. This makes it difficult to perform
a comprehensive and conclusive comparison of the two methods.

One practical problem with the Bessel wave method is that its performance is some-
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Ex

Ez

Figure 10: Tightly focused, radially polarized m = 0 modes of a conducting cavity.
The focusing has caused Ez to be greater than the Eρ. The spot size of the
dominant Ez field for such modes can be surprisingly small, as has recently
been demonstrated experimentally by Dorn et al.[4] (for a focused beam with
no cavity). Parameters of the non-inset cavity and mode are R = 10, z1 =
0.05, and k = 7.2481 (λ = 0.867). The cross section is at z = 0.3. The insets
show the mode after it was followed to the perfectly hemispherical z1 = 0
cavity shape; here the mode has an even smaller central spot and Ez � Eρ.
We expect a hemispherical mode to have only a single nonzero MB coefficient
and this was verified by the solution: a1 = 1.0 and |al| < 1.1× 10−7 for l 6= 1.
The hemispherical mode has k = 7.2243 (λ = 0.870).

times quite sensitive to the value of Ndirs. In both methods, setting the number of basis
function too high results in a failure to solve for ybest; the program acts as if Ay = b
were underdetermined, even though the number of equations is several times the num-
ber of unknowns. When increasing lmax or Ndirs toward its problematic value, the ∆r

values for all k dramatically decrease, sharply lowering the contrast needed to locate
the eigenvalues of k. The solutions that are found begin to attempt to set the field to
zero in the entire cavity region, with some regions of layer 0 outside the cavity having
field intensities that are orders of magnitude larger than the field inside the cavity. In
our experience this problem has not occurred in the two-basis method for lmax near the
semiclassical limit of l, Re(kR), and thus has never been a practical annoyance. On the
other hand, the problem can occur at surprisingly low values of Ndirs. Yet taking Ndirs

to be too low can often cause solutions to simply not be found: dips in the graph of
∆r vs. Rek can simply disappear. The window of good values of Ndirs can be at least
as narrow as Ndirs/10. The window of good lmax values for the MB seems to be much
wider (for many modes, it is sufficient to take lmax to be half of Re(kR) or less). In this
respect, the two-basis method is easier to use than the Bessel wave method.
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Figure 11: A m = 2 mode for a conducting cavity (k = 7.885463). M2 is spherical and
origin-centered with R = 10. M1 is a conductor; z1 = 1.0. The inset shows
ReEx in the x-z plane.

On the other hand, there were situations when a scan of ∆r versus Rek with the
Bessel wave method revealed a mode that was skipped in the same scan with the two-
basis method, due to the narrowness of the dip feature. To the best of our recollection,
we have always been able to find a mode by both methods if we have made an effort to
search for it.

A direct comparison of the methods by looking at the solution plots rarely reveals field
value differences greater than 1% of the maximum value when the modes are restricted
to those that do not have a large high-angle component. The eigenvalues of k located
by the two methods are usually quite close. Here we show one case in which there is a
small but visible difference between the mode plots for the Bessel wave method and the
two-basis method.

Figure 12 shows Ex in the x-z plane for a mode in a cavity with n0 = 1.0 and nX = 0.5
and no stack layers at all. This situation is meant to model a dielectric-filled dome cavity
surrounded by air. (Our program assumes that layer 0 is free space (n0 = 1), so we have
set nX < n0 to achieve this effect.) Here M2 is spherical and centered at the origin with
R = 10 and ze = z1 = 0.5. The reason for the disagreement between the two methods
for this case is not known. This was the only low finesse cavity we have tried, as well
as being the only cavity with a “high” index of refraction in layer 0. Another unusual
property of this mode solution, which looks similar to a fundamental Gaussian, is that its
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Figure 12: Top: Solution obtained with Bessel wave method. k = 8.57073 − ı0.05857;
∆n = 2.8 × 10−5, Ndirs = 30; α

(0)
k distribution is uniform in ∆(sinα

(0)
k ), not

∆(α
(0)
k ). Bottom: Solution obtained with two-basis method. k = 8.57086 −

ı0.05900; ∆n = 2.9× 10−5; lmax = 86. The field in layer X is not plotted.

electric field in the x-y plane actually spirals: its instantaneous linear direction rotates
with z as well as with t. The other modes we show throughout the demonstrations
section give extremely good agreement between the two primary methods.

In our implementation, computation time to set up and solve Ay = b is of the same
order for the Bessel wave method and the two-basis method (with variant 1). For the
large cavity shown in Fig. 3, the Bessel wave method took about 10 s with Ndirs = 100
and about 600 locations chosen on M2. Variant 1 with lmax = 200, 600 M2 locations,
and 600 uniformly spaced α

(0)
k , took about 15 s. For comparison, Variant 2 took about

2 hours (achieving a 10−6 relative accuracy for each α
(0)
k integral).

5.5. Almost-Real MB Coefficients

When M1 is a conductor we find that the imaginary parts of al and bl are essentially zero.
Furthermore, we often find that for dielectric M1 mirrors, the imaginary parts of al and
bl are one or more orders of magnitude smaller than their real parts. We show one way
in which this tendency simplifies the interpretation of mode polarization in Appendix B.

There is a an argument that suggests that al and bl should be real for a conducting
cavity. A conducting cavity has a real eigenvalues, k, and real reflection functions,
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rs/p = −1. It is not difficult to see that for real k the three types of M2 equations,
Eφ = 0, E‖ = 0, and H⊥ = 0, can be satisfied with real al and bl. The seed equation of
course can also be chosen so that it can be satisfied by real variables. The M1 equations,
because of the complex nature of r̄s/p = rs/p exp(−ı2z1kn0 cosα

(0)
k ) when z1 6= 0, are not

obviously satisfied by real al and bl. However, for a conducting cavity, the M1 boundary
condition can be given as a real space boundary condition (like M2) instead of a Fourier
space boundary condition. In this case, locations on M1 are chosen just as they are on
M2. The same argument that the M2 equations can be satisfied by real al and bl now
applies. Thus the M1 boundary condition for a conducting cavity should not, in any
basis, force al and bl to be complex.

6. Conclusions

The two methods presented in this communication have proved to be useful tools for
modeling small optical dome-shaped cavities. As yet we have no general verdict on which
method is best. Overall, it was quite helpful to have both methods available for finding
all of the modes. Once a mode was found, agreement of both eigenvalue and eigenmode
between the two methods was quite good.

The primary advantage of both of these methods is the treatment of the dielectric
stack through its transfer matrices. First of all, including the dielectric stack in the
model is essential to obtain a number of qualitative features of the modes. A model
with a mirror of constant phase shift is inadequate, except in special cases such as the
fundamental Gaussian mode in its paraxial regime. In addition, including the stack in
the model allows one to calculate the field inside the stack, which may be the location of
interest for the engineer of an optical device. Secondly, the use of the transfer matrices is
the most natural way to include a dielectric stack that is of large lateral extent compared
to the wavelength. The only alternative that we know of would involve a separate basis
for each stack layer, resulting in an increase of both dimensions of the matrix A by about
N times, where N is the number of stack layers.

Another advantage of the methods we have presented is their speed. Each point in
Fig. 5, which was generated in a few hours or less, required Ay = b to be constructed
and solved 20–60 times for a cavity with R ≈ 50λ. The combination of using a basis
expansion method, taking advantage of cylindrical symmetry, using one basis set for all
the layers, avoiding numerical integrals, and using C++ inline functions for complex
arithmetic has resulted in a fast implementation.

Several“stack-induced”effects that we have demonstrated here will be more thoroughly
treated in a separate publication. The splitting of the fundamental Gaussian (and other
Gaussian modes) into a non-axisymmetric “V” shape may be of practical interest to
workers who wish to achieve a tight focus. The m = 0 modes, which have the greatest
potential for tight focusing, are also of interest. The ability to analyze the persistent
stack-induced mixing is a result that stands in its own right. This stack effect persists
arbitrarily far into the paraxial limit; it exists as long as the resonance widths of both
the cavity and the laser source are smaller than the splitting of the near-degenerate pair.
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This effect should exist for a wide range of cavity lengths, and is of interest to anyone
engineering higher-order Gaussian modes.

Perhaps the greatest limitation to the practical application of our methods is its rigid
treatment of the curved mirror as a conductor. As mentioned in the Introduction, it is
reasonable to expect highly focused modes, such as those shown in Figs. 3, 6 and 10, to
undergo little change when the curved conducting mirror is exchanged for a dielectric
one (with an appropriate change of mirror radius by −λ/4 < δ < λ/4 to account for a
phase shift). This is because the local wave fronts are primarily perpendicular to the
curved mirror for such modes (imagine a Wigner function evaluated at the surface of
M2). For paraxial geometries such as those in our discussion of stack-induced mixing,
this argument says nothing about how replacing M2 with a curved dielectric stack will
affect the modes. A pursuit of this question may require a more brute force approach.

Despite all limitations, we find our methods to be extremely versatile and powerful
(fast and allowing for relatively large cavities). The full vector electromagnetic field is
used. Exactly degenerate modes can be separated. The shape of the curved mirror is
arbitrary and we have implemented parabolic shapes as well as spherical shapes with no
difficulties. A first-try scan of ∆r versus Rek using either method with a non-contrived
seed equation will locate the vast majority of modes that exist. Reasonable results are
obtained when the interior of the cavity is a dielectric. Hopefully, the explicit develop-
ment of the two methods given here can benefit a number of workers in optics-related
fields.

Note Added in Proof

We note that we have not found significant stack-induced effects (the V mode of Section
5.1 and the mixing of Section 5.2) for a“standard”quarter-wave dielectric stack which has
design ABAB. . .AB with front surface A and nA > nB. If nA < nB, we do find both types
of stack-induced effects. The standard (nA > nB) quarter-wave layer structure exhibits
less variation in arg(rs/p(αk)) than our mirrors (cf. Fig. 15), and therefore behaves much
like a perfect conductor except at high angles of incidence. The methods presented here,
which model the curved dome mirror (M2) as a conductor, should therefore carry over
to standard dielectric M2 mirrors. The planar mirror will in general have a “functional”
layer design, leading to the stack-induced effects reported above.

Acknowledgments

We would like to thank Prof. Michael Raymer for getting us interested in the realistic
cavity problem. This work is supported by the National Science Foundation through
CAREER Award No. 0239332.

43



A. Further Explanations and Limitations of the Model

A.1. Exclusion of High-Angle Plane Waves

As mentioned in the Introduction, in the usual application of a basis expansion method,
the field is expanded in each dielectric region separately and henceforth each region gets
its own complete basis and its own set of coefficients. However, our methods, when“cast”
into the PWB, use a single set of plane waves, complete in layer 0, which are propagated
down into the other layers via the transfer matrices. There are several advantages to this
approach. The Bessel wave method becomes simpler, as there are far fewer unknowns.
This approach is also ideal for incorporating the use of the MB for layer 0, as in the
two-basis method, although a straightforward use of the MB for layer 0 and a separate
PWB for each layer q, q > 0, could be implemented.

One drawback to our approach is that certain high-angle or evanescent plane waves
are not included. No plane wave basis vectors are allowed for which nq sin θ

(q)
k > n0. If

the true quasimode expansion in any layer has significant weight for these high-angle or
evanescent waves, the calculated solution of the field could be erroneous.

Probably the best way to determine whether or not such intrinsic error is present at
a significant level is to look at the plane wave distribution in layer 0 (using (58) or (82)
to get this if one is using the two-basis method) and to see whether the distribution dies

off as α
(0)
k approaches π/2. If it does, the solution should be reasonably error free.

We note here that Berry [16] has shown how evanescent waves, in a finite region near
the origin, can be expressed in the PWB (using plane waves with real-valued directions,
as usual). Thus the fact that no evanescent waves are included in layer 0 may not be a
problem in itself for depicting the field in layer 0.

A.2. The Hat Brim

A.2.1. The infinitesimal hat brim

Figure 13: Modeling the edge of the dome.

For the vector field solution, a tiny hat brim must be added to M2 to correctly model
a conducting edge. Figure 13 shows a cross section of the edge of M2 for increasingly
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better approximations of a real conducting mirror. In (a), Eρ can be nonzero at the
edge, which is unphysical. In (b), a small hat brim has been added and E = 0 at the
inside edge, as it should be. In (c), locations are chosen on a (closed) conductor with
finite thickness. As the thickness of M2 becomes insignificant compared to λ, model (b)
should approximate model (c) arbitrarily closely. Usually 2–10 locations are chosen on
the hat brim (the density of course is much greater on the hat brim than on the dome).
We have taken ωb ≈ 0.0001µm for our demonstrations.

A.2.2. The infinite hat brim and the 1-D half-plane cavity

The way in which our model includes the interior of the cavity and the entire z > z1

half-plane in a single region, layer 0, is somewhat unorthodox. We believe our method
produces the correct field in a finite region surrounding the cavity, but not at z →∞.

A somewhat less strange model is obtained if one imagines an infinite hat brim. The
upper half-plane is then no longer in the problem. Layer 0 still extends infinitely in ρ
as do the other layers, but the vertical confinement makes it easier to see that this is
an eigenproblem and not a scattering problem. Unfortunately our implementation does
not allow an infinite hat brim (unless M1 is a conductor and ze = z1, for which the hat
brim condition is already set in the M1 equations). At least for some solutions, taking
wb ≈ R and giving the hat brim roughly the same number of locations as the dome,
produces no visible changes in the mode structure (from the solution obtained with a
tiny hat brim). The mode shown in Fig. 3 is one of these.

Figure 14: Including the sides of the stack at radius ρfinite.

If we allow that some solutions are not affected by the value of wb, we can take the
infinite hat brim more seriously. The problem becomes similar in some respects to the
1-D half-plane problem, in which x < 0 is a conductor, x > L has a constant refractive
index, and the [0, L] region is segmented into several 1-D dielectric layers. The solutions
of the 1-D problem form a set of quasimodes, (or quasinormal modes), which are complete
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in [0, L] and obey an orthogonality condition on the same interval. The conditions for
completeness, and the characterization of the incompleteness of the quasinormal mode
for problems which do not meet the completeness conditions, are discussed in Ching et
al. [17] and Leung et al. [18]. The model with the infinite hat brim does not rigorously
meet the the completeness condition (for 3-D cavity resonators). We note that it appears
from the references mentioned above that the situation depicted in Fig. 14 would meet
the completeness condition, with the quasinormal modes being complete in layers 0–N .
We do not attempt to resolve this further, as the use of our mode solutions as a basis for
time-dependent problems is beyond the scope of what we have been trying to accomplish.

B. Negative m Modes and Sine and Cosine Modes

The cylindrical symmetry group consists of φ-rotations and reflections about the x-z or
y-z planes. For solutions with a fixed, nonzero m, rotations are equivalent to multiplying
the field by a complex phase, which is of course equivalent to a translation in time. (This
means that, when looking at any cross section plot in Section 5 for a fixedm 6= 0, the time
evolution can be realized by simply rotating the figure: counter-clockwise for m > 0 and
clockwise form < 0.) Thus we say that form 6= 0, reflections generate a new solution but
rotations do not. (If we were considering the sine and cosine modes discussed later in the
section, instead of the ±m modes, we would say that a π/(2m) rotation generates a new
solution but a reflection does not.) Hence the symmetry of the cavity causes modes to
come in truly degenerate pairs. It can be shown that a reflection is equivalent to taking
m to −m (up to a π rotation). For m 6= 0, general complex linear superpositions of the
±m pair of modes are equivalent to arbitrary complex superpositions of any number of
φ-rotations, reflections, and combinations of these acting on a single +m mode. We note
that since our methods solve y for a fixed m, we are able to separate the ±m pairs.

The m = 0 modes also come in degenerate pairs, but the interrelation can be more
complicated than a reflection. The m = 0 pairs can be separated easily in the two-basis
method by choosing a seed equation that contains only al or only bl coefficients, since
the M1 and M2 equations do not couple al and bl coefficients if m = 0. Thus all of the
true (non-accidental), exact (not obtained only in a limit, such as the paraxial limit)
degeneracies that exist can be separated.

In constructing the M1 and M2 equations, it is easiest to write code that assumes that
m ≥ 0. For presentations and movies, it is nice to be able to plot both +m and −m
solutions, as well as the linear combinations adding and subtracting these modes. All
four of these modes can be plotted from a solution y+m that has been been found using
the positive azimuthal quantum number +m. Here we briefly discuss how to do this (for
m 6= 0).

B.1. Plotting with -m

To plot the −m modes, we use simple rules, allowed by the M1 and M2 equations, to
create a new solution vector y−m from the solution y+m. To obtain the field, the new
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coefficients from y−m are simply inserted into the various expansion (or basis conversion)
equations from Sections 3 and 4, using (−m) as the “m” argument in these equations.
(All of these equations work for negative values of their m argument.) The relations
Yl,−m = (−1)mY ∗

lm, J−m = (−1)mJm, fl,−m = (−1)mflm, and gl,−m = −(−1)mglm are
useful. The rules for the new solution vectors are given in Table 2. (There is a certain
arbitrariness to these rules, since (αy), with α being an arbitrary constant, satisfies the
M1 and M2 equations.)

Table 2: Rules for taking y+m → y−m.
PWB MB

scalar: ψu,−m = (−1)mψu,+m cl,−m = cl,+m

vector: Su/d,−m = −(−1)mSu/d,+m al,−m = al,+m

Pu/d,−m = (−1)mPu/d,+m bl,−m = −bl,+m

B.2. Plotting cosine and sine modes

We can define the “cosine” and “sine” modes as X(c) ≡ (X(+m) + (−1)mX(−m))/2, and
X(s) ≡ (X(+m) − (−1)mX(−m))/2, where X stands for ψ, E, or H . By adding explicit
expansion expressions for the +m and −m modes, one can obtain expressions for X(c)

and X(s). For example, using (61), (62), and the above rules one finds that

E
(0)
(c) (x, t) = e−ıωt

∑
l

{
r̂

[
al
−l(l + 1)

kn0r
jlReYlm

]
+ θ̂

[
al
−1

kn0r

∂

∂r
(rjl)

∂

∂θ
(ReYlm) + bl

−m
sin θ

jlReYlm

]
+ φ̂

[
al

m

kn0r sin θ

∂

∂r
(rjl)ImYlm + bljl

∂

∂θ
(ImYlm)

]}
,

where al and bl come from the original y+m. When al and bl are predominately real
(see Section 5.5), we can see from the above equation that the real-valued physical fields
Eρ and Ez are proportional to cosmφ cosωt while Eφ is proportional to sinmφ cosωt.
(The cosine time-dependence of E is why we call this the cosine mode.) Thus for the
cosine mode with |m| = 1, the transverse portion of E has an average linear polarization
along the x axis (note 〈Ey〉φ = 0 ∀t), as opposed to the average circular polarization
the m = ±1 modes would have. (For the m = +1 mode, 〈E · q̂〉φ = 0 ∀t where
q̂ ≡ −x̂ sinωt + ŷ cosωt.) Due to their separating of time and φ-dependence for the
physical fields, the sine and cosine modes are very useful final forms of the field (when
al and bl are predominately real).
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C. Stacks used in Section 5

Stacks I and II are similar to Al1−xGaxAs–AlAs stacks that Raymer has used experimen-
tally [8]. Figure 15 shows the reflection phases for stack II. The stack parameters that
are varied in our demonstrations are Ns and ks ≡ 2π/λs. The meaning of these param-
eters can be inferred from the stack definitions below. The normal reflection coefficient
for stack II with Ns = 20 is |rs/p(αk = 0)| = 0.9964. For Ns = 22, |rs/p| = 0.9981.

p
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e 
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)

Figure 15: Plane wave reflection phases (rad.) of stack II (Ns = 20) as a function of αk

(deg.). The solid (dashed) line is for s (p) polarization. The wavelength of
the plane wave, λtest, is set at λs. The graph for stack I is similar.

Stack I: n0 = nX = 1; n1 = n3 = . . . = n(2Ns−1) = 3.003; n2 = n4 = . . . = n(2Ns) =
3.51695. Layers 1–(2Ns) are quarter-wave layers (optical thickness = λs/4).

Stack II: n0 = nX = 1; n1 = n3 = . . . = n(2Ns+1) = 3.51695; n2 = n4 = . . . = n(2Ns) =
3.003. Layers 2–(2Ns + 1) are quarter-wave layers. Layer 1 is a spacer layer that has
optical thickness 1λs.
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