
MATH 618 (SPRING 2024): FINAL EXAM SOLUTIONS

For some solutions, essentially no proofreading has been done.

1. (a) (10 points) State the general version of Cauchy’s Theorem.

Solution. (Part of) Theorem 10.35 of Rudin: Let Ω ⊂ C be an open set. Let Γ be
a cycle in Ω, and suppose that IndΓ(z) = 0 for all z ∈ C \ Ω. Let f : Ω → C be a
holomorphic function. Then

∫
Γ
f(ζ) dζ = 0. �

Rudin also includes the following two additional statements. First, the equation

1

2πi

∫
γ

f(ζ)

ζ − z
dζ = Indγ(z) · f(z)

holds for every z ∈ Ω\Ran(γ). Second, if Γ1,Γ2 are cycles in Ω such that IndΓ1
(z) =

IndΓ2
(z) for all z ∈ C \ Ω, then∫

Γ1

f(ζ) dζ =

∫
Γ2

f(ζ) dζ.

The second additional statement is immediate from the statement given in the
solution by simply taking Γ = Γ1−Γ2, so I don’t require it in the solution. The first
additional statement should, by Rudin’s terminology earlier, be called “the general
version of Cauchy’s Formula”, and I do not expect it as part of the solution.

(b) (10 points) State the Open Mapping Theorem. (The one from complex
analysis, not the one about surjective bounded linear maps.)

Solution. Stated before Lemma 10.29 of Rudin: Let Ω ⊂ C be a region. Let
f : Ω→ C be a nonconstant holomorphic function. Then f(Ω) is a region. �

The important part is that f(Ω) is open.
The more detailed statement in Theorem 10.32 of Rudin, of which this is a

corollary, is not required. The statement that f(Ω) is open, which isn’t explicitly
in Theorem 10.32 of Rudin, is required. The statement of Theorem 10.30 of Rudin
isn’t enough, because it doesn’t imply that if f ′(z0) = 0 then f(z0) is in the interior
of f(Ω).

(c) (5 points) State the Prime Number Theorem.

Solution. For x ∈ (1,∞), let π(x) be the number of positive prime numbers p ∈ Z≥0

such that p ≤ x. Then limx→∞
π(x)

x/ log(x) = 1. �

2. (35 points) Let a, b, c ∈ C be constants. Let f be the meromorphic function
on C given by

f(z) =
a

z − 1
+

b

(z − 7)2
+

c

z + 27
+ eiz.
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Let γ : [0, 2π]→ C be given by γ(t) = 19eit. Evaluate∫
γ

f(z) dz.

Solution. Clearly γ is a C1 closed curve. The Residue Theorem tells us that

1

2πi

∫
γ

f(z) dz

is the sum of the residues of f at its poles, each multiplied by the winding number of
γ about the corresponding pole. The poles of f are only at 1, 7, and −27. (Some of
these might not be poles, since some of the constants a, b, and c might be zero.) By
Theorem 10.11 of Rudin, Indγ(1) = Indγ(7) = 1 and Indγ(−27) = 0. (Something
must be said here.)

We need only find the residues at 1 and 7. The residue at 1 is the coefficient of
(z − 1)−1 in the expression q(z) =

∑n
k=1 dk(z − 1)−k when n and the coefficients

d1, d2, . . . , dn are chosen so that f − q has a removable singularity at 1. We can
clearly take q(z) = a(z − 1)−1. So Res(f ; 1) = a.

Similarly, since z 7→ f(z)− b(z−7)−2 has a removable singularity at 7, it follows
that Res(f ; 7) = 0.

So ∫
γ

f(z) dz = 2πia.

This completes the solution. �

3. (35 points) Set U = {z ∈ C : |z| < 2}. Prove that there is no holomorphic
function f on U such that for all z ∈ C with |z| = 1, we have |f(z)− 1

z | < 1.

Solution. Let f be such a function. Then for all z ∈ C with |z| = 1, we have
|zf(z)−1| < 1. By Rouché’s Theorem, z 7→ zf(z) and the constant function 1 have
the same number of zeros in D = {z ∈ C : |z| < 1}. Since the constant function 1
has no zeros in D, but z 7→ zf(z) vanishes at 0 ∈ D, this is a contradiction. �

The following solution is adapted from one written by a student.

Solution. Let f be such a function. For x ∈ U set g(z) = zf(z)− 1. Set D = {z ∈
C : |z| < 1}. Since D is compact, there is z0 ∈ D at which |g| has a maximum on
D. Now |g(0)| = | − 1| = 1. However, for z ∈ ∂D, we have

|g(z)| = |z|
∣∣∣∣f(z)− 1

z

∣∣∣∣ =

∣∣∣∣f(z)− 1

z

∣∣∣∣ < 1.

Therefore z0 ∈ D, and the holomorphic function g has a maximum for its absolute
value at z0. By the Maximum Modulus Theorem, g|D is constant. By continuity,
g|D is constant. This contradicts g(0) = −1 and |g(1) < 1. So no such function f
can exist. �

4. (35 points) Let F be the collection of holomorphic functions f on B1(0)
for which the coefficients of the power series expansion f(z) =

∑∞
n=0 cnz

n satisfy
supn∈Z≥0

|cn| ≤ 2024. Prove that F is a normal family.
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Solution. By Theorem 14.6 of Rudin, it is enough to prove that F is uniformly
bounded on every compact set K ⊂ B1(0). So let K ⊂ B1(0) be compact. Since
K is compact, there is r < 1 such that K ⊂ Br(0). Let f ∈ F , and let f(z) =∑∞
n=0 cnz

n be its power series expansion. For z ∈ K, we then have

|f(z)| ≤
∞∑
n=0

|cn||z|n ≤
∞∑
n=0

2024 rn =
2024

1− r
.

Since this number is finite and independent of f , we have proved that F is uniformly
bounded on K. �

The set F is not bounded, let alone uniformly bounded, on B1(0). For example,
it contains the function

f(z) =
1

1− z
=

∞∑
n=0

zn.

5. (35 points) Let b0, b1, . . . , c0, c1, . . . ∈ C. Set

V =
{
z ∈ C : |z − 3| < 1

}
.

Suppose that for every z ∈ V , the series
∑∞
n=0 bnz

n and
∑∞
n=0 cnz

n converge, and
that the sums are equal. Prove that bn = cn for every n ∈ Z≥0.

(Caution: 0 6∈ V , so the usual method can’t be applied directly.)

Solution. Set

W =
{
z ∈ C : |z| < 4

}
.

For every r ∈ [0, 4), there is z ∈ V such that |z| ≥ r, so that the series
∑∞
n=0 bnz

n

and
∑∞
n=0 cnz

n both converge. Therefore both series have radius of convergence at
least 4. Accordingly, the formulas

f(z) =

∞∑
n=0

bnz
n and g(z) =

∞∑
n=0

cnz
n

define holomorphic functions on W .
The hypotheses imply that f |V = g|V . Since W is open and connected, and V

has a cluster point in W , it follows that f = g. The usual uniqueness theorem
for power series therefore implies that bn = cn for every n ∈ Z≥0. (For example,

n!bn = f (n)(0) = g(n)(0) = n!cn.) �

6. (35 points) Let Ω ⊂ C be a region, let f : Ω → C be holomorphic and not
the zero function, and set A = {a ∈ Ω: f(a) = 0}. Suppose A is the disjoint union
A = A1 qA2. Prove that there are holomorphic functions f1, f2 : Ω→ C such that
f1(z)f2(z) = f(z) for all z ∈ Ω, f1(z) = 0 only when z ∈ A1, and f2(z) = 0 only
when z ∈ A2.

Solution. Write A2 = {a1, a2, . . .} with a1, a2, . . . distinct, or, if A2 is finite, A2 =
{a1, a2, . . . , an} with a1, a2, . . . , an distinct. For j ∈ Z>0 or j ∈ {1, 2, . . . , n} as
appropriate, let mj be the multiplicity of aj as a zero of f .

Since f is not the zero function, A has no limit points in Ω, so neither does A2.
By Theorem 15.11 of Rudin, there is a holomorphic function f1 on Ω such that
f1 has a zero of multiplicity mj at aj for every j ∈ Z>0 or j ∈ {1, 2, . . . , n} as
appropriate, and no other zeros.
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Define a holomorphic function g : Ω \A2 → C by

g(z) =
f(z)

f1(z)

for z ∈ Ω \A2. We claim that for every a ∈ A2, the limit limz→a g(z) exists and is
nonzero. Given this, g has a removable singularity at every point in A2, so extends
to a holomorphic function f2 : Ω → C, and moreover f2(a) 6= 0 for all a ∈ A2. By
continuity, we have f1(z)f2(z) = f(z) for all z ∈ Ω. Since f = f1f2 vanishes only
on A1 qA2 and f2 does not vanish on A2, f2 can only vanish on A1.

To prove the claim, since f and f1 both have an isolated zero of multiplicity mj

at aj , there are holomorphic functions h, l : Ω→ C such that h(aj) 6= 0, l(aj) 6= 0,
and f(z) = (z − aj)mjh(z) and f1(z) = (z − aj)mj l(z) for all z ∈ Ω. Then

lim
z→a

g(z) = lim
z→a

f(z)

f1(z)
= lim
z→a

h(z)

l(z)
=
h(aj)

l(aj)
6= 0.

This proves the claim, and completes the solution. �

Extra Credit. (50 extra credit points) Define f(x) = exp(−x4) for x ∈ R.
Prove carefully that there is an entire function g whose restriction to R is the

Fourier transform f̂ of f . (Grading will be considerably stricter than on the regular
problems.)

Solution. Define

g(z) =
1√
2π

∫ ∞
−∞

f(x)e−izx dx.

We need to show that g is well defined for z ∈ C, and then that g is holomorphic
there.

The first thing to do is to estimate the integrand.
For z ∈ C, we have

|f(x)e−izx| = | exp(−x4 − izx)| = exp(Re(−x4 − izx))

= exp(−x4 + xIm(z)) ≤ exp(−x4 + |x| · |z|).

For use below, we work a little more on this. We claim that

|x| · |z| ≤ 1
2x

4 + |z|(2|z|+ 1).

This claim holds because |x| · |z| is bounded by the first term on the right when
|x| ≥ 2|z|+ 1, and by the second term on the right when |x| ≤ 2|z|+ 1. So

|f(x)e−izx| ≤ exp
(
− 1

2x
4
)

exp
(
|z|(2|z|+ 1)

)
.

We know that exp
(
− 1

2x
4
)

is integrable on R, and exp
(
|z|(2|z|+ 1)

)
is a constant,

so x 7→ |f(x)e−izx| is integrable on R, and g(z) is defined for all z.
Now we have to prove that g is holomorphic. Possibly the simplest procedure

is to combine Morera’s Theorem and Fubini’s Theorem. It is important to get the
details right here.

First, we need to prove that g is continuous. (This is one of the hypotheses of
Morera’s Theorem.)

Let z ∈ C, and let (zn)n∈Z>0
be a sequence in C such that limn→∞ zn = z. Set

r = supn |zn|(2|zn|+ 1). Then r <∞. For x ∈ R and n ∈ Z>0, set

h(x) = f(x)e−izx, hn(x) = f(x)e−iznx, and k(x) = exp
(
− 1

2x
4
)

exp(r).
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Then k is integrable, |hn| ≤ k for all n ∈ Z>0, and hn → h pointwise. So the Dom-
inated Convergence Theorem implies that limn→∞

∫∞
−∞ hn(x) dx =

∫∞
−∞ h(x) dx,

that is, limn→∞ g(zn) = g(z). So g is continuous.
(One must use sequences in the Dominated Convergence Theorem. It isn’t true

for more general kinds of limits.)
Now we verify the other hypothesis of Morera’s Theorem.
Let γ : [α, β]→ C be a piecewise C1 closed curve in C. (A triangle suffices, but

this restriction doesn’t help with the proof.) We prove that
∫
γ
g(z) dz = 0. Rewrite

using the definition of the path integral and the definition of g:∫
γ

g(z) dz =

∫ β

α

(
1√
2π

∫ ∞
−∞

exp(−x4)e−itx dx

)
γ′(t) dt

=
1√
2π

∫ β

α

(∫ ∞
−∞

exp(−x4)e−itxγ′(t) dx

)
dt.

Let H(t, x) = exp(−x4)e−itxγ′(t), for (t, x) ∈ [α, β] × R. If γ is differentiable
everywhere except at t1, . . . , tn, then H is continuous on

([α, β] \ {t1, . . . , tn})× R,

and so is measurable on [α, β]× R. (We can ignore the set {t1, . . . , tn} × R, which
has measure 0.) Therefore |H| is measurable on [α, β] × R. We apply Fubini for
nonnegative functions (Theorem 8.8(a) of Rudin). For this, we use

‖γ‖ = sup
t∈[α,β]

|γ(t)| and ‖γ′‖ = sup
t∈[α,β]

|γ′(t)|,

which are both finite because γ is assumed piecewise C1. Using the estimate

|f(x)e−izx| ≤ exp(− 1
2x

4) exp(|z|(2|z|+ 1)).

from above, we get

|H(t, x)| ≤ ‖γ′‖ exp(‖γ‖(2‖γ‖+ 1)) exp(− 1
2x

4).

Theorem 8.8(a) of Rudin allows us to estimate∫
[α,β]×R

|H| d(m×m)

≤
∫

[α,β]×R
‖γ′‖ exp(‖γ‖(2‖γ‖+ 1)) exp(− 1

2x
4) d(m×m)(t, x)

=

∫ β

α

(∫ ∞
−∞
‖γ′‖ exp(‖γ‖(2‖γ‖+ 1)) exp(− 1

2x
4) dx

)
dt

= (β − α)‖γ′‖ exp(‖γ‖(2‖γ‖+ 1))

∫ ∞
−∞

exp(− 1
2x

4) dx <∞.

Therefore H is integrable, and so also is 1√
2π
H. Now we are allowed to apply Fubini

for integrable functions (Theorem 8.8(c) of Rudin, as extended in Theorem 8.12 of



6 MATH 618 (SPRING 2024): FINAL EXAM SOLUTIONS

Rudin) to get

1√
2π

∫ β

α

(∫ ∞
−∞

exp(−x4)e−itxγ′(t) dx

)
dt

=
1√
2π

∫ ∞
−∞

(∫ β

α

exp(−x4)e−itxγ′(t) dt

)
dx

=
1√
2π

∫ ∞
−∞

(
exp(−x4)

∫
γ

e−izx dz

)
dx.

We know
∫
γ
e−izx dz = 0 by Cauchy’s Theorem, for all x ∈ R. So we have shown

that
∫
γ
g(z) dz = 0 for all γ, and Morera’s Theorem implies that g is holomorphic.

�

It is also possible to use the Dominated Convergence Theorem to prove directly
that the appropriate difference quotients converge. This proof is omitted.


