

MATH 618 (SPRING 2024): FINAL EXAM

Instructions: All lemmas, claims, examples, counterexamples, etc. require proof, except when explicitly stated otherwise. If you use a major theorem, be sure to cite it by name.

Closed book: No notes, books, calculators, cell phones, other electronic devices, or any outside assistance of any kind.

Please do not write anything less than 1/4 inch from any side of any page.

1. (a) (10 points) State the general version of Cauchy's Theorem.
- (b) (10 points) State the Open Mapping Theorem. (The one from complex analysis, not the one about surjective bounded linear maps.)
- (c) (5 points) State the Prime Number Theorem.

2. (35 points) Let $a, b, c \in \mathbb{C}$ be constants. Let f be the meromorphic function on \mathbb{C} given by

$$f(z) = \frac{a}{z-1} + \frac{b}{(z-7)^2} + \frac{c}{z+27} + e^{iz}.$$

Let $\gamma: [0, 2\pi] \rightarrow \mathbb{C}$ be given by $\gamma(t) = 19e^{it}$. Evaluate

$$\int_{\gamma} f(z) dz.$$

3. (35 points) Set $U = \{z \in \mathbb{C}: |z| < 2\}$. Prove that there is no holomorphic function f on U such that for all $z \in \mathbb{C}$ with $|z| = 1$, we have $|f(z) - \frac{1}{z}| < 1$.

4. (35 points) Let F be the collection of holomorphic functions f on $B_1(0)$ for which the coefficients of the power series expansion $f(z) = \sum_{n=0}^{\infty} c_n z^n$ satisfy $\sup_{n \in \mathbb{Z}_{\geq 0}} |c_n| \leq 2024$. Prove that F is a normal family.

5. (35 points) Let $b_0, b_1, \dots, c_0, c_1, \dots \in \mathbb{C}$. Set

$$V = \{z \in \mathbb{C}: |z - 3| < 1\}.$$

Suppose that for every $z \in V$, the series $\sum_{n=0}^{\infty} b_n z^n$ and $\sum_{n=0}^{\infty} c_n z^n$ converge, and that the sums are equal. Prove that $b_n = c_n$ for every $n \in \mathbb{Z}_{\geq 0}$.

(Caution: $0 \notin V$, so the usual method can't be applied directly.)

6. (35 points) Let $\Omega \subset \mathbb{C}$ be a region, let $f: \Omega \rightarrow \mathbb{C}$ be holomorphic and not the zero function, and set $A = \{a \in \Omega: f(a) = 0\}$. Suppose A is the disjoint union $A = A_1 \amalg A_2$. Prove that there are holomorphic functions $f_1, f_2: \Omega \rightarrow \mathbb{C}$ such that $f_1(z)f_2(z) = f(z)$ for all $z \in \Omega$, $f_1(z) = 0$ only when $z \in A_1$, and $f_2(z) = 0$ only when $z \in A_2$.

Extra Credit. (50 extra credit points) Define $f(x) = \exp(-x^4)$ for $x \in \mathbb{R}$. Prove carefully that there is an entire function g whose restriction to \mathbb{R} is the Fourier transform \hat{f} of f . (Grading will be considerably stricter than on the regular problems.)