MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO
HOMEWORK 8

This assignment is due on Canvas on Wednesday 28 May 2025 at 9:00 pm. (Not
Monday 26 May 2025: Monday is a holiday.)

Problems and all other items use two independent numbering sequences. This is
annoying, but necessary to preserve the problem numbers in the solutions files.

Little proofreading has been done.

Some parts of problems have several different solutions.

Solutions are written to be read independently. Arguments used in more than
one solution are therefore repeated in each one.

The next problem counts as two ordinary problems.

Problem 1 (Problem 8 in Chapter 10 of Rudin’s book). Let P and @ be polyno-
mials such that deg(Q) > deg(P) + 2 and Q(z) # 0 for all x € R. Let R be the
rational function R(z) = P(z)/Q(z) for z € C such that Q(z) # 0.

(1) Prove that [*°_R(z)dz is equal to 27i times the sum of the residues of R
in the upper half plane. (Replace the integral over [—A, A] by the integral
over a suitable semicircle, and apply the Residue Theorem.)

(2) What is the analogous statement for the lower half plane?

(3) Use this method to compute

00 2
/ %dw.
oo L+

It is convenient to begin the solution with a lemma.

Lemma 1. Let p be a polynomial of degree n. Then there exist constants m,, M, r, >
0 such that for all z € C with |z| > r,, we have mp|z|" < |p(2)| < M,|z|".

We give a direct proof below. But one can also derive this lemma by showing,
using algebraic properties of limits, that if p(z) = Y_;_, axz* for z € C, then

lim r(z) = lim Zakzk_" = ap.

|z] =00 2™ [2|—00 —

Proof of Lemma 1. There are ag,aq,...,a, € C, with a,, # 0, such that p(z) =
> h_oarz® for all z € C. Define

‘a‘ n 9 n—1
m, = —-, Mpzzmk\7 and rp = max 17—Z|ak| :
9 — |an|k:0
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2 MATH 618 (SPRING 2025): SOLUTIONS 8

Let z € C satisfy |z] > 7,. Then, using |z| > 1 at the second step and r, >
ﬁ S v lak] at the fourth step,

n—1

n—1
p(2)] = lan| - 2" =Y | - [21* = lan] - [2]" = [z Z |ax]

k=0
—1 n |a"‘ n __ n
2 |an| - |2[" —r, 7|2 Zlak|>lan| 2" — 2] = mp|z]".

Also, using |z| > 1 at the second step,

n n
A<D lal - 2lF < 12" lanl = Myla|™.
k=0 k=0

This completes the proof. O

Solution to part (1). For A > 0, we define curves y4, pa, and 04 in C by y4(t) = ¢
for t € [—A, A, pa(t) = Ae' for t € [0, 7], and o4(t) = Ae® for t € [r,27]. Then
[va + [pal, [va] — [ca], and [pa] + [04] are cycles.

We further let Z, be the set of z in the upper half plane such that Q(z) = 0,
and we let Z_ be the set of z in the lower half plane such that Q(z) = 0. Thus Z,
and Z_ are finite sets. Let mp, Mp,7p, mg, Mg, rq be the constants of Lemma 1
for the polynomials P and Q. Also set L =sup,cz, yz_ |2

We first claim that if z € Z_ and A > L, then Ind,,4,,(2) = 0. Indeed, the
path ¢ — z —it, for t € [0,00), does not intersect Ran(ya + pa), so z is in the
unbounded component of Ran(ya + pa).

We next claim that if z € Z and A > L, then Ind,,;,,(2) = 1. Indeed, by
Theorem 10.11 of Rudin, we know that Ind, , y,,(2) = 1, since pa+04 is essentially
the circle of radius A and center 0, and |z| < A. Moreover, consideration of the
path ¢ — z +it, for t € [0, 00), which does not intersect Ran(y4 — 0.4), shows that
z is in the unbounded component of Ran(y4 — o4). Thus Ind,,_,,(2) = 0. Since
integration of a fixed function is additive in the chains over which one is integrating,
it follows that

Indy,1p,(2) =Indy, 0, (2) + Indy,4p,(2) = 1.

The claim is proved.
The Residue Theorem now implies that if A > L then

A
(1) [A R(z)dz =2mi Y | Res(R;2) 7/ R(z) dz.

We now claim that limy_, . pr R(z)dz = 0. For A > max(rp,rg), we have,
using the choices of mg and Mp and the estimates from Lemma 1,

PAwAﬂt ™ |P(Ae~")|Ale~"
(2) / z)dz| = / I Zzte dt’ S/ o )|—¢t|€ ‘dt
pa Ae~™) 0 @(Aem)]
A M i
=/, mQAdeg(Q) mqQ .

Since deg(P) — deg(Q) + 1 < 0, the claim follows.
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Substituting the claim into (1), we deduce that lim4_, f_AA R(x) dz exists and
is equal to 27 ) Res(R; 2). O

zE€EZ 4

It isn’t sufficient to prove that lim, ., R(z) = 0. Knowing this sets one up to
use the Dominated Convergence Theorem, but one must still produce a dominating
function.

It is easy to use Lemma 1 to prove directly that the function R is Lebesgue
integrable on (—oco, 00).

It is not hard to compute the relevant winding numbers using Theorem 10.37 of
Rudin. But some justification does need to be given.

Solution to part (2) (sketch). Let the notation be the same as in the solution to
part (1). Methods similar to those used there show that if A > L thenInd,, ., (2) =
0 for z € Z, while Ind,, _,,(2) = —1 for z € Z_. So the Residue Theorem gives

/A R(z) dz = —2mi Z Res(R; z) +/ R(z)dz.

—A €7 oA

Using the same methods as used to get (2), one shows that lima . [, R(2)dz = 0.

Therefore [*° R(z)dx = —2mi) ., Res(R;z). O

Instead of repeating all the work, one can reduce part (2) to part (1).

Second solution to part (2). Let the notation be the same as in the solution to
part (1).

We claim that lim4_, fp R(z)dz = 0. For A > max(rp,rg), we have,

Atoa
using the choices of mg and Mp and the estimates from Lemma 1,

27 —it) —it 27 —it —it
/ R(2)dz / P(Ae™%)iAe dt‘ </ |P(Ae™%)|Ale |dt
pAtoa 0 0

Q(Ae™™) |Q(Ae="))|

27 e

MpAd g(P)+1 _ 2 Mp deB(P)—des(@) 1
=)y TmoAtE@ Y=\ g :

Since deg(P) — deg(Q) + 1 < 0, the claim follows.

For A > L, by Theorem 10.11 of Rudin we have Ind,, ,,(2) = 1 for all z €
Z4 U Z_. Therefore

/ R(z)dz = 2mi Z Res(R; z).
patoa 2€Z,UZ_

Combining this fact with the claim, we get

2mi Z Res(R; z) = 0.

z€EZLUZ_
Therefore
A
lim R(z)dx = 2mi Z Res(R;z) = —2mi Z Res(R; z).
Azoo)_a 27, zeZ_
This completes the proof. ([

The following lemma is convenient for the computation of the residues needed
in part (3). It isn’t in Chapter 10 of Rudin’s book, but it was proved in class this
year.
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Lemma 2. Let 2 C C be an open set, let a € 2, and let f be a holomorphic function
on 2\ {a} which has a simple pole at a. Then Res(f;a) = lim,_,,(z — a) f(2).

Proof. Since f has a simple pole at a, by definition there are ¢ € C\ {0} and a
holomorphic function g on §2 such that

f(z) =g(2) +
for all z € Q\ {a}. Moreover, by definition, Res(f;a) = c¢. Now
lim (= — )f(2) = lim (2~ a)g(2) +¢) =0+ gla) + ¢ = .

c

zZ—a

This completes the proof. O
Solution to part (3). Set w = exp(wi/4). Then

1+2' =2 —w)(z—w?)(z - W) (z —w").

So the function R(z) = 1_7_%

poles at w and at w®. By part (1) and Lemma 3, we therefore have, factoring out
powers of w and repeatedly using w? = i at the fourth step,

has two poles in the upper half plane, namely simple

o0 2
Y e = omi : 3
/_Oo T dx = 2mi(Res(R;w) + Res(R; w?))

Z—w

= 27i (;%(z —w)R(z) + lim (2 — w3)R(z)>
2 6

= <<w — A — )@ W) | (P @)@ — )@ - w))

' w1 w3
= ((1 )y Gy gy gy g Gy oy T <1>>>
(5 re=(3) (-va -

This completes the solution. O

Alternate residue computation for part (3) (sketch). The residues can be read off
directly from the partial fraction decomposition

22 1 w3 n w® n W’ n w
1424 4\z—w 2z—-wd 2—-wd 2z2—-w')’
One can also use a partial fraction decomposition for (1 + z*)~! and multiply it
by 22. O

Problem 2 (Problem 13 in Chapter 10 of Rudin’s book). Prove that
/°° 1 dr — — w/n
o l+an sin(m/n)

The following lemma is convenient for the computation of the residues needed
here. It isn’t in Chapter 10 of Rudin’s book, but it was proved in class this year.

for n € Z~o with n > 2.

Lemma 3. Let (2 C C be an open set, let a € €2, and let f be a holomorphic function
on 2\ {a} which has a simple pole at a. Then Res(f;a) =lim,_,,(z —a) f(2).
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Proof. Since f has a simple pole at a, by definition there are ¢ € C\ {0} and a
holomorphic function g on 2 such that

£2) = g2) +
for all z € Q\ {a}. Moreover, by definition, Res(f;a) = ¢. Now
;1—%(2 —a)f(z) = Zh_r{(ll (z=a)g(z) +¢) =0-g(a) +c=c.

c

This completes the proof. ([l

Solution. Set w = exp(wi/n). For r € (1,00), define paths p,,o.: [0,7] — C

by pr(t) = t and o,.(t) = tw? for t € [0,7]. Also define v,: [0, 27r/n] — C and

Br: [2m/n, 2m] — C by 7,.(t) = re® for t € [0, 2m/n] and B,.(t) = re® for t €

[27/n, 27]. Then [v.] + [B:], lor] + [7+] — [o+], and [o4] 4+ 8] — [p] are cycles.
The formula

1
Z) =
) = 1
defines a meromorphic function on C, with poles at w,w?, ... w1,

Using r > 1, we get Ind,, 4, (w) = 1 by Theorem 10.11 of Rudin. Also, the path
t — tw, for t € [1,00), is continuous, goes to oo as t — oo, and has range disjoint
from Ran(o, + B, — pr), so Indg, 48, —p, (w) = 0. Therefore
Ind,, 1+, -0, (w) = Indy, 15, (W) = Indg, 15, —p, (W) = 1.

On the other hand, for k = 2,3,...,n, the path t — tw”, for t € [1,00), is con-
tinuous, goes to oo as t — oo, and has range disjoint from Ran(p, + v, — 0,.). So
Ind,, 4+, —0.(wF) = 0. We can now apply the Residue Theorem using the cycle
pr + 7 — 0. The condition Ind, 4, s, (2) = 0 for z & C is vacuous, so we get

/ f(2)dz = 2miRes(f;w).
pPrt+Yr—0or

Since n > 2,

L | <1
lim / f(z)dz = lim —dt = / dt
r—oo r—oo Jo 14+1t7 o 1417

r

exists and is finite. Similarly

T

. 1 2 2 [T

700 r—00 0

We claim that

1
dt
1+t

lim f(z)dz=0.
r—00 Yr

For |z| > 2, we have

1 1 2
< )
T+27| 7 |z|" =17 |2|*
so for r > 2 we have, since the length of ~,. is 277 /n,

Yr
R |
(1- wz)/ T dt = 2miRes(f;w).
0

Since n > 2, the claim follows. So
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We next calculate Res(f;w). We use Lemma 3. We have, using w™ = —1 at the
second step,
. zZ—w . wz —w . z—1
o) = B oy T M g1 - U
= —w lim L = —U—J.
2ol gl on=2 4.0 41 n
We conclude
/°° 1 gt — 2miRes(f;w) _ o 2miw
o 1+tn 1—w? n(l —w?)
B 2mi B w/n _7@/n
Conw-—wl) (w—wY)/(2d)  sin(r/n)’
This completes the proof. ([

Alternate residue computation. The residues can be read off directly from the par-
tial fraction decomposition

1 1 n w2k—1
1+ 2zn :7ﬁl;z—w2k_1'
(This partial fraction decomposition has not been checked.) (]

Problem 3 (Problem 21 in Chapter 10 of Rudin’s book). Let @ C C be an open
set which contains the closed unit disk. Let f be a holomorphic function on €2 such
that |f(z)| < 1 for all z € C such that |z| = 1. Determine, with proof, the possible
numbers of fixed points of f (that is, solutions to the equation f(z) = z) in the
open unit disk.

Solution. For z € Q, define g(z) = f(z) — z and h(z) = z. We apply Rouché’s
Theorem (Theorem 10.43(b) of Rudin), with v(t) = exp(it) for ¢ € [0, 27]. Observe
that, for z € Ran(y), we have

h(z) —9(2)| = | = F(2)]| <1 =z = |h(2)].
Moreover, by Theorem 10.11 of Rudin, Ind,(2) is 0 or 1 for all z € C\ Ran(vy), and
is equal to 1 exactly on the open unit disk. Therefore Rouché’s Theorem implies
that g and h have the same number of zeros in the open unit disk. Since h has
exactly one zero in the open unit disk, so does g. This means that f has exactly
one fixed point in the open unit disk. ([l

Problem 4 (Problem 20 in Chapter 10 of Rudin’s book). Let  C C be a region,
let f: Q@ — C, and let (fn)nez., be a sequence of holomorphic functions on .
Suppose that f,, — f uniformly on compact sets in €.
(1) Suppose that, for all n € Z~g, the function f,, is never zero on €. Prove
that either f(z) =0 for all z € Q or f(z) # 0 for all z € Q.
(2) If U c Cis open and f,(2) € U for all n, prove that f is constant or
f(&) cU.

Solution to (1). Assume that there is z € Q such that f(z) # 0. Let 2y € Q; we

prove f(zg) # 0.
First, f is holomorphic by Theorem 10.28 of Rudin. Therefore {z € Q: f(z) = 0}

is countable, by Theorem 10.18 of Rudin. Since there are uncountably many r > 0
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such that B,(zg) C Q, there is r > 0 such that B, (z¢) C  and such that f(z) #0
for all z € 9B, (zp). Choose n € Z~¢ such that

sup  |fn(2) = f(2)| < _inf |f(z)].

2€0B,(20) 2€0Br(z0)
Since f,, does not vanish on B,.(2p), it follows from Theorem 10.43(b) of Rudin that
f also does not vanish on B, (2g). In particular, f(zo) # 0. O

Alternate solution to (1). Assume that there is zg € € such that f(z9) = 0. We
prove that f(z) =0 for all z € Q.

Choose 19 > 0 such that By,(z9) C 2. Let 0 < r < rg. For each n, apply the
Maximum Modulus Theorem to 1/ f,, (see the corollary to Theorem 10.24 of Rudin)
to find 6,, € [0,27] such that | f, (20 + 7€¥")| < |f.(20)|- Passing to a subsequence
of (fn)nez.,, we may assume that 6 = lim,,_, 0, exists.

We claim that f(zg + re?®) = 0. Let ¢ > 0. Choose N so large that n > N
implies | f,,(2) — f(2)| < 3¢ for all z € B,(z0). Since f is continuous, we may choose
6 > 0 such that [z — (20 + re'®)| < 0 implies |f(z) — f(z0 + re’?)| < Fe. Choose
n > N such that |re?» —re®| < §. Then, using (29 + re'?) — (20 + re'?)| < 6§ at
the first step, and | f,(20)| = |fn(20) — f(20)| < 3€ at the second step,

|f(z0 + 7€) < |f(z0 + 7€) — f(z0 + 7€)
+ [f(20 + Tewn) — fnl20 + reie")| + [ fn(20 + reie")‘
< g6+ e+ [fa(20)| <e

Since € > 0 is arbitrary, this shows that f(z + rei?) = 0.

We have shown that for every r € (0,rg) there is z € Q with |z — 2| = r such
that f(z) = 0. Thus, 2¢ is a limit point of the set of zeros of f. So f(z) = 0 for all
z € Q. (]

Solution to (2). Assume that there is zp € €2 such that f(z0) ¢ U. Let g, =
frn — fn(20) and let g = f — f(20). Then g, — g uniformly on compact sets in €2,
and each g, is never zero on 2, but g(zg) = 0. The first statement of the problem
implies that g(z) = 0 for all z € Q. Therefore f is constant, with value f(z). O

Remark 4. The Open Mapping Theorem does not help with the second statement.

All it gives is that if f is not constant, then f(2) C int(U). In general U is a proper

subset of int(U), even for connected open subsets of C. For example, if U = C\ {0}

then int(U) = C. Even requiring U to be simply connected does not help: if

U =C\|0,00) then still int(U) = C.



