
MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO

HOMEWORK 8

This assignment is due on Canvas on Wednesday 28 May 2025 at 9:00 pm. (Not
Monday 26 May 2025: Monday is a holiday.)

Problems and all other items use two independent numbering sequences. This is
annoying, but necessary to preserve the problem numbers in the solutions files.

Little proofreading has been done.
Some parts of problems have several different solutions.
Solutions are written to be read independently. Arguments used in more than

one solution are therefore repeated in each one.
The next problem counts as two ordinary problems.

Problem 1 (Problem 8 in Chapter 10 of Rudin’s book). Let P and Q be polyno-
mials such that deg(Q) ≥ deg(P ) + 2 and Q(x) 6= 0 for all x ∈ R. Let R be the
rational function R(z) = P (z)/Q(z) for z ∈ C such that Q(z) 6= 0.

(1) Prove that
∫∞
−∞R(x) dx is equal to 2πi times the sum of the residues of R

in the upper half plane. (Replace the integral over [−A, A] by the integral
over a suitable semicircle, and apply the Residue Theorem.)

(2) What is the analogous statement for the lower half plane?
(3) Use this method to compute∫ ∞

−∞

x2

1 + x4
dx.

It is convenient to begin the solution with a lemma.

Lemma 1. Let p be a polynomial of degree n. Then there exist constantsmp,Mp, rp >
0 such that for all z ∈ C with |z| ≥ rp, we have mp|z|n ≤ |p(z)| ≤Mp|z|n.

We give a direct proof below. But one can also derive this lemma by showing,
using algebraic properties of limits, that if p(z) =

∑n
k=0 akz

k for z ∈ C, then

lim
|z|→∞

p(z)

zn
= lim
|z|→∞

n∑
k=0

akz
k−n = an.

Proof of Lemma 1. There are a0, a1, . . . , an ∈ C, with an 6= 0, such that p(z) =∑n
k=0 akz

k for all z ∈ C. Define

mp =
|an|

2
, Mp =

n∑
k=0

|ak|, and rp = max

(
1,

2

|an|

n−1∑
k=0

|ak|

)
.
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Let z ∈ C satisfy |z| ≥ rp. Then, using |z| ≥ 1 at the second step and rp ≥
2
|an|

∑n−1
k=0 |ak| at the fourth step,

|p(z)| ≥ |an| · |z|n −
n−1∑
k=0

|ak| · |z|k ≥ |an| · |z|n − |z|n−1
n−1∑
k=0

|ak|

≥ |an| · |z|n − r−1p |z|n
n−1∑
k=0

|ak| ≥ |an| · |z|n −
(
|an|

2

)
|z|n = mp|z|n.

Also, using |z| ≥ 1 at the second step,

|p(z)| ≤
n∑
k=0

|ak| · |z|k ≤ |z|n
n∑
k=0

|ak| = Mp|z|n.

This completes the proof. �

Solution to part (1). For A > 0, we define curves γA, ρA, and σA in C by γA(t) = t
for t ∈ [−A, A], ρA(t) = Aeit for t ∈ [0, π], and σA(t) = Aeit for t ∈ [π, 2π]. Then
[γA + [ρA], [γA]− [σA], and [ρA] + [σA] are cycles.

We further let Z+ be the set of z in the upper half plane such that Q(z) = 0,
and we let Z− be the set of z in the lower half plane such that Q(z) = 0. Thus Z+

and Z− are finite sets. Let mP ,MP , rP ,mQ,MQ, rQ be the constants of Lemma 1
for the polynomials P and Q. Also set L = supz∈Z+∪Z−

|z|.
We first claim that if z ∈ Z− and A > L, then IndγA+ρA(z) = 0. Indeed, the

path t 7→ z − it, for t ∈ [0,∞), does not intersect Ran(γA + ρA), so z is in the
unbounded component of Ran(γA + ρA).

We next claim that if z ∈ Z+ and A > L, then IndγA+ρA(z) = 1. Indeed, by
Theorem 10.11 of Rudin, we know that IndρA+σA

(z) = 1, since ρA+σA is essentially
the circle of radius A and center 0, and |z| < A. Moreover, consideration of the
path t 7→ z + it, for t ∈ [0,∞), which does not intersect Ran(γA − σA), shows that
z is in the unbounded component of Ran(γA − σA). Thus IndγA−σA

(z) = 0. Since
integration of a fixed function is additive in the chains over which one is integrating,
it follows that

IndγA+ρA(z) = IndγA−σA
(z) + IndγA+ρA(z) = 1.

The claim is proved.
The Residue Theorem now implies that if A > L then

(1)

∫ A

−A
R(x) dx = 2πi

∑
z∈Z+

Res(R; z)−
∫
ρA

R(z) dz.

We now claim that limA→∞
∫
ρA
R(z) dz = 0. For A ≥ max(rP , rQ), we have,

using the choices of mQ and MP and the estimates from Lemma 1,∣∣∣∣∫
ρA

R(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

P (Ae−it)iAe−it

Q(Ae−it)
dt

∣∣∣∣ ≤ ∫ π

0

|P (Ae−it)|A|e−it|
|Q(Ae−it)|

dt(2)

≤
∫ π

0

MPA
deg(P )+1

mQAdeg(Q)
dt ≤

(
πMP

mQ

)
Adeg(P )−deg(Q)+1.

Since deg(P )− deg(Q) + 1 < 0, the claim follows.
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Substituting the claim into (1), we deduce that limA→∞
∫ A
−AR(x) dx exists and

is equal to 2πi
∑
z∈Z+

Res(R; z). �

It isn’t sufficient to prove that limz→∞R(z) = 0. Knowing this sets one up to
use the Dominated Convergence Theorem, but one must still produce a dominating
function.

It is easy to use Lemma 1 to prove directly that the function R is Lebesgue
integrable on (−∞, ∞).

It is not hard to compute the relevant winding numbers using Theorem 10.37 of
Rudin. But some justification does need to be given.

Solution to part (2) (sketch). Let the notation be the same as in the solution to
part (1). Methods similar to those used there show that ifA > L then IndγA−σA

(z) =
0 for z ∈ Z+, while IndγA−σA

(z) = −1 for z ∈ Z−. So the Residue Theorem gives∫ A

−A
R(x) dx = −2πi

∑
z∈Z−

Res(R; z) +

∫
σA

R(z) dz.

Using the same methods as used to get (2), one shows that limA→∞
∫
σA
R(z) dz = 0.

Therefore
∫∞
−∞R(x) dx = −2πi

∑
z∈Z−

Res(R; z). �

Instead of repeating all the work, one can reduce part (2) to part (1).

Second solution to part (2). Let the notation be the same as in the solution to
part (1).

We claim that limA→∞
∫
ρA+σA

R(z) dz = 0. For A ≥ max(rP , rQ), we have,

using the choices of mQ and MP and the estimates from Lemma 1,∣∣∣∣∫
ρA+σA

R(z) dz

∣∣∣∣ =

∣∣∣∣∫ 2π

0

P (Ae−it)iAe−it

Q(Ae−it)
dt

∣∣∣∣ ≤ ∫ 2π

0

|P (Ae−it)|A|e−it|
|Q(Ae−it)|

dt

≤
∫ 2π

0

MPA
deg(P )+1

mQAdeg(Q)
dt ≤

(
2πMP

mQ

)
Adeg(P )−deg(Q)+1.

Since deg(P )− deg(Q) + 1 < 0, the claim follows.
For A > L, by Theorem 10.11 of Rudin we have IndρA+σA

(z) = 1 for all z ∈
Z+ ∪ Z−. Therefore ∫

ρA+σA

R(z) dz = 2πi
∑

z∈Z+∪Z−

Res(R; z).

Combining this fact with the claim, we get

2πi
∑

z∈Z+∪Z−

Res(R; z) = 0.

Therefore

lim
A→∞

∫ A

−A
R(x) dx = 2πi

∑
z∈Z+

Res(R; z) = −2πi
∑
z∈Z−

Res(R; z).

This completes the proof. �

The following lemma is convenient for the computation of the residues needed
in part (3). It isn’t in Chapter 10 of Rudin’s book, but it was proved in class this
year.
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Lemma 2. Let Ω ⊂ C be an open set, let a ∈ Ω, and let f be a holomorphic function
on Ω \ {a} which has a simple pole at a. Then Res(f ; a) = limz→a(z − a)f(z).

Proof. Since f has a simple pole at a, by definition there are c ∈ C \ {0} and a
holomorphic function g on Ω such that

f(z) = g(z) +
c

z − a
for all z ∈ Ω \ {a}. Moreover, by definition, Res(f ; a) = c. Now

lim
z→a

(z − a)f(z) = lim
z→a

(
(z − a)g(z) + c

)
= 0 · g(a) + c = c.

This completes the proof. �

Solution to part (3). Set ω = exp(πi/4). Then

1 + z4 = (z − ω)(z − ω3)(z − ω5)(z − ω7).

So the function R(z) = z2

1+z4 has two poles in the upper half plane, namely simple

poles at ω and at ω3. By part (1) and Lemma 3, we therefore have, factoring out
powers of ω and repeatedly using ω2 = i at the fourth step,∫ ∞
−∞

x2

1 + x4
dx = 2πi(Res(R;ω) + Res(R;ω3))

= 2πi

(
lim
z→ω

(z − ω)R(z) + lim
z→ω3

(z − ω3)R(z)

)
= 2πi

(
ω2

(ω − ω3)(ω − ω5)(ω − ω7)
+

ω6

(ω3 − ω)(ω3 − ω5)(ω3 − ω7)

)
= 2πi

(
ω−1

(1− i)(1− (−1))(1− (−i))
+

ω−3

(1− (−i))(1− i)(1− (−1))

)
=

(
πi

2

)
(ω−1 + ω−3) =

(
πi

2

)(
− i
√

2
)

=
π√
2
.

This completes the solution. �

Alternate residue computation for part (3) (sketch). The residues can be read off
directly from the partial fraction decomposition

z2

1 + z4
=

1

4

(
ω3

z − ω
+

ω5

z − ω3
+

ω7

z − ω5
+

ω

z − ω7

)
.

One can also use a partial fraction decomposition for (1 + z4)−1 and multiply it
by z2. �

Problem 2 (Problem 13 in Chapter 10 of Rudin’s book). Prove that∫ ∞
0

1

1 + xn
dx =

π/n

sin(π/n)

for n ∈ Z>0 with n ≥ 2.

The following lemma is convenient for the computation of the residues needed
here. It isn’t in Chapter 10 of Rudin’s book, but it was proved in class this year.

Lemma 3. Let Ω ⊂ C be an open set, let a ∈ Ω, and let f be a holomorphic function
on Ω \ {a} which has a simple pole at a. Then Res(f ; a) = limz→a(z − a)f(z).
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Proof. Since f has a simple pole at a, by definition there are c ∈ C \ {0} and a
holomorphic function g on Ω such that

f(z) = g(z) +
c

z − a
for all z ∈ Ω \ {a}. Moreover, by definition, Res(f ; a) = c. Now

lim
z→a

(z − a)f(z) = lim
z→a

(
(z − a)g(z) + c

)
= 0 · g(a) + c = c.

This completes the proof. �

Solution. Set ω = exp(πi/n). For r ∈ (1,∞), define paths ρr, σr : [0, r] → C
by ρr(t) = t and σr(t) = tω2 for t ∈ [0, r]. Also define γr : [0, 2π/n] → C and
βr : [2π/n, 2π] → C by γr(t) = reit for t ∈ [0, 2π/n] and βr(t) = reit for t ∈
[2π/n, 2π]. Then [γr] + [βr], [ρr] + [γr]− [σr], and [σr] + [βr]− [ρr] are cycles.

The formula

f(z) =
1

1 + zn

defines a meromorphic function on C, with poles at ω, ω3, . . . , ω2n−1.
Using r > 1, we get Indγr+βr (ω) = 1 by Theorem 10.11 of Rudin. Also, the path

t 7→ tω, for t ∈ [1,∞), is continuous, goes to ∞ as t → ∞, and has range disjoint
from Ran(σr + βr − ρr), so Indσr+βr−ρr (ω) = 0. Therefore

Indρr+γr−σr (ω) = Indγr+βr (ω)− Indσr+βr−ρr (ω) = 1.

On the other hand, for k = 2, 3, . . . , n, the path t 7→ tωk, for t ∈ [1,∞), is con-
tinuous, goes to ∞ as t → ∞, and has range disjoint from Ran(ρr + γr − σr). So
Indρr+γr−σr

(ωk) = 0. We can now apply the Residue Theorem using the cycle
ρr + γr − σr. The condition Indρr+γr−σr (z) = 0 for z 6∈ C is vacuous, so we get∫

ρr+γr−σr

f(z) dz = 2πiRes(f ;ω).

Since n ≥ 2,

lim
r→∞

∫
ρr

f(z) dz = lim
r→∞

∫ r

0

1

1 + tn
dt =

∫ ∞
0

1

1 + tn
dt

exists and is finite. Similarly

lim
r→∞

∫
σr

f(z) dz = lim
r→∞

∫ r

0

1

1 + (ω2t)n
ω2 dt = ω2

∫ ∞
0

1

1 + tn
dt.

We claim that

lim
r→∞

∫
γr

f(z) dz = 0.

For |z| > 2, we have ∣∣∣∣ 1

1 + zn

∣∣∣∣ ≤ 1

|z|n − 1
≤ 2

|z|n
,

so for r > 2 we have, since the length of γr is 2πr/n,∣∣∣∣∫
γr

f(z) dz

∣∣∣∣ ≤ (2πr

n

)(
2

rn

)
=

4π

nrn−1
.

Since n ≥ 2, the claim follows. So

(1− ω2)

∫ ∞
0

1

1 + tn
dt = 2πiRes(f ;ω).
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We next calculate Res(f ;ω). We use Lemma 3. We have, using ωn = −1 at the
second step,

Res(f ;ω) = lim
z→ω

z − ω
zn + 1

= lim
z→1

ωz − ω
(ωz)n + 1

= −ω lim
z→1

z − 1

zn − 1

= −ω lim
z→1

1

zn−1 + zn−2 + · · ·+ 1
= −ω

n
.

We conclude∫ ∞
0

1

1 + tn
dt =

2πiRes(f ;ω)

1− ω2
= − 2πiω

n(1− ω2)

=
2πi

n(ω − ω−1)
=

π/n

(ω − ω−1)/(2i)
=

π/n

sin(π/n)
.

This completes the proof. �

Alternate residue computation. The residues can be read off directly from the par-
tial fraction decomposition

1

1 + zn
= − 1

n

n∑
k=1

ω2k−1

z − ω2k−1 .

(This partial fraction decomposition has not been checked.) �

Problem 3 (Problem 21 in Chapter 10 of Rudin’s book). Let Ω ⊂ C be an open
set which contains the closed unit disk. Let f be a holomorphic function on Ω such
that |f(z)| < 1 for all z ∈ C such that |z| = 1. Determine, with proof, the possible
numbers of fixed points of f (that is, solutions to the equation f(z) = z) in the
open unit disk.

Solution. For z ∈ Ω, define g(z) = f(z) − z and h(z) = z. We apply Rouché’s
Theorem (Theorem 10.43(b) of Rudin), with γ(t) = exp(it) for t ∈ [0, 2π]. Observe
that, for z ∈ Ran(γ), we have

|h(z)− g(z)| = | − f(z)| < 1 = |z| = |h(z)|.

Moreover, by Theorem 10.11 of Rudin, Indγ(z) is 0 or 1 for all z ∈ C \Ran(γ), and
is equal to 1 exactly on the open unit disk. Therefore Rouché’s Theorem implies
that g and h have the same number of zeros in the open unit disk. Since h has
exactly one zero in the open unit disk, so does g. This means that f has exactly
one fixed point in the open unit disk. �

Problem 4 (Problem 20 in Chapter 10 of Rudin’s book). Let Ω ⊂ C be a region,
let f : Ω → C, and let (fn)n∈Z>0

be a sequence of holomorphic functions on Ω.
Suppose that fn → f uniformly on compact sets in Ω.

(1) Suppose that, for all n ∈ Z>0, the function fn is never zero on Ω. Prove
that either f(z) = 0 for all z ∈ Ω or f(z) 6= 0 for all z ∈ Ω.

(2) If U ⊂ C is open and fn(Ω) ⊂ U for all n, prove that f is constant or
f(Ω) ⊂ U .

Solution to (1). Assume that there is z ∈ Ω such that f(z) 6= 0. Let z0 ∈ Ω; we
prove f(z0) 6= 0.

First, f is holomorphic by Theorem 10.28 of Rudin. Therefore {z ∈ Ω: f(z) = 0}
is countable, by Theorem 10.18 of Rudin. Since there are uncountably many r > 0
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such that Br(z0) ⊂ Ω, there is r > 0 such that Br(z0) ⊂ Ω and such that f(z) 6= 0
for all z ∈ ∂Br(z0). Choose n ∈ Z>0 such that

sup
z∈∂Br(z0)

|fn(z)− f(z)| < inf
z∈∂Br(z0)

|f(z)|.

Since fn does not vanish on Br(z0), it follows from Theorem 10.43(b) of Rudin that
f also does not vanish on Br(z0). In particular, f(z0) 6= 0. �

Alternate solution to (1). Assume that there is z0 ∈ Ω such that f(z0) = 0. We
prove that f(z) = 0 for all z ∈ Ω.

Choose r0 > 0 such that Br0(z0) ⊂ Ω. Let 0 < r < r0. For each n, apply the
Maximum Modulus Theorem to 1/fn (see the corollary to Theorem 10.24 of Rudin)
to find θn ∈ [0, 2π] such that |fn(z0 + reiθn)| ≤ |fn(z0)|. Passing to a subsequence
of (fn)n∈Z>0

, we may assume that θ = limn→∞ θn exists.
We claim that f(z0 + reiθ) = 0. Let ε > 0. Choose N so large that n ≥ N

implies |fn(z)−f(z)| < 1
3ε for all z ∈ Br(z0). Since f is continuous, we may choose

δ > 0 such that |z − (z0 + reiθ)| < δ implies |f(z) − f(z0 + reiθ)| < 1
3ε. Choose

n ≥ N such that |reiθn − reiθ| < δ. Then, using |(z0 + reiθ)− (z0 + reiθn)| < δ at
the first step, and |fn(z0)| = |fn(z0)− f(z0)| < 1

3ε at the second step,

|f(z0 + reiθ)| ≤ |f(z0 + reiθ)− f(z0 + reiθn)|

+ |f(z0 + reiθn)− fn(z0 + reiθn)|+ |fn(z0 + reiθn)|
< 1

3ε+ 1
3ε+ |fn(z0)| < ε.

Since ε > 0 is arbitrary, this shows that f(z0 + reiθ) = 0.
We have shown that for every r ∈ (0, r0) there is z ∈ Ω with |z − z0| = r such

that f(z) = 0. Thus, z0 is a limit point of the set of zeros of f . So f(z) = 0 for all
z ∈ Ω. �

Solution to (2). Assume that there is z0 ∈ Ω such that f(z0) 6∈ U . Let gn =
fn − fn(z0) and let g = f − f(z0). Then gn → g uniformly on compact sets in Ω,
and each gn is never zero on Ω, but g(z0) = 0. The first statement of the problem
implies that g(z) = 0 for all z ∈ Ω. Therefore f is constant, with value f(z0). �

Remark 4. The Open Mapping Theorem does not help with the second statement.
All it gives is that if f is not constant, then f(Ω) ⊂ int(U). In general U is a proper
subset of int(U), even for connected open subsets of C. For example, if U = C\{0}
then int(U) = C. Even requiring U to be simply connected does not help: if
U = C \ [0,∞) then still int(U) = C.


