
MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO

HOMEWORK 7

This assignment is due on Canvas on Wednesday 19 May 2025 at 9:00 pm.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.

Problem 1 (Problem 19 in Chapter 10 of Rudin’s book). Let f and g be holomor-
phic functions on B1(0), suppose that f(z) 6= 0 and g(z) 6= 0 for all z ∈ B1(0), and
suppose that

f ′
(

1
n

)
f
(

1
n

) =
g′
(

1
n

)
g
(

1
n

)
for all n ∈ Z>0 with n > 1. Find and prove another simple relation between f
and g.

Motivation for the relation: the statement appears to say that the functions
log ◦f and log ◦g have the same derivative on a set with a cluster point in B1(0), so
they have the same derivative everywhere on B1(0), so they differ by a constant. To
solve the problem this way requires proving that there are holomorphic branches of
log ◦f and log ◦g on B1(0). This follows easily from Theorem 13.11 of Rudin (which
isn’t available to us at this stage), and there are proofs using convexity which are
accessible now, but there is an easier way to proceed.

Solution. The relation is that there is a nonzero constant c such that cf = g.
Nothing more can be said. Indeed, for any holomorphic function f on B1(0)

with no zeroes in B1(0), and any c ∈ C\{0}, taking g = cf gives a pair of functions
satisfying the condition in the problem.

Now let f and g satisfy the condition in the problem. Set h(z) = g(z)/f(z) for
z ∈ B1(0). Then for z ∈ B1(0) we have

h′(z) =
g′(z)f(z)− g(z)f ′(z)

f(z)2
=
g(z)

f(z)

(
g′(z)

g(z)
− f ′(z)

f(z)

)
.

This function vanishes on
{

1
2 ,

1
3 , . . .

}
, which has a cluster point in B1(0). Since

B1(0) is connected, h(z) = 0 for all z ∈ B1(0).
It follows (for example, by considering the power series for h), that h is constant,

that is, there is c ∈ C such that

g(z)

f(z)
= h(z) = c

for all z ∈ B1(0). So g(z) = cf(z) for all z ∈ B1(0). Since g(0) 6= 0, we must have
c 6= 0. �

Date: 19 May 2025.
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The following is a rewording (to be more careful) of Rudin, Chapter 10, Prob-
lem 28. Do this problem, but possibly with the modifications suggested afterwards.
It counts as 1.5 ordinary problems.

Problem 2 (Problem 28 in Chapter 10 of Rudin’s book). Let Γ be a closed curve
in the plane (continuous but not necessarily piecewise C1), with parameter interval
[0, 2π]. Let α ∈ C \ Ran(Γ). Choose a sequence (Γn)n∈Z>0 of closed curves given
by trigonometric polynomials which converges uniformly to Γ. Show that for all
sufficiently large m and n, we have IndΓm

(α) = IndΓn
(α). Define IndΓ(α) to be

this common value. Prove that it does not depend on the choice of the sequence
(Γn)n∈Z>0 . Prove that Lemma 10.39 now holds for closed curves which are merely
continuous. Use this result to prove that Theorem 10.40 holds for closed curves
which are merely continuous.

The problem says to use trigonometric polynomials for the approximation, but
feel free to use piecewise linear functions instead, or some other convenient ap-
proximation. Furthermore, it is probably better not to use sequences, despite the
statement of the problem. (Of course, don’t use Theorem 10.40 of Rudin, but you
will want Lemma 10.39.)

For reference, here are the statements of Lemma 10.39 and Theorem 10.40.

Lemma 1. Let Γ0,Γ1 : [0, 2π]→ C be piecewise C1 closed curves in C. Let α ∈ C.
Suppose that

|Γ1(t)− Γ0(t)| < |α− Γ0(t)|
for all t ∈ [0, 2π]. Then IndΓ0(α) = IndΓ1(α).

Theorem 2. Let Ω ⊂ C be open, and let Γ0,Γ1 : [0, 2π]→ C be piecewise C1 closed
curves in Ω which are homotopic in Ω. Let α ∈ C \ Ω. Then IndΓ0

(α) = IndΓ1
(α).

We state the steps in the solution as several lemmas. The proofs are all short.

Lemma 3. Let Γ: [0, 2π] → C be a continuous closed curve in C. Let ε > 0.
Then there is a piecewise C1 closed curve γ in C such that |γ(t)− Γ(t)| < ε for all
t ∈ [0, 2π].

We omit the details of the proof. It is easy to do using approximation by trigono-
metric polynomials (as suggested by Rudin), piecewise linear functions (with care
taken to ensure that γ(2π) = γ(0)), or by using the Stone-Weierstrass Theorem
to show that the C∞ functions from the circle to C are uniformly dense in the
continuous functions from the circle to C.

Lemma 4. Let Γ: [0, 2π] → C be a continuous closed curve in C. Let α ∈ C \
Ran(Γ). Let γ1, γ2 : [0, 2π] → C be piecewise C1 closed curves in C such that for
all t ∈ [0, 2π], we have

|γ1(t)− Γ(t)| < 1
3dist(α, Ran(Γ)) and |γ2(t)− Γ(t)| < 1

3dist(α, Ran(Γ)).

Then Indγ1(α) = Indγ2(α).

It will later become clear that one can use dist(α, Ran(Γ)) in place of 1
3dist(α, Ran(Γ)),

but this result is easier and sufficient.

Proof of Lemma 4. The triangle inequality implies that for all t ∈ [0, 2π], we have

|α− γ1(t)| > 2
3dist(α, Ran(Γ)) and |γ2(t)− γ1(t)| < 2

3dist(α, Ran(Γ)).
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Since γ1 and γ2 are piecewise C1 closed curves, the result now follows from Lemma
10.39 of Rudin. �

It follows from Lemma 3 that the quantity IndΓ(α) in the following definition
exists, and from Lemma 4 that it is well defined. Also, it is obvious that it agrees
with the original definition when Γ is already piecewise C1, since we can take γ = Γ.

Definition 5. Let Γ: [0, 2π] → C be a continuous closed curve in C. Let α ∈
C \ Ran(Γ). Let γ : [0, 2π] → C be a piecewise C1 closed curve in C such that for
all t ∈ [0, 2π], we have

|γ(t)− Γ(t)| < 1
3dist(α, Ran(Γ))

We define IndΓ(α) = Indγ(α).

We can now prove the generalization of Lemma 10.39 of Rudin to continuous
closed curves.

Lemma 6. Let Γ0,Γ1 : [0, 2π] → C be continuous closed curves in C. Let α ∈ C.
Suppose that

|Γ1(t)− Γ0(t)| < |α− Γ0(t)|
for all t ∈ [0, 2π]. Then IndΓ0

(α) = IndΓ1
(α).

Proof. Set

ρ = inf
t∈[0, 2π]

(
|α− Γ0(t)| − |Γ1(t)− Γ0(t)|

)
.

Then ρ > 0 since [0, 2π] is compact. Set

ε = min

(
ρ

3
,

1

3
dist(α, Ran(Γ1)),

1

3
dist(α, Ran(Γ2))

)
.

Choose (Lemma 3) piecewise C1 closed curves γ0, γ1 : [0, 2π]→ C such that

|γ0(t)− Γ0(t)| < ε and |γ1(t)− Γ1(t)| < ε

for all t ∈ [0, 2π]. Then Indγ0(α) = IndΓ0
(α) and Indγ1(α) = IndΓ1

(α). The
triangle inequality implies that for all t ∈ [0, 2π], we have

|γ1(t)− γ0(t)| < 2ρ

3
+ |Γ1(t)− Γ0(t)| < 2ρ

3
|α− Γ0(t)| < 2ρ

3
+
ρ

3
+ |α− γ0(t)|.

So Lemma 10.39 of Rudin implies that Indγ0(α) = Indγ1(α). �

Now we can give the generalization of Theorem 10.40 of Rudin.

Theorem 7. Let Ω ⊂ C be open, and let Γ0,Γ1 : [0, 2π]→ C be continuous closed
curves in Ω which are homotopic in Ω. Let α ∈ C \ Ω. Then IndΓ0(α) = IndΓ1(α).

Proof. Let (s, t) 7→ Γs(t), for s ∈ [0, 1] and t ∈ [0, 2π], be a homotopy as in the
hypotheses, with Γ0 and Γ1 as already given. Let

K =
{

Γs(t) : s ∈ [0, 1] and t ∈ [0, 2π]
}

Then K ⊂ Ω and K is compact, so ε = dist(K, C \ Ω) > 0. Since (s, t) 7→ Γs(t) is
uniformly continuous, there exists δ > 0 such that, in particular, for all s1, s2 ∈ [0, 1]
and t ∈ [0, 2π] with |s1 − s2| < δ, we have |Γs1(t) − Γs2(t)| < ε. Choose n ∈ Z>0

such that 1
n < δ. For all t ∈ [0, 2π] and for j = 1, 2, . . . , n, we have

|Γj/n(t)− Γ(j−1)/n(t)| < ε ≤ dist(K, C \ Ω) ≤ dist(K, α) ≤ |α− Γ(j−1)/n(t)|.
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Applying Lemma 6 repeatedly, we get

IndΓ0
(α) = IndΓ1/n

(α) = · · · = IndΓ(n−1)/n
(α) = IndΓ1

(α).

This completes the proof. �

The following problem counts as 1.5 ordinary problems.

Problem 3 (Problem 12 in Chapter 10 of Rudin’s book). For t ∈ R, use the
Residue Theorem to compute∫ ∞

−∞

(
sin(x)

x

)2

eitx dx.

Compare with Rudin Chapter 9 Problem 2.

Solution (with a few steps just sketched). For t ∈ R define

ft(z) =


(

sin(z)
z

)2

eitz z ∈ C \ {0}
1 z = 0.

Then ft is an entire function. Also, ft is integrable on R because |ft(x)| ≤ x−2

when |x| ≥ 1 and ft is bounded on [−1, 1] (since [−1, 1] is compact). Further, for
s ∈ R define gs : C \ {0} → C by gs(z) = eisz/z2. Using the relation

[sin(z)]2 =

[
1

2i
(eiz − e−iz)

]2

,

one checks that

ft(z) = −
(

1

4

)
gt+2(z) +

(
1

2

)
gt(z)−

(
1

4

)
gt−2(z)

for z ∈ C \ {0}.
For a > 1 define (one of these does not depend on a):

(1) σa(θ) = aeiθ for θ ∈ [0, π]
(2) τa(θ) = aeiθ for θ ∈ [π, 2π].
(3) ρ(θ) = eiθ for θ ∈ [0, π].
(4) αa(t) = t for t ∈ [1, a].
(5) βa(t) = t for t ∈ [−a, −1].
(6) ιa(t) = t for t ∈ [−a, a].

Define Γa = [αa]− [ρ] + [βa]. Then

Γa + [σa], Γa − [τa], and Γa − [ιa]

are immediately seen to be cycles.
For a > 1 and s ∈ R, define

ϕa(s) =

∫
Γa

gs(z) dz.

We claim that ψ(s) = lima→∞ ϕs(a) exists and is given by

ψ(s) =

{
0 s > 0

−2πs s < 0.

We prove the claim for s ≥ 0. By considering the negative imaginary axis,
one sees that 0 is in the unbounded component of Ran(Γa) ∪ Ran(σa). Therefore
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IndΓa+[σa](0) = 0. (Something must be said here.) Using Cauchy’s Theorem at the
fist step, we then get∫

Γa

gs(z) dz = −
∫
σa

gs(z) dz = −
∫ π

0

exp(isσa(θ))iaeiθ

σa(θ)2
σ′a(θ) dθ

= −
∫ π

0

exp(isaeiθ)iaeiθ

(aeiθ)2
dθ = −

∫ π

0

a−1 exp(isaeiθ)iaeiθ dθ.

(1)

Since sin(θ) ≥ 0 for θ ∈ [0, π], and a, s ≥ 0, we get

| exp(isaeiθ)| = | exp(isa[cos(θ) + i sin(θ)])| = exp(−as sin(θ)) ≤ 1.

Therefore the integrand in the last expression in (1) convereges uniformly to 0 as
a→∞. So ψ(s) = 0.

To prove the claim for s < 0, we first write∫
Γa

gs(z) dz =

∫
τa

gs(z) dz +

∫
Γa−τa

gs(z) dz.

One checks (details omitted, but something must be said) that IndΓa−τa(0) = −1.
The expansion

gs(z) =
1

z2
+
is

z
+

(is)2

2!
+

(is)3z

3!
+ · · ·

shows that Res(gs; 0) = is. Similar methods to the case s ≥ 0 show that

lim
a→∞

∫
τa

gs(z) dz = 0.

Therefore

lim
a→∞

∫
Γa

gs(z) dz = lim
a→∞

∫
τa

gs(z) dz + 2πiRes(gs; 0) = 2πs,

as desired. The completes the proof of the claim.
With the last step justified because ft is entire and Γa − [ιa] is a cycle, we have∫ ∞

−∞

(
sin(x)

x

)2

eitx dx =

∫ ∞
−∞

ft(x) dx = lim
a→∞

∫ a

−a
ft(x) dx

= lim
a→∞

∫
ιa

ft(x) dx = lim
a→∞

∫
Γa

ft(x) dx

= −
(

1

4

)
ϕ(t+ 2) +

(
1

2

)
ϕ(t)−

(
1

4

)
ϕ(t− 2).

For t ≥ 2, all terms are zero. For t ≤ −2, we get∫ ∞
−∞

(
sin(x)

x

)2

eitx dx = −
(

1

4

)
2π(t+ 2) +

(
1

2

)
2πt−

(
1

4

)
2π(t− 2) = 0.

For t ∈ [0, 2], we get∫ ∞
−∞

(
sin(x)

x

)2

eitx dx = −
(

1

4

)
· 0 +

(
1

2

)
· 0−

(
1

4

)
2π(t− 2) =

π

2
(2− t).

For t ∈ [−2, 0], we get∫ ∞
−∞

(
sin(x)

x

)2

eitx dx = −
(

1

4

)
· 0 +

(
1

2

)
2πt−

(
1

4

)
2π(t− 2) =

π

2
(t+ 2).
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One can put this together in one formula (not necessary):∫ ∞
−∞

(
sin(x)

x

)2

eitx dx =
π

2
(2− |t|).

This completes the solution. �

Problem 4 (Problem 11 in Chapter 10 of Rudin’s book). Let α ∈ C satisfy |α| 6= 1.
Calculate ∫ 2π

0

1

1− 2α cos(θ) + α2
dθ

by integrating (z − α)−1(z − 1/α)−1 around the unit circle.

We will use the following lemma to compute residues. It isn’t in Chapter 10 of
Rudin’s book, but it was proved in class this year. For the residues needed in this
problem, a different calculation is given in Remark 9.

Lemma 8. Let Ω ⊂ C be an open set, let a ∈ Ω, and let f be a holomorphic function
on Ω \ {a} which has a simple pole at a. Then Res(f ; a) = limz→a(z − a)f(z).

Proof. Since f has a simple pole at a, by definition there are c ∈ C \ {0} and a
holomorphic function g on Ω such that

f(z) = g(z) +
c

z − a
for all z ∈ Ω \ {a}. Moreover, by definition, Res(f ; a) = c. Now

lim
z→a

(z − a)f(z) = lim
z→a

(
(z − a)g(z) + c

)
= 0 · g(a) + c = c.

This completes the proof. �

Solution. Define a closed curve γ in C by γ(θ) = eiθ for θ ∈ [0, 2π]. Define a
meromorphic function fα on C by

fα(z) =
1

(z − α)
(
z − 1

α

) .
Then fα has simple poles at α and at α−1.

We have∫
γ

f(z) dz =

∫ 2π

0

1

(eiθ − α)
(
eiθ − 1

α

) ieiθ dθ
=

∫ 2π

0

−iα
(eiθ − α)(e−iθ − α)

dθ =

∫ 2π

0

−iα
1− 2α cos(θ) + α2

dθ.

We now compute this integral by the residue theorem.
Suppose |α| < 1. Then Indγ(α) = 1 and Indγ(1/α) = 0 by Theorem 10.11 of

Rudin. Lemma 8 gives

Res(fα, α) =
1

α− 1
α

=
α

α2 − 1
.

Therefore∫ 2π

0

1

1− 2α cos(θ) + α2
dθ =

(
1

−iα

)∫
γ

fα(z) dz

=

(
1

−iα

)
2πiRes(fα, α) = − 2π

α2 − 1
.
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Suppose now |α| > 1. Then, using the result for 1/α at the second step, we have∫ 2π

0

1

1− 2α cos(θ) + α2
dθ =

∫ 2π

0

α−2

1− 2α−1 cos(θ) + α−2
dθ

= − 2πα−2

α−2 − 1
=

2π

α2 − 1
.

This completes the solution. �

Remark 9. The residues

Res(fα, α) =
α

α2 − 1
and Res(fα, α

−1) = − α

α2 − 1

can be read directly off the partial fraction decomposition

fα(z) =

(
α

α2 − 1

)(
1

z − α
− 1

z − α−1

)
,

without the need for Lemma 8.


