MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO
HOMEWORK 7

This assignment is due on Canvas on Wednesday 19 May 2025 at 9:00 pm.

Problems and all other items use two independent numbering sequences. This is
annoying, but necessary to preserve the problem numbers in the solutions files.

Little proofreading has been done.

Some parts of problems have several different solutions.

Problem 1 (Problem 19 in Chapter 10 of Rudin’s book). Let f and g be holomor-
phic functions on B(0), suppose that f(z) # 0 and g(z) # 0 for all z € B1(0), and
suppose that

) _9G)

G 9(3)
for all n € Z~o with n > 1. Find and prove another simple relation between f
and g.

Motivation for the relation: the statement appears to say that the functions
log of and log og have the same derivative on a set with a cluster point in B;(0), so
they have the same derivative everywhere on B;(0), so they differ by a constant. To
solve the problem this way requires proving that there are holomorphic branches of
logof and log og on B;(0). This follows easily from Theorem 13.11 of Rudin (which
isn’t available to us at this stage), and there are proofs using convexity which are
accessible now, but there is an easier way to proceed.

Solution. The relation is that there is a nonzero constant ¢ such that cf = g.
Nothing more can be said. Indeed, for any holomorphic function f on Bp(0)
with no zeroes in By (0), and any ¢ € C\ {0}, taking g = ¢f gives a pair of functions
satisfying the condition in the problem.
Now let f and g satisfy the condition in the problem. Set h(z) = g(z)/f(z) for
z € B1(0). Then for z € B1(0) we have

B (z) = 9'()f(z) —9()f'(z) _ 9(2) (g’(Z) f’(Z)) .

f(2)? ) \gk)  fG)
This function vanishes on {%, %, e }, which has a cluster point in B (0). Since
B1(0) is connected, h(z) = 0 for all z € B;1(0).
It follows (for example, by considering the power series for h), that h is constant,
that is, there is ¢ € C such that

¢
f(2)

for all z € B1(0). So g(z) = ¢f(2) for all z € B1(0). Since g(0) # 0, we must have

c#0. a

Date: 19 May 2025.
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The following is a rewording (to be more careful) of Rudin, Chapter 10, Prob-
lem 28. Do this problem, but possibly with the modifications suggested afterwards.
It counts as 1.5 ordinary problems.

Problem 2 (Problem 28 in Chapter 10 of Rudin’s book). Let I' be a closed curve
in the plane (continuous but not necessarily piecewise C!), with parameter interval
[0, 27]. Let a € C\ Ran(I"). Choose a sequence (I'y)nez., of closed curves given
by trigonometric polynomials which converges uniformly to I'. Show that for all
sufficiently large m and n, we have Indr, (o) = Indr, (). Define Indr(«) to be
this common value. Prove that it does not depend on the choice of the sequence
(T'n)nezs,- Prove that Lemma 10.39 now holds for closed curves which are merely
continuous. Use this result to prove that Theorem 10.40 holds for closed curves
which are merely continuous.

The problem says to use trigonometric polynomials for the approximation, but
feel free to use piecewise linear functions instead, or some other convenient ap-
proximation. Furthermore, it is probably better not to use sequences, despite the
statement of the problem. (Of course, don’t use Theorem 10.40 of Rudin, but you
will want Lemma 10.39.)

For reference, here are the statements of Lemma 10.39 and Theorem 10.40.

Lemma 1. Let I'g,T';: [0, 27] — C be piecewise C! closed curves in C. Let o € C.
Suppose that

IT1(8) = To(8)] < [ = To(2)]
for all t € [0, 27]. Then Indr,(a) = Indp, ().

Theorem 2. Let Q C C be open, and let T'g, 'y : [0, 27] — C be piecewise C*! closed
curves in © which are homotopic in Q. Let o € C\ Q. Then Indr,(a) = Indr, (o).

We state the steps in the solution as several lemmas. The proofs are all short.

Lemma 3. Let I': [0, 27r] — C be a continuous closed curve in C. Let ¢ > 0.
Then there is a piecewise C* closed curve 7 in C such that |y(t) — T'(¢)] < € for all
t €0, 27].

We omit the details of the proof. It is easy to do using approximation by trigono-
metric polynomials (as suggested by Rudin), piecewise linear functions (with care
taken to ensure that v(27) = ~(0)), or by using the Stone-Weierstrass Theorem
to show that the C*° functions from the circle to C are uniformly dense in the
continuous functions from the circle to C.

Lemma 4. Let I': [0, 27r] — C be a continuous closed curve in C. Let a € C\
Ran(T). Let y1,7v2: [0, 27r] — C be piecewise C! closed curves in C such that for
all t € [0, 2], we have

Iyi(t) = T(t)| < 3dist(a, Ran(T)) and [y2(t) — T'(t)| < 3dist(a, Ran(T)).
Then Ind,, (o) = Ind,, (a).

It will later become clear that one can use dist(c, Ran(T')) in place of Ldist(cv, Ran(T")),
but this result is easier and sufficient.

Proof of Lemma 4. The triangle inequality implies that for all ¢ € [0, 27], we have
lo = y1(t)] > Zdist(cr, Ran(T)) and [y2(t) — 7 (t)| < Zdist(a, Ran(T)).
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Since 7y, and 7y, are piecewise C! closed curves, the result now follows from Lemma
10.39 of Rudin. 0

It follows from Lemma 3 that the quantity Indr(«) in the following definition
exists, and from Lemma 4 that it is well defined. Also, it is obvious that it agrees
with the original definition when I is already piecewise C'!, since we can take y = T'.

Definition 5. Let I': [0, 27r] — C be a continuous closed curve in C. Let a €
C\ Ran(T). Let ~: [0, 2] — C be a piecewise C! closed curve in C such that for
all ¢t € [0, 2], we have

[y(t) = ()| < zdist(ce, Ran(I))
We define Indr(a) = Ind, ().

We can now prove the generalization of Lemma 10.39 of Rudin to continuous
closed curves.

Lemma 6. Let I'g,I'y: [0, 27r] — C be continuous closed curves in C. Let a € C.
Suppose that
IT1(t) = Lo(t)] < o —To(t)]
for all ¢ € [0, 27]. Then Indp,(a) = Indr, (a).
Proof. Set

p= te%&éﬂ] (la =To(t)] = [T1(t) = To(t)])-

Then p > 0 since [0, 2] is compact. Set
1 1
€ = min (g, gdist(a, Ran(T')), gdist(a, Ran(Fg))) .

Choose (Lemma 3) piecewise C! closed curves 7o, : [0, 27r] — C such that
() =To(®)| <& and  |n(t) -Tw(t)| <e

for all t € [0, 27]. Then Ind,,(«) = Indp, (o) and Ind,, (o) = Indr, (o). The
triangle inequality implies that for all ¢ € [0, 27], we have

2 2 2
() = (0] < 5+ I0u(t) = Do) < Fla = To(0)] < T + & +la =)
So Lemma 10.39 of Rudin implies that Ind,, (o) = Ind,, («). O

Now we can give the generalization of Theorem 10.40 of Rudin.

Theorem 7. Let 2 C C be open, and let I'g, I'; : [0, 27] — C be continuous closed
curves in Q which are homotopic in Q. Let a € C\ Q. Then Indr, () = Indr, (@).

Proof. Let (s,t) — T4(t), for s € [0,1] and ¢ € [0, 2], be a homotopy as in the
hypotheses, with 'y and I'; as already given. Let
K ={T(t): s€[0,1] and t € [0, 2n]}

Then K C Q and K is compact, so ¢ = dist(K, C\ Q) > 0. Since (s,t) — I's(t) is
uniformly continuous, there exists § > 0 such that, in particular, for all s1, s5 € [0, 1]
and t € [0, 27] with |s; — s2| < 8, we have |T's, (t) — T's,(t)] < . Choose n € Z~q
such that % < 0. For all ¢t € [0, 27| and for j =1,2,...,n, we have

|Fj/n(t) - F(j—l)/n(t)| <e< diSt(K, C \ Q) < diSt(K, a) < |Oé - F(j—l)/n(t)‘~
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Applying Lemma 6 repeatedly, we get
Indr, () = Indr, ,, () =---= Indr,_,,,, (o) = Indr, ().
This completes the proof. (I

The following problem counts as 1.5 ordinary problems.

Problem 3 (Problem 12 in Chapter 10 of Rudin’s book). For ¢ € R, use the
Residue Theorem to compute

/OO (Sm(x)>zem d.

Compare with Rudin Chapter 9 Problem 2.

Solution (with a few steps just sketched). For t € R define
) 2
DY itz zeC\ {0}

fi(z) = ( z
1 z=0.

Then f; is an entire function. Also, f; is integrable on R because |f;(z)| < 272
when |z| > 1 and f; is bounded on [—1, 1] (since [—1, 1] is compact). Further, for
s € R define g5: C\ {0} — C by gs(2) = €'**/22. Using the relation

fin(2)]? = [1<ei2 - >} B

24

one checks that

70 == (1) s+ (3) ) = () 922

for z € C\ {0}.
For a > 1 define (one of these does not depend on a):

(1) 04(0) = ae® for € [0, 7]

(2) 74(0) = ae for € [, 27].
(3) p(B) = €' for 6 € [0, 7.
(4) au(t) =t fort € [1,a)].
(5) Ba(t) =t fort € [—a, —1].
(6) to(t) =t for t € [—a, a).
Define Ty, = [a,] — [p] + [5a]. Then
Ty + [0l Ty — [7al], and Ty — [t

are immediately seen to be cycles.
For a > 1 and s € R, define

o) = [ a2t

a

We claim that 1(s) = lim,—,o0 @s(a) exists and is given by

0 s>0
wls) = {—27‘(’8 s < 0.

We prove the claim for s > 0. By considering the negative imaginary axis,
one sees that 0 is in the unbounded component of Ran(I'y) U Ran(o,). Therefore
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Indp, 4[¢,](0) = 0. (Something must be said here.) Using Cauchy’s Theorem at the
fist step, we then get

o)z == [ (o) de = — [ RO ) g
N .. g .(0)

™ : AV PR ™
— _/ w do = —/ a~texp(isae®)iae® db.
0 (aei?)? 0

Since sin(f) > 0 for 6 € [0, 7], and a, s > 0, we get

(1)

|exp(isae’®)| = | exp(isalcos() + isin(6)])| = exp(—assin(d)) < 1.

Therefore the integrand in the last expression in (1) convereges uniformly to 0 as
a — 00. So Y(s) =0.
To prove the claim for s < 0, we first write

/ gs(2) dz :/T gs(z)dz—k/ra_mgs(z)dz.

a a

One checks (details omitted, but something must be said) that Indp,_-, (0) = —1.
The expansion
(15)2 (is)3z
9s(2 )——+ > 5+
shows that Res(gs;0) = is. Slmllar methods to the case s > 0 show that

ali)ngo 5 9s(z)dz = 0.

Therefore
lim gs(z)dz = lim gs(z) dz + 2miRes(gs; 0) = 27s,

a—r 00 T a—r o0
a a

as desired. The completes the proof of the claim.
With the last step justified because f; is entire and T';, — [¢,] is a cycle, we have

/_Z (Sin;x)>2eitwdx=/_O;ft(ﬂc)dx:ali_)rgo/_zft(x)dx

= lim [ fi(z)dz = lim fi(x) da
la La

a—» o0

= (i) p(t+2) + (;) o(t) — (i) p(t —2).

For t > 2, all terms are zero. For t < —2, we get

/Z <Sinx(x))26itw dx = < (t+2) + <;) 2t — (i) 27 (t — 2) = 0.

For t € [0, 2], we get

)2
/_O; (Smgfx)y ite g (i) 0+ ( ) (i) 27t — 2) = g(z —9).

For t € [-2,0], we get
1 1 U
. )2t — |- | 2n(t—2) = = 2).
0+<2) i (4) w(t —2) 2(t+ )

[

| =
N———
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One can put this together in one formula (not necessary):

/i:<$2?0>2&mdx::g@——my

This completes the solution. ([l

Problem 4 (Problem 11 in Chapter 10 of Rudin’s book). Let o € C satisfy |a| # 1.
Calculate

27 1
/ o
o 1—2acos(d) + a?
by integrating (z — a)"!(z — 1/a)~! around the unit circle.

We will use the following lemma to compute residues. It isn’t in Chapter 10 of
Rudin’s book, but it was proved in class this year. For the residues needed in this
problem, a different calculation is given in Remark 9.

Lemma 8. Let (2 C C be an open set, let a € €2, and let f be a holomorphic function
on 2\ {a} which has a simple pole at a. Then Res(f;a) = lim,_,,(z — a) f(2).

Proof. Since f has a simple pole at a, by definition there are ¢ € C\ {0} and a
holomorphic function g on 2 such that

F2) = g2) +
for all z € Q\ {a}. Moreover, by definition, Res(f;a) = c¢. Now
Z11_%(2 —a)f(z) = zh_r}r(ll (z=a)g(z) +¢) =0-g(a) +c=rc.

This completes the proof. ([

Solution. Define a closed curve 7 in C by () = e for 6 € [0, 27]. Define a
meromorphic function f, on C by

1
A T Em )
Then f, has simple poles at o and at o™,
We have

27 1 0
Lf(z)dz:/o (@ —a) (ew—i)w de

2m . 2m .z
:/ EE— w:/ - do.
o (e —a)(e ¥ — ) o 1—2acos(f)+ a2

We now compute this integral by the residue theorem.
Suppose |a| < 1. Then Ind,(a) = 1 and Ind,(1/a) = 0 by Theorem 10.11 of
Rudin. Lemma 8 gives

1 Q
Res(fa,a) = =5
esfa;0) a—1 a2-1

Therefore
27 1 1
/0 1 —2acos(f) + a? df = (—m) /wfa(Z) dz
1

= () 2miRes(fa, ) = — 21

—ix a2 -1
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Suppose now |a| > 1. Then, using the result for 1/« at the second step, we have

27 1 27 0172
/ S do = / - o
o 1—2acos(f) +a o 1—2a"1cos(d) +«

_ 2ra 2 27
a2—-1 a2-1"
This completes the solution. ([l
Remark 9. The residues
Res(fa, ) = a and Res(fa,a™ ) = — a

a2 -1 o2 -1

can be read directly off the partial fraction decomposition

fa(2) = <a2a_ 1) (zia - z—10<1> 7

without the need for Lemma 8.




