
MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO

HOMEWORK 6

This assignment is due on Canvas on Monday 12 May 2025 at 9:00 pm.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.
The following problem counts as 1.5 ordinary problems. Most of it is in Prob-

lem 14 in Chapter 10 of Rudin’s book.

Problem 1 (Expansion of Problem 14 in Chapter 10 of Rudin’s book). Let Ω1,Ω2 ⊂
C be connected open sets. Let f : Ω1 → C and g : Ω2 → C be nonconstant functions.
Suppose that f(Ω1) ⊂ Ω2 and that g ◦ f is holomorphic.

(1) If f is holomorphic, can we conclude anything about g?
(2) If g is holomorphic, can we conclude anything about f?

Can you improve the situation by adding mild extra hypotheses?

Outcome. In neither case can we conclude that the other function is holomorphic.
However, in both cases, under reasonable additional assumptions, we can conclude
that the other function is holomorphic. In the first case, the positive result can be
interpreted as something about g in the general case. Specifically, f(Ω1) is open
(by the Open Mapping Theorem), and we can conclude that g|f(Ω1) is holomorphic.
In the second case, f need not be continuous, but, if f is continuous, then f is
holomorphic. �

Counterexample for Part (1). Take Ω1 = C \ {0}, Ω2 = C, f(z) = z for z ∈ Ω1,
and

g(z) =

{
z z 6= 0
17π3 z = 0.

Then g(f(z)) = z for all z ∈ Ω1, but g is not continuous. �

Requiring that g be continuous doesn’t help, as the following example shows.

Second counterexample for Part (1). Take Ω1 = {z ∈ C : Im(z) > 0}, Ω2 = C,
f(z) = z for z ∈ Ω1, and

g(z) =

{
z Im(z) ≥ 0
z Im(z) ≤ 0.

Then g(f(z)) = z for all z ∈ Ω1, but g′(z) does not exist for z ∈ R. �

However, the following proposition implies, in particular, that g is holomorphic
on f(Ω1). (The set f(Ω1) is a region: it is open by the Open Mapping Theorem,
and is connected because it is the image of a connected set under a continuous
function.)

Date: 5 May 2025.
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Proposition 1. Assume the hypotheses for Part (1) above, and assume in addition
that f(Ω1) = Ω2. Then g is holomorphic.

We do not need to assume that g is continuous.

Proof of Proposition 1. Define Z ⊂ Ω2 by

Z =
{
z ∈ Ω2 : f ′(w) = 0 for every w ∈ Ω1 such that f(w) = z

}
.

We first claim that g′(a) exists for a ∈ Ω2 \ Z. To see this, let a ∈ Ω2 \ Z.
Choose b ∈ Ω1 such that f(b) = a. Then f ′(b) 6= 0. Therefore there are open sets
U ⊂ Ω1 and V ⊂ Ω2 with b ∈ U such that f |U is a bijection from U to V with
a holomorphic inverse h : V → U . For z ∈ V , we then have g(z) = (g ◦ f)(h(z)).
Since h and g ◦f are holomorphic, so is g|V . In particular, g′(a) exists. This proves
the claim.

We next claim that every point of Z is isolated in Ω2. So let a ∈ Z. Choose
b ∈ Ω1 such that f(b) = a. Then f ′(b) = 0. Since f is not constant and Ω1 is
connected, the zeros of f ′ are isolated, so there is an open set U ⊂ Ω1 such that
b ∈ U and f ′(w) 6= 0 for w ∈ U \ {b}. The Open Mapping Theorem implies that
f(U) is open. Since f(U) contains no points of Z except for a, the claim follows.

We finish the proof by showing that g is continuous at every point a ∈ Z. This
will imply that g′(a) exists, by the theorem on removability of singularities. So let
ε > 0. Choose b ∈ Ω1 such that f(b) = a. Choose ρ > 0 such that |w − b| < ρ
implies |g(f(w))− g(f(b))| < ε. The Open Mapping Theorem implies that there is
δ > 0 such that Bδ(a) ⊂ f(Bρ(b)). If |z− a| < δ, then there is w ∈ Bρ(b) such that
f(w) = z, and then

|g(z)− g(a)| = |g(f(w))− g(f(b))| < ε.

This proves continuity at a. �

The following alternate proof of continuity of g is taken from a student solution.
Once one has this, the rest of the problem is fairly easy.

Alternate proof of continuity of g. Let w ∈ Ω2. Choose z ∈ Ω1 such that f(z) = w.
Following Theorem 10.32 of Rudin, choose a neighborhood V of z, a number r > 0,
m ∈ Z>0, and a bijective holomorphic function k : V → Br(0), such that for all
y ∈ V we have f(y) = w + k(y)m.

We prove sequential continuity of g at w. Since f(V ) is open, it is enough to let
(wn)n∈Z>0

be a sequence in f(V ) such that wn → w, and prove that g(wn)→ g(w).
For n ∈ Z>0 choose zn ∈ V such that f(zn) = wn. We claim that zn → z. To prove
this, use f(zn) → w and f(zn) = w + k(zn)m to deduce that k(zn)m → 0, from
which it follows that k(zn) → 0. Continuity of k−1 now implies zn → z, proving
the claim.

Using continuity of g◦f , we now see that g(wn) = (g◦f)(zn)→ (g◦f)(z) = g(w),
as desired. �

Counterexample for Part (2). Take Ω1 = Ω2 = C, take

f(z) =

{
1 z 6= 0
−1 z = 0,

and take g(z) = z2. Then g ◦ f is the constant function 1, but f is not continuous.
�
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The following example shows that it does not help to assume that f is injective.

Second counterexample for Part (2). Take Ω1 = Ω2 = C, for z = reiθ with r ≥ 0
and θ ∈ [0, 2π) take f(z) = r1/2eiθ/2, and take g(z) = z2. Then (g ◦ f)(z) = z for
all z ∈ C, but f is not continuous. �

We now give an additional condition under which the answer to the second part
is yes. (This is not required for a solution to the problem as stated in Rudin’s
book, but is certainly worth doing. It is required with the extra request, “Can you
improve the situation by adding mild extra hypotheses?”)

Proposition 2. Assume the hypotheses for Part (2) above, and assume in addition
that f is continuous. Then f is holomorphic.

Proof. We first claim that g ◦ f is not constant. If the claim is false, then there
is c ∈ C such that g(f(z)) = c for all z ∈ Ω1. Since Ω2 is connected and g is
not constant, the set S = {z ∈ Ω2 : g(z) = c} is discrete. Since Ω1 is connected,
f is continuous, and f(Ω1) ⊂ S, it follows that f is constant, contradicting the
hypotheses. This proves the claim.

Now set Z = {z ∈ Ω1 : g′(f(a)) = 0}. We claim that Z is discrete. Suppose
not, and let a ∈ Ω1 be a limit point of Z. Then there is a sequence (zn)n∈Z>0

in
Z \ {a} such that limn→∞ zn = a. Since g is holomorphic and not constant, f(a)
is an isolated point of {w ∈ Ω2 : g′(w) = 0}. Since f is continuous, it follows that
f(zn) = f(a) for all sufficiently large n. Then g(f(zn)) = g(f(a)) for all sufficiently
large n. It follows that a is a limit point of {z ∈ Ω1 : g(f(z)) = g(f(a))}. Since
g ◦f is not constant, this contradicts the assumption that g ◦f is holomorphic. The
claim is proved.

We next claim that f |Ω2\Z is holomorphic. Let a ∈ Ω2 \ Z. Since g′(f(a)) 6= 0,
there are open sets U ⊂ Ω2 and V ⊂ C with f(a) ∈ U such that g|U is a bijection
from U to V with a holomorphic inverse h : V → U . For z ∈ f−1(U), we then
have f(z) = h((g ◦ f)(z)). Since h and g ◦ f are holomorphic, so is f |f−1(U). In
particular, f ′(a) exists. This proves the claim.

We have shown that f is holomorphic on the complement of a discrete set.
Since f is continuous, the theorem on removability of singularities implies that f
is holomorphic. �

The following problem counts as 2.5 ordinary problems. It is all but the last part
of Problem 25 in Chapter 10 of Rudin. You will want the Global Cauchy Formula,
part of Theorem 10.35 of Rudin, but I don’t think anything from later is needed.
Even the Global Cauchy Formula can be avoided by a slight trick.

Problem 2 (Most of Problem 25 in Chapter 10 of Rudin’s book). Let r1, r2 ∈ R
satisfy 0 < r1 < r2. Let A be the annulus

A =
{
z ∈ C : r1 < |z| < r2

}
.

(1) Let ε > 0 satisfy r1 + ε < r2 − ε. Define closed curves γ1, γ2 : [0, 2π] → A
by

γ1(t) = (r1 + ε)e−it and γ2(t) = (r2 − ε)eit

for t ∈ [0, 2π]. For a holomorphic function f on A, prove that if z ∈ C
satisfies r1 + ε < |z| < r2 − ε, then

f(z) =
1

2πi

(∫
γ1

f(ζ)

ζ − z
dζ +

∫
γ2

f(ζ)

ζ − z
dζ

)
.
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(2) Let f be a holomorphic function on A. Use part (1) to prove that there

are a holomorphic function f1 on C \Br1(0) and a holomorphic function f2

on Br2(0) such that f = f1|A + f2|A. Further prove that it is possible to
require that f1(z)→ 0 as |z| → ∞, and that then f1 and f2 are unique.

(3) Use the decomposition of part (2) to associate to each holomorphic function
f on A its Laurent series

f(z) =

∞∑
n=−∞

cnz
n

with coefficients cn ∈ C for n ∈ Z. Prove that the coefficients cn are
uniquely determined by f , and that the series converges uniformly to f on
compact subsets of A.

(4) Let f be a bounded holomorphic function on A. Prove that the functions
f1 and f2 of part (2) (satisfying f1(z)→ 0 as |z| → ∞) are bounded.

(5) How much of parts (1), (2), (3), and (4) can be extended to the cases r1 = 0,
r2 =∞, or both?

To keep the amount of writing down, I suggest writing appropriate steps as
lemmas which can be used in part (5) as well as in the earlier parts.

The last part of Problem 25 in Chapter 10 of Rudin asks how much of parts
(1), (2), (3), and (4) can be extended to regions bounded by finitely many (more
than two) circles. I could not figure out what was intended here. If the circles
are concentric, you don’t get a region. If even two circles are not concentric, the
situation is much more complicated than in the rest of the problem.

The following convenient notation will be used throughout the solution.

Notation 3. For r ∈ (0,∞), we define a closed curve σr : [0, 2π]→ C by σr = reit

for t ∈ [0, 2π]. Also, for r, s ∈ [0,∞] with r < s, we set

Ar,s =
{
z ∈ C : r < |z| < s

}
.

Thus, the set A of part (1) is equal to Ar1,r2 , but the notation also covers the
cases of part (5).

Remark 4. Using the notation of part (1), we then have γ2 = σr2−ε. Moreover,
Ran(σr1+ε) = Ran(γ1) and∫

σr1+ε

g(ζ) dζ = −
∫
γ1

g(ζ) dζ

for every continuous function g on Ran(σr1+ε).

In view of Remark 4, the following lemma gives part (1) and also the correspond-
ing part of part (5).

Lemma 5. Let r1, r2 ∈ [0,∞] satisfy r1 < r2. Let s1, s2 ∈ (0,∞) satisfy r1 < s1 <
s2 < r2. Let f be a holomorphic function on Ar1,r2 , and let z ∈ As1,s2 . Then

f(z) =
1

2πi

(∫
σs2

f(ζ)

ζ − z
dζ −

∫
σs2

f(ζ)

ζ − z
dζ

)
.
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Proof. By Theorem 10.11 of Rudin, for r ∈ (0,∞), we have Indσr
(z) = 0 when

|z| > r and Indσr (z) = 1 when |z| < r. Therefore Indσs2
−σs1

(z) = 0 when z ∈
C \Ar1,r2 and Indσs2

−σs1
(z) = 1 when z ∈ C \As1,s2 . The result now follows from

the global Cauchy formula, Theorem 10.35 of Rudin. �

Lemma 6. Let r ∈ (0,∞), set Sr = {z ∈ C : |z| = r}, and let h : Sr → C be
continuous. Then the function g : Br(0)→ C, given by

g(z) =
1

2πi

∫
σr

h(ζ)

ζ − z
dζ

for z ∈ Br(0), is holomorphic on Br(0) and has a unique representation as a power
series

(1) g(z) =
∞∑
n=0

cnz
n

for z ∈ Br(0). Moreover, this series converges uniformly on compact subsets of
Br(0).

Proof. It follows from Theorem 10.7 of Rudin that f is representable by power
series on Br(0), which implies that f is holomorphic and implies the existence of
the series (1). Uniqueness follows from uniqueness of the power series representation
of a function, and uniform convergence on compact sets follow from the fact that
power series uniformly on compact subsets of the open disk of convergence. (I
didn’t find the last statement in Rudin, but it was proved in the lectures.) �

Lemma 7. Let r ∈ (0,∞), set Sr = {z ∈ C : |z| = r}, and let h : Sr → C be

continuous. Then the function g : C \Br(0)→ C, given by

g(z) =
1

2πi

∫
σr

h(ζ)

ζ − z
dζ

for z ∈ C \ Br(0), is holomorphic on C \ Br(0), has a unique representation as a
series

(2) g(z) =

∞∑
n=1

cnz
−n

for z ∈ C\Br(0), and this series converges uniformly on compact subsets of C\Br(0).
Moreover, g(z)→ 0 as |z| → ∞.

One can prove this lemma by the same method as used for Theorem 10.7 of
Rudin. Specifically, for |ζ| = r and |z| > r, write

1

ζ − z
= −

(
1

ζz

)(
1

1
ζ −

1
z

)
.

Since
∣∣ 1
z

∣∣ < ∣∣ 1ζ ∣∣, the right hand side can be expanded as a power series in 1
z . How-

ever, by some manipulation, one can reduce to Lemma 6. (The resulting argument
isn’t really shorter.) However, the alternate solution below is shorter.
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Proof of Lemma 7. Define a continuous function k : S1/r → C by k(ζ) = − 1
ζh
(

1
ζ

)
for ζ ∈ S1/r. Apply Lemma 6 with k in place of h and with 1

r in place of r, getting
a holomorphic function f : B1/r(0)→ C with a power series representation

(3) f(z) =

∞∑
n=0

bnz
n

which converges uniformly on compact subsets of B1/r(0).

We claim that for all z ∈ C \Br(0), we have

1

2πi

∫
σ1/r

k(ζ)

ζ − z
dζ =

(
1

z

)
f

(
1

z

)
.

Given the claim, it follows that g is holomorphic on C \ Br(0) and that the series
expansion (2) is valid if we take cn = bn−1 for n ∈ Z>0. Moreover, as |z| → ∞, we

have f
(

1
z

)
→ f(0) and 1

z → 0, so g(z) → 0. Finally, if K ⊂ C \ Br(0) is compact,

then L = {z−1 : z ∈ K} is a compact subset of B1/r(0). Since the series (3)
converges uniformly on L, it follows that the series (2) converges uniformly on K to
g(z) = 1

z f
(

1
z

)
. Uniqueness of the series for g follows from uniqueness of the series

for f .
It remains to prove the claim. We have, changing variables from t to −t at the

fourth step,

1

2πi

∫
σr

k(ζ)

ζ − z
dζ =

1

2πi

∫ 2π

0

k
(

1
r e
it
)

1
r e
it − z

(
1

r

)
ieit dt

= − 1

2πi

∫ 2π

0

re−ith
(
re−it

)(
1

re−it − z
)
re−it

i dt

= − 1

2πi

∫ 2π

0

h
(
re−it

)
z
(

1
z − re−it

)rie−it dt
= − 1

2πi

∫ 2π

0

h
(
reit
)

z
(

1
z − reit

)rieit dt
=

1

2πi

(
1

z

)∫ 2π

0

h
(
reit
)

reit − 1
z

rieit dt

=
1

2πi

(
1

z

)∫
σr

h(ζ)

ζ − 1
z

dζ =
1

z
f

(
1

z

)
.

The claim is proved. �

Alternate proof of Lemma 7. It follows from Theorem 10.7 of Rudin that g is rep-
resentable by power series on C \ Br(0), which implies that g is holomorphic on

C \Br(0). Using the definition of the path integral, we get

g(z) =
1

2πi

∫ 2π

0

h(reiθ)ireiθ

reiθ − z
dθ.

As |z| → ∞, the integrand converges uniformly to zero. Therefore lim|z|→∞ g(z) =
0. By the theorem on removable singularities, the formula

k(z) =

{
0 z = 0

g
(

1
z

)
0 < |z| < 1

r
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defines a holomorphic function on B1/r(0). Therefore it has a power series rep-

resentation k(z) =
∑∞
n=0 cnz

n, which converges uniformly on compact subsets of
B1/r(0). Since k(0) = 0, we have c0 = 0. Therefore the series

∑∞
n=1 cnz

−n con-

verges uniformly to g(z) on compact subsets of C \Br(0). Uniqueness of the series
for g follows from uniqueness of the series for k. �

Lemma 8. Let r1, r2 ∈ [0,∞] satisfy r1 < r2. Let f be a holomorphic function on
Ar1,r2 . Then there exists a holomorphic function g on Ar1,∞ such that, whenever
r ∈ (0,∞) and z ∈ C satisfy r1 < r < min(r2, |z|), we have

g(z) =
1

2πi

∫
σr

f(ζ)

ζ − z
dζ.

Proof. For r ∈ (r1, r2), Lemma 7 provides a holomorphic function gr : C\Br(0)→ C
such that

gr(z) =
1

2πi

∫
σr

f(ζ)

ζ − z
dζ

for z ∈ C \Br(0).
Suppose r, s ∈ (r1, r2) satisfy r < s. We claim that gr|C\Bs(0)

= gs. So let

z ∈ C \ Bs(0). Choose s0 ∈ R with s < s0 < min(r2, |z|). As in the proof of
Lemma 5, we have Indσs−σr

(w) = 0 for all w 6∈ Ar1,s0 . Since the function

ζ 7→ f(ζ)

ζ − z
is holomorphic on Ar1,s0 , we get

gs(z)− gr(z) =
1

2πi

∫
σs

f(ζ)

ζ − z
dζ − 1

2πi

∫
σr

f(ζ)

ζ − z
dζ =

1

2πi

∫
σr−σs

f(ζ)

ζ − z
dζ = 0.

The claim is proved.
The claim implies that there is a well defined function g : Ar1,∞ → C such

that g(z) = gr(z) whenever z ∈ Ar1,∞ and r1 < r < min(r2, |z|). It remains
only to show that g is holomorphic. Let z ∈ Ar1,∞. Choose r ∈ R such that
r1 < r < min(r2, |z|). Then g agrees with gr on an open set containing z, and g′r(z)
exists, so g′(z) exists. �

Lemma 9. Let r1, r2 ∈ [0,∞] satisfy r1 < r2. Let f be a holomorphic function on
Ar1,r2 . Then there exists a holomorphic function h on Br2(0) such that, whenever
r ∈ (0,∞) and z ∈ C satisfy max(r1, |z|) < r < r2, we have

h(z) =
1

2πi

∫
σr

f(ζ)

ζ − z
dζ.

Proof. The proof is essentially the same as the proof of Lemma 8, but uses Lemma 6
in place of Lemma 7. �

The following lemma gives existence in part (2) and existence of the series rep-
resentation in part (3), as well as the corresponding parts of part (5).

Lemma 10. Let r1, r2 ∈ [0,∞] satisfy r1 < r2. Let f be a holomorphic function

on Ar1,r2 . Then there exist a holomorphic function f1 on C \Br1(0) (on C \ {0} if
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r1 = 0) and a holomorphic function f2 on Br2(0) such that f = f1|A + f2|A, such
that f1(z)→ 0 as |z| → ∞, and such that there are series representations

(4) f1(z) =

−1∑
n=−∞

cnz
n and f2(z) =

∞∑
n=0

cnz
n,

the series for f1 converging uniformly on compact sets in C \ Br1(0) (in C \ {0} if
r1 = 0) and the series for f1 converging uniformly on compact sets in Br2(0).

Proof. Let g be the holomorphic function of Lemma 8, set f1 = −g, and let f2

be the holomorphic function h of Lemma 9. It follows from Lemma 5 that for
z ∈ Ar1,r2 we have

0 = h(z)− g(z) = f1(z) + f2(z).

It remains to prove the existence of the series in (4). Existence of the series for f2

follows from the fact that f2 is holomorphic on Br2(0). We prove the existence of the
series for f1. For every r ∈ (r1, r2), Lemma 7 provides unique c−1,r, c−2,r, . . . ∈ C
such that the series

∑∞
n=1 c−n,rz

−n converges to f1(z) for all z ∈ Ar,r2 . Moreover,
the convergence is uniform on compact subsets of Ar,r2 . Fix r0 ∈ (r1, r2). Let
K ⊂ Ar1,r2 be compact. We claim that

∑∞
n=1 c−n,r0z

−n converges uniformly to
f1(z) on K. Since K is compact and contained in Ar1,r2 , we have infz∈K |z| > r1.
Choose r such that r1 < r < infz∈K |z| and r < r0. Then

∑∞
n=1 c−n,rz

−n converges
uniformly to f1(z) on compact subsets of Ar,r2 . In particular, we have uniform con-
vergence on K and on compact subsets of Ar0,r2 . Uniqueness of c−1,r0 , c−2,r0 , . . .
therefore implies that c−n,r = c−n,r0 for all n ∈ Z>0. So

∑∞
n=1 c−n,r0z

−n converges
uniformly to f1(z) on K. �

Without the condition on the limit of f1 at ∞, the functions f1 and f2 are
certainly not unique. For any entire function g, one may replace f1 by f1 + g and
f2 by f2 − g.

The following lemma gives uniqueness of the series representation in part (3), as
well as the corresponding part of part (5).

Lemma 11. Let r1, r2 ∈ R satisfy 0 < r1 < r2. Let cn, dn ∈ C for n ∈ Z. Suppose
that the series

∑∞
n=−∞ cnz

n and
∑∞
n=−∞ dnz

n both converge on Ar1,r2 to the same
function f . Then cn = dn for all n ∈ Z.

Proof. Since the series
∑∞
n=0 cnz

n converges on Ar1,r2 , the general properties of
power series imply that this series converges uniformly on compact subsets of
Br2(0).

The series
∑−∞
n=−1 cn

(
1
z

)n
converges whenever 1

z ∈ Ar1,r2 . This series is a power
series, so the general properties of power series imply that it converges uniformly
on compact subsets of B1/r1(0). Therefore

∑−∞
n=−1 cnz

n converges uniformly on

compact subsets of C \Br1(0) (of C \ {0} if r1 = 0).
We conclude that

∑∞
n=0 cnz

n converges uniformly on compact subsets of Ar1,r2 .
Similarly

∑∞
n=0 dnz

n converges uniformly on compact subsets of Ar1,r2 .
Choose r ∈ (r1, r2). Define a closed curve γ by γ(t) = re−it. Recall that∫

γ
zm dz = 2πi when m = −1 and

∫
γ
zm dz = 0 otherwise. In the following com-

putation, the interchanges of summation and integration are justified by uniform
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convergence of the series on Ran(γ). For n ∈ Z>0, we have

cn =
1

2πi

∞∑
m=−∞

∫
γ

cmz
m−n−1 dz

=
1

2πi

∫
γ

z−n−1f(z) dz =
1

2πi

∞∑
m=−∞

∫
γ

dmz
m−n−1 dz = dn.

This completes the proof. �

The following lemma proves part (4) and the corresponding parts of part (5).

Lemma 12. Let r1, r2 ∈ [0,∞] satisfy r1 < r2. Let f be a bounded holomorphic
function on Ar1,r2 . Let f1 and f2 be as in Lemma 10. Then f1 and f2 are bounded.

The conclusion of the lemma (and the requested statement in part (4)) is that

f1 is bounded on C\Br1(0) (on C\{0} if r1 = 0) and that f2 is bounded on Br2(0),
not merely that they are bounded on Ar1,r2 .

If r1 = 0, it follows that f1 has a removable singularity at 0. This isn’t really
new, since it already follows that f has a removable singularity at 0.

Proof of Lemma 12. Fix s1, s2 ∈ R with r1 < s1 < s2 < r2. We first observe
that f2 is bounded on Bs2(0) because Bs2(0) is compact. Also, there is M such

that |f1(z)| < 1 for all z ∈ C \ BM (0), and f1 is bounded on BM (0) \ Bs1(0) by
compactness, so f1 is bounded on C \Bs1(0).

Now assume that f is bounded. On Br2(0) \ Bs2(0), we have f2 = f − f1.
The function f1 is bounded there by the previous paragraph. The function f is
bounded there by hypothesis. So f2 is bounded on Br2(0) \ Bs2(0), and hence on

Bs2(0) ∪
[
Br2(0) \Bs2(0)

]
= Br2(0).

The proof that f1 is bounded on C \ Br1(0) (on C \ {0} if r1 = 0) is essentially
the same. �

The following problem should be considered to be an example for the previous
problem. However, feel free to use any correct method to solve it (with proof).

Problem 3 (Problem 21 in Chapter 10 of Rudin’s book). We want to expand the
function

f(z) =
1

1− z2
+

1

3− z
as a series of the form

∑∞
n=−∞ cnz

n.
How many such expansions are there? In which region is each of them valid?

Find the coefficients cn explicitly for each of these expansions.

Solution. The function f is holomorphic on C\{1,−1, 3}. According to Problem 25,
there are therefore expansions of the required form on the sets

A =
{
z ∈ C : |z| < 1

}
, B =

{
z ∈ C : 1 < |z| < 3

}
, and C =

{
z ∈ C : 3 < |z|

}
.

A series of the form
∑∞
n=−∞ cnz

n converges only if
∑∞
n=0 cnz

n and
∑∞
n=1 c−n

(
1
z

)n
both converge. Therefore the largest open set on which

∑∞
n=−∞ cnz

n converges is
an annulus or disk centered at 0, with outer radius equal to the radius of convergence
of
∑∞
n=0 cnz

n and inner radius equal to the reciprocal of the radius of convergence



10 MATH 618 (SPRING 2025): SOLUTIONS 6

of
∑∞
n=1 c−nw

n. (One gets a disk if cn = 0 for all n < 0.) In particular, since the
limits

lim
z→1

f(z), lim
z→−1

f(z), and lim
z→3

f(z)

are all infinite, no series of the required form can converge on any open set con-
taining any z with |z| = 1 or |z| = 3. Therefore there are three distinct series, one
valid on each of the regions A, B, and C.

In principle, one can find these series by contour integration as in Problem 25
in Chapter 10 of Rudin’s book. But the following procedure is easier. All four
expansions are based on the geometric series

1

1− z
=

∞∑
n=0

zn,

valid for |z| < 1.
For |z| < 1, we have |z2| < 1, so

(5)
1

1− z2
=

∞∑
n=0

z2n.

For |z| > 1, we have |z−2| < 1, so

(6)
1

1− z2
= −

(
1

z2

)(
1

1− z−2

)
= −

−∞∑
n=−1

z2n.

For |z| < 3, we have |z/3| < 1, so

(7)
1

3− z
=

(
1

3

)(
1

1− z
3

)
=

∞∑
n=0

3−n−1zn.

For |z| > 3, we have |3/z| < 1, so

(8)
1

3− z
= −

(
1

z

)(
1

1− 3
z

)
= −

∞∑
n=0

3nz−(n+1) = −
−∞∑
n=−1

3−n−1zn.

For z ∈ A, we combine the series (5) and (7) to get f(z) =
∑∞
n=−∞ cnz

n with

cn =


3−n−1 + 1 n ≥ 0 and even

3−n−1 n ≥ 0 and odd

0 n < 0.

For z ∈ B, we combine the series (6) and (7) to get f(z) =
∑∞
n=−∞ cnz

n with

cn =


3−n−1 n ≥ 0

−1 n < 0 and even

0 n < 0 and odd.

For z ∈ C, we combine the series (6) and (8) to get f(z) =
∑∞
n=−∞ cnz

n with

cn =


−3−n−1 n < 0 and odd

−3−n−1 − 1 n < 0 and even

0 n ≥ 0.
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In the last case, note that c0 = 0, c−1 = −1, c−2 = −4, c−3 = −9, c−4 = −28,
etc. �


