
MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO

HOMEWORK 4

For some of the problems, you will need to read in the book ahead of the lectures,
at least through Theorem 10.15 (Cauchy’s Formula) and, depending on what you
do for some of them, through Theorem 10.17 (Morera’s Theorem).

Remember that Morera’s Theorem applies only to continuous functions.
Problems and all other items use two independent numbering sequences. This is

annoying, but necessary to preserve the problem numbers in the solutions files.
Little proofreading has been done.
Some parts of problems have several different solutions.

Problem 1 (Problem 2 in Chapter 10 of Rudin’s book). Let f be an entire function.
Suppose that for every a ∈ C, in the power series representation

(1) f(z) =

∞∑
n=0

cn,a(z − a)n,

there is n ∈ Z≥0 such that cn,a = 0. Prove that f is a polynomial.

Hint: n!cn,a = f (n)(a).

Rudin wrote (??) as “f(z) =
∑∞
n=0 cn(z− a)n”. Suppressing the dependence on

a in the notation for the coefficients makes proper writing of both the problem and
its solution awkward.

Solution. For n ∈ Z≥0, set

Zn =
{
a ∈ C : cn,a = 0

}
.

By hypothesis, we have
⋃∞
n=0 Zn = C. Therefore there exists n ∈ Z≥0 such that

Zn is uncountable. Since f (n)(z) = 0 for all z ∈ Zn and C is a region, Theorem
10.18 of Rudin implies that Zn = C. Thus f (n) = 0. So f (m) = 0 for all m > n. In
particular, for all m ≥ n, we have f (m)(0) = 0. Therefore cm,0 = m!f (m)(0) = 0.

So f(z) =
∑n−1
m=0 cn,0z

n is a polynomial (of degree at most n− 1). �

Problem 2. Let U ⊂ C be open, and set V = {z : z ∈ U}. Let f : U → C
be holomorphic. Define g : V → C by g(z) = f(z) for z ∈ V . Prove that g is
holomorphic.

Solution. To avoid cumbersome notation, let c : C → C be complex conjugation.
Thus, g = c ◦ f ◦ c.

Let z ∈ V . In the following calculation, the first step is the definition of g, the
second step uses limh→0 c

−1(h) = 0 to replace h with c(h), the third step is algebra,
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and the fourth step is the definition of the derivative:

lim
h→0

g(z + h)− g(z)

h
= lim
h→0

(c ◦ f ◦ c)(z + h)− (c ◦ f ◦ c)(z)
h

= lim
h→0

(c ◦ f ◦ c)(z + c(h))− (c ◦ f ◦ c)(z)
c(h)

= lim
h→0

c

(
f(c(z) + h)− f(c(z))

h

)
= c(f ′(c(z))).

In particular, the limit at the beginning of the calculation exists. �

Alternate solution. Define real valued functions f1, f2, g1, and g2 on U and V ,
regarded as subsets of R2, by

f(x+ iy) = f1(x, y) + if2(x, y) and g(x+ iy) = g1(x, y) + ig2(x, y).

The definition of g implies that

g1(x, y) = f1(x,−y) and g2(x, y) = −f2(x,−y).

Let c(x, y) = (x,−y) for x, y ∈ R. Then the equations above become g1 = f1 ◦ c
and g2 = −f2 ◦ c. As a function of two variables, we have

Dc(x, y) =

(
1 0
0 −1

)
for all x, y ∈ R. Using the Cauchy-Riemann equations for f and the multivariable
chain rule, we get, whenever x+ iy ∈ V ,

(D1g1)(x, y) = D1(f1 ◦ c)(x, y) = (D1f1)(c(x, y))

= (D2f2)(c(x, y)) = −D2(f2 ◦ c)(x, y) = (D2g2)(x, y)

and

(D2g1)(x, y) = D2(f1 ◦ c)(x, y) = −(D2f1)(c(x, y))

= (D1f2)(c(x, y)) = D1(f2 ◦ c)(x, y) = −(D1g2)(x, y).

Thus, g satisfies the Cauchy-Riemann equations. Since f is holomorphic, f is real
differentiable. Since c is real differentiable, it follows that g is real differentiable.
Therefore the Cauchy-Riemann equations imply that g is holomorphic. �

In this solution, it is not enough to just verify that g satisfies the Cauchy-
Riemann equations. We also need to know that the real variable derivative of g
exists.

Second alternate solution. We prove that f is representable by power series on V .
So let a ∈ V , and let r > 0 satisfy Br(a) ⊂ V . Then Br(a) ⊂ U . Since f is
holomorphic on U , there are c0, c1, . . . ∈ C such that for all z ∈ Br(a) we have
f(z) =

∑∞
n=0 cn(z − a)n. If now z ∈ Br(a), then

g(z) = f(z) =

∞∑
n=0

cn(z − a)n =

∞∑
n=0

cn(z − a)n.

This completes the solution. �
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Third alternate solution. Let z0 ∈ V . We prove that g′(z0) = f ′(z0) directly from
the definition. So let ε > 0. Since z0 ∈ U , and by the definition of f ′(z0), there is
δ > 0 such that whenever 0 < |z − z0| < δ, then

(2)

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε.

Now suppose 0 < |z − z0| < δ. Then 0 < |z − z0| < δ, so, using |w| = |w| for any
w ∈ C at the third step and (??) with z in place of z at the last step,∣∣∣∣g(z)− g(z0)

z − z0
− f ′(z0)

∣∣∣∣ =

∣∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣∣ =

∣∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣∣
=

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε.

This completes the solution. �

Problem 3 (Rudin, Chapter 10, Problem 5). Let Ω ⊂ C be a nonempty open set,
and let (fn)n∈Z>0

be a uniformly bounded sequence of holomorphic functions on Ω.
Suppose there is a function f : Ω → C such that fn(z) → f(z) pointwise. Prove
that the convergence is uniform on every compact subset of Ω.

Hint: Apply the Dominated Convergence Theorem to the Cauchy formula for
fn − fm.

Remark 1. It is not immediate from the statement that f is holomorphic. In
particular, we do not know, without work, that

Indγ(z)f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

for suitable closed curves γ.

Remark 2. It would make things easier to know that for every open subset Ω ⊂ C
and every compact subset K ⊂ Ω, there is a cycle Γ such that Indγ(z) = 0 for all
z ∈ C \ Ω and Indγ(z) = 1 for all z ∈ K. (There is no hope of getting a closed
curve in place of a cycle.) This is actually true, and will eventually be needed, but
proving this fact requires considerably more work than doing Problem ?? without
it.

First solution. It suffices to prove that for every z0 ∈ Ω there is r > 0 such that
the convergence is uniform on Br(z0). (If K ⊂ Ω is compact, it can be covered by
finitely many such balls.)

Choose r > 0 such that B3r(z0) ⊂ Ω. Define a closed curve γ : [0, 2π] → Ω by
γ(t) = z0 + 2r exp(it). Then for z ∈ Br(z0) and t ∈ [0, 2π] we have∣∣∣∣ γ′(t)

γ(t)− z

∣∣∣∣ < 2.

For n ∈ Z>0 define gn : [0, 2π]→ C by gn(t) = fn(γ(t)), and define g : [0, 2π]→ C
by g(t) = f(γ(t)). Then gn → g pointwise. Choose M such that |fn(z)| ≤ M for
all n ∈ Z>0 and z ∈ Ω. We apply the Dominated Convergence Theorem on [0, 2π]
with dominating function the constant function 2M to conclude that

lim
n→∞

‖gn − g‖1 = 0.
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Moreover, for every z ∈ Br(z0), we can use the Dominated Convergence Theorem
on [0, 2π] with dominating function the constant function 2M at the first step, and
Cauchy’s Formula at the second step, to conclude that

1

2πi

∫ 2π

0

g(t)γ′(t)

γ(t)− z
dt =

1

2πi
lim
n→∞

∫ 2π

0

gn(t)γ′(t)

γ(t)− z
dt = lim

n→∞
fn(z) = f(z).

Now let ε > 0. Choose N ∈ Z>0 so large that for n ≥ N we have

‖gn − g‖1 <
ε

2
.

Let n ≥ N . Then for all z ∈ Br(z0), we have

|fn(z)− f(z)| =
∣∣∣∣ 1

2πi

∫ 2π

0

gn(t)γ′(t)

γ(t)− z
dt− 1

2πi

∫ 2π

0

g(t)γ′(t)

γ(t)− z
dt

∣∣∣∣
≤ sup
t∈[0,2π]

(∣∣∣∣ γ′(t)

γ(t)− z

∣∣∣∣) 1

2π

∫ 2π

0

|gn(t)− g(t)| dt ≤ 2 · ‖gn − g‖1 < ε.

This completes the proof. �

Second solution. We will prove that for every compact set K ⊂ Ω, the sequence
(fn|K)n∈Z>0

is uniformly Cauchy. It suffices to prove that for every z0 ∈ Ω there
is r > 0 such that (fn|Br(z0))n∈Z>0

is uniformly Cauchy. (If K ⊂ Ω is compact, it
can be covered by finitely many such balls.)

Let z0 ∈ Ω. Choose r > 0 such that B3r(z0) ⊂ Ω. Define a closed curve
γ : [0, 2π] → Ω by γ(t) = z0 + 2r exp(it). Then for z ∈ Br(z0) and t ∈ [0, 2π] we
have

(3)

∣∣∣∣ γ′(t)

γ(t)− z

∣∣∣∣ < 2.

Further choose M such that |fn(z)| ≤ M for all n ∈ Z>0 and z ∈ Ω. For n ∈ Z>0

define gn : [0, 2π]→ C by gn(t) = fn(γ(t)).
We claim that for every ε > 0 there is N ∈ Z>0 such that whenever m,n > N

and z ∈ Br(z0), then ∫ 2π

0

|gm(t)− gn(t)| dt < ε.

We want prove the claim by applying the Dominated Convergence Theorem over
the index set Z>0 × Z>0.

Suppose the claim is false. Then there are ε > 0 and m1, n1,m2, n2, . . . ∈ Z>0

such that m1 < n1 < m2 < n2 < · · · and

(4)

∫ 2π

0

|gmk
(t)− gnk

(t)| dt ≥ ε

for all k ∈ Z>0. Using

|gmk
(t)− gnk

(t)| = |fmk
(γ(t))− fnk

(γ(t))|
≤ |fmk

(γ(t))− f(γ(t))|+ |f(γ(t))− fnk
(γ(t))|

for all k ∈ Z>0 and t ∈ [0, 2π], and fl → f pointwise, we get

lim
k→∞

|gmk
(t)− gnk

(t)| = 0

for all t ∈ [0, 2π]. We further have

|gmk
(t)− gnk

(t)| ≤ |gmk
(t)|+ |gnk

(t)| ≤ 2M
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for all t ∈ [0, 2π], and 2M is an integrable function on [0, 2π]. The Dominated
Convergence Theorem therefore implies that

lim
k→∞

∫ 2π

0

|gmk
(t)− gnk

(t)| dt = 0,

which contradicts (??). The claim is proved.
We now prove that (fn|Br(z0))n∈Z>0

is uniformly Cauchy. Let ε > 0. Choose
N as in the claim with πε in place of ε. Let m,n ∈ Z>0 satisfy m,n > N . Let
z ∈ Br(z0). Then, using Cauchy’s formula on a convex set at the first step and (??)
at the third step, we have

|fm(z)− fn(z)| =
∣∣∣∣ 1

2πi

∫
γ

fm(ζ)

ζ − z
dζ − 1

2πi

∫
γ

fn(ζ)

ζ − z
dζ

∣∣∣∣
≤ 1

2π

∫ 2π

0

|gm(t)− gn(t)| · |γ′(t)|
|γ(t)− z|

dt

≤ 1

2π

∫ 2π

0

2|gm(t)− gn(t)| dt <
(

1

2π

)
· 2 · πε = ε.

This completes the proof that (fn|Br(z0))n∈Z>0
is uniformly Cauchy, and hence the

proof that for every compact set K ⊂ Ω, the sequence (fn|K)n∈Z>0
is uniformly

Cauchy.
Now let K ⊂ Ω be compact. Then C(K) is complete. Therefore there is a

function hK ∈ C(K) such that fn|K → hK uniformly. Since fn|K → f |K pointwise,
we must have hK = f |K . Therefore fn|K → f |K uniformly. �

Problem 4 (Rudin, Chapter 10, Problem 7). Let Ω ⊂ C be open, and let f be
a holomorphic function on Ω. Under certain conditions on z and Γ, the Cauchy
formula for the derivatives of f ,

f (n)(z) =
n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ

for n ∈ Z>0, is valid. State the conditions, and prove the formula.

Conditions. The formula is valid whenever Cauchy’s Formula for f(z) holds and
IndΓ(z) = 1. The most general version, based on Theorem 10.35 of Rudin, is thus:
Γ is a cycle in Ω such that IndΓ(w) = 0 for every w ∈ C \ Ω, and IndΓ(z) = 1.

Given what we have done so far, I am also happy to simply require that Ω be
convex, that Γ be a closed path in Ω, and that IndΓ(z) = 1. These conditions come
from 10.15 of Rudin. �

Remark 3. It is not correct to require IndΓ(w) = 1 for all w ∈ Ω \ Ran(Γ). This
condition can never be satisfied. If Ω = C then any w ∈ Ω with |w| > supy∈Ran(Γ) |y|
satisfies IndΓ(w) = 0. If Ω 6= C, choose w0 ∈ ∂Ω, and choose r > 0 such that
Br(w0) ∩ Ran(Γ) = ∅. Then there exists w ∈ Br(w0) ∩ Ω. Because we assume
IndΓ(w0) = 0, it follows that also IndΓ(w) = 0.

We give five proofs. All are related to approaches that have been used by students
in the past.

Proof 1. We prove this by induction on n. The case n = 0 is Cauchy’s Formula,
Theorem 10.35 of Rudin or 10.15 of Rudin.
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Assume now that the result is known for n− 1. Define

g(ζ) =
f(ζ)

(ζ − z)n

for ζ ∈ Ω \ {z}. Then

g′(ζ) =
f ′(ζ)

(ζ − z)n
− nf(ζ)

(ζ − z)n+1
.

Using Theorem 10.12 of Rudin (and the discussion of 10.34 of Rudin if we are
allowing general cycles), we get ∫

Γ

g′(ζ) dζ = 0.

Therefore, applying the induction hypothesis to f ′ at the first step, and the previous
two equations at the second step,

f (n)(z) =
(n− 1)!

2πi

∫
Γ

f ′(ζ)

(ζ − z)n
dζ

=
(n− 1)!

2πi

∫
Γ

nf(ζ)

(ζ − z)n+1
dζ =

n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ,

as desired. �

I believe the following is probably the intended proof.

Proof 2. For a complex measure on a measure space X, a measurable function
ϕ : X → C, and a ∈ C and r > 0 such that Br(a) ∩ ϕ(X) = ∅, the proof of
Theorem 10.7 of Rudin shows that, with

cn =

∫
X

1

(ϕ(x)− a)n+1
dµ(x)

for n ∈ Z≥0, we have, for z ∈ Br(a),∫
X

1

ϕ(x)− z
dµ(x) =

∞∑
n=0

cn(z − a)n.

In particular, with

f(z) =

∫
X

1

ϕ(x)− z
dµ(x),

it follows by differentiating the power series n times term by term that

f (n)(a) = n!cn = n!

∫
X

1

(ϕ(x)− a)n+1
dµ(x).

Simply apply this fact to Cauchy’s formula,

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ,

to get the result. �

The following proof uses differentiation of Cauchy’s Formula under the integra-
tion sign.
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Proof 3. The proof is by induction on n. The case n = 0 is Cauchy’s Formula,
Theorem 10.35 of Rudin or 10.15 of Rudin.

We will give the rest of the proof for the case of a cycle; the version corresponding
to 10.15 of Rudin is essentially the same but notationally simpler.

Assume now that the result is known for n− 1. That is,

f (n−1)(z) =
(n− 1)!

2πi

∫
Γ

f(ζ)

(ζ − z)n
dζ

for all z ∈ Ω with IndΓ(z) = 1. (The set U of such z is open.) Write Γ as a formal
integer combination

∑m
j=1 nj · γj , with γj : [αj , βj ] → Ω piecewise C1. By further

breaking up the paths, we may assume we have a formal integer combination of C1

paths. Set

gj(z) =

∫
γj

f(ζ)

(ζ − z)n
dζ

for z ∈ Ω \ Ran(Γ).
Now we differentiate under the integral sign. Rewrite

gj(z) =

∫ βj

αj

f(γ(t))

(γ(t)− z)n
γ′(t) dt.

Set

q(z, t) =
f(γ(t))

(γ(t)− z)n
γ′(t)

for z ∈ U and t ∈ [αj , βj ]. Let D1q(z, t) be the partial derivative of q in the first
variable (in the complex sense). Then

D1q(z, t) =
nf(γ(t))

(γ(t)− z)n+1
γ′(t),

which is jointly continuous on U × [αj , βj ]. Define

hj(z) =

∫ βj

αj

D1q(z, t) dt =

∫
γj

nf(ζ)

(ζ − z)n+1
dζ.

Choose r > 0 such that Br(z) ⊂ U . Let (zn)n∈Z>0
be a sequence in Br(z) \ {z}

with limn→∞ zn = z. Set

M = sup
({
|D1q(z, t)| : (z, t) ∈ Br(z)× [αj , βj ]

})
.

Using the (real) vector valued mean value theorem, and the fact that the straight

line path from z to zn is contained in Br(z), we get

|q(zn, t)− q(z, t)| ≤M |zn − z|
for all n and t. Therefore the functions

t 7→ q(zn, t)− q(z, t)
zn − z

are bounded by M and converge pointwise to D1q(z, t) as n→∞. It follows from
the Dominated Convergence Theorem that

lim
n→∞

gj(zn)− gj(z)
zn − z

= hj(z).

Since the sequence (zn)n∈Z>0 in Br(z)\{z} is arbitrary, we have proved that g′j(z) =
hj(z).
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Adding up the results of the previous paragraph with suitable coefficients, we
see that we can differentiate the right hand side of the equation

f (n−1)(z) =
(n− 1)!

2πi

∫
Γ

f(ζ)

(ζ − z)n
dζ

under the integral sign. The result is Cauchy’s Formula for f (n)(z). �

Remark 4. It is true that the usual method of proof of differentiation under the
integral sign in elementary analysis can be adapted to justify the calculation of
g′j(z) in the proof above. However, the hypotheses of that theorem do not hold,
because z runs over an open set in C rather than R. Thus, one may not simply
quote that theorem as if it applied.

Proof 4. This proof is similar to the previous proof, but substitutes explicit calcu-
lations for the general theory of differentiation under the integral sign. As in the
previous proof, and following the notation there, we assume that

f (n−1)(z) =
(n− 1)!

2πi

∫
Γ

f(ζ)

(ζ − z)n
dζ

for all z ∈ Ω with IndΓ(z) = 1. Let a ∈ Ω satisfy IndΓ(a) = 1. Applying the
identity

xn − yn = (x− y)
(
xn−1 + xn−2y + · · ·+ yn−1

)
with

x =
1

ζ − z
and y =

1

ζ − a
,

we get the first step in the following calculation:

1

(ζ − z)n
− 1

(ζ − a)n
=

(
1

ζ − z
− 1

ζ − a

) n∑
k=1

1

(ζ − z)k−1(ζ − a)n−k

=

(
z − a

(ζ − z)(ζ − a)

) n∑
k=1

1

(ζ − z)k−1(ζ − a)n−k

= (z − a)

n∑
k=1

1

(ζ − z)k(ζ − a)n−k+1
.

Choose ε > 0 such that IndΓ(z) = 1 for all z ∈ B2ε(a). Using the induction
hypothesis at the first step, and the previous calculation at the second step,

f (n−1)(z)− f (n−1)(a)

z − a
=

(n− 1)!

2πi(z − a)

∫
Γ

(
f(ζ)

(ζ − z)n
− f(ζ)

(ζ − a)n

)
dζ

=
(n− 1)!

2πi

n∑
k=1

∫
Γ

f(ζ)

(ζ − z)k(ζ − a)n−k+1
dζ

=
(n− 1)!

2πi

m∑
j=1

nj

n∑
k=1

∫ βj

αj

f(γj(t))γ
′
j(t)

(γj(t)− z)k(γj(t)− a)n−k+1
dt.

Let z ∈ Bε(a). Then |γj(t)−a| ≥ 2ε and |γj(t)−z| ≥ ε. Therefore the integrand
is bounded by

1

2n−k+1εn+1

(
sup

ζ∈Ran(γ)

|f(ζ)|

)(
sup

t∈[αj ,βj ]

|γ′j(t)|

)
,
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which is independent of z.
Now let (zn)n∈Z>0 be any sequence in Bε(a) such that limn→∞ zn = a. Since we

are integrating over sets of finite measure, we can apply the Dominated Convergence
Theorem to get

lim
n→∞

f (n−1)(zn)− f (n−1)(a)

zn − a

=
(n− 1)!

2πi

m∑
j=1

nj

n∑
k=1

∫ βj

αj

lim
n→∞

(
f(γj(t))γ

′
j(t)

(γj(t)− zn)k(γj(t)− a)n−k+1

)
dt

=
(n− 1)!

2πi

m∑
j=1

nj

n∑
k=1

∫ βj

αj

f(γj(t))γ
′
j(t)

(γj(t)− z)n+1
dt

=
n!

2πi

m∑
j=1

nj

∫ βj

αj

f(γj(t))γ
′
j(t)

(γj(t)− z)n+1
dt

=
n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ.

Since the sequence is arbitrary, it follows that

f (n)(a) =
n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ,

as was to be proved. �

Proof 5. Since f is holomorphic on Ω, there are r > 0 such that for all ζ ∈ Br(z)
we have f(ζ) =

∑∞
k=0

1
k!f

(k)(z)(ζ − z)k. Then the series

∞∑
k=n+1

1

k!
f (k)(z)(ζ − z)k−n−1

converges everywhere on Br(z), and the function to which it converges must be
holomorphic. Therefore there is a holomorphic function h : Ω→ C such that

h(ζ) =

∞∑
k=n+1

1

k!
f (k)(z)(ζ − z)k−n−1

for ζ ∈ Br(z) and

h(ζ) =
1

(ζ − z)n+1

(
f(ζ)−

n∑
k=0

1

k!
f (k)(z)(ζ − z)k

)
for ζ ∈ Ω \ {z}.

Using Cauchy’s Theorem at the first step, we get

0 =

∫
Γ

h(ζ) dζ =

∫
Γ

f(ζ)

(ζ − z)n+1
dζ −

n∑
k=0

1

k!
f (k)(z)

∫
Γ

1

(ζ − z)n+1−k dζ.

In the sum, the integrand in every term with k 6= n has an antiderivative on Ω\{z}.
By Theorem 10.12 of Rudin (and the discussion of 10.34 of Rudin if we are allowing
general cycles), these terms are all zero. Also, by definition∫

Γ

1

ζ − z
dζ = 2πi · IndΓ(z) = 2πi.
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So ∫
Γ

f(ζ)

(ζ − z)n+1
dζ =

2πi

n!
f (n)(z),

from which the desired formula is immediate. �

One can also get the function h from general theory. Define

g(ζ) = f(ζ)−
n∑
k=0

1

k!
f (k)(z)(ζ − z)k.

By differentiating, we check that g has a zero of order n+ 1 at z. Therefore there
exists a holomorphic function h on Ω such that g(ζ) = h(ζ)(ζ− z)n+1 for all ζ ∈ Ω.

Problem 5 (Rudin, Chapter 10, Problem 16). Let (X,B) be a measurable space,
and let µ be a complex measure on (X,B). Let Ω ⊂ C be open, and let ϕ : Ω×X →
C be a bounded function such that for every x ∈ X the function z 7→ ϕ(z, x) is
holomorphic on Ω and for every z ∈ Ω the function x 7→ ϕ(z, x) is measurable.
Define f : Ω→ C by

f(z) =

∫
X

ϕ(z, x) dµ(x).

Prove that f is holomorphic on Ω.

Hint: Prove that for every compact subset K ⊂ Ω there is a constant M such
that for x ∈ X and all distinct z1, z2 ∈ K, we have∣∣∣∣ϕ(z1, x)− ϕ(z2, x)

z1 − z2

∣∣∣∣ < M.

We give two solutions. The second solution uses Morera’s Theorem and Fubini’s
Theorem. The idea looks attractive, but verifying the measurability requirement
for applying Fubini’s Theorem turns out to be rather ugly. Several lemmas are
required.

The following lemma is related to the hint given in the problem. It will be used
in both solutions. In the first solution, its role is to give a dominating function for
an application of the Dominated Convergence Theorem. In the second solution, it
is part of the proof that ϕ is measurable with respect to the product σ-algebra.

Lemma 5. Let (X,B), Ω, and ϕ be as in the statement of the problem. Set

M = sup
x∈X

sup
z∈Ω
|ϕ(z, x)|.

Let a ∈ Ω and let ε > 0. Suppose that B2ε(a) ⊂ Ω. Then for any distinct
z1, z2 ∈ Bε(a) and any x ∈ X, we have∣∣∣∣ϕ(z1, x)− ϕ(z2, x)

z1 − z2

∣∣∣∣ ≤ M

ε
.

Proof. Let γ(t) = a + 2ε exp(it) for t ∈ [0, 2π]. Then, by Cauchy’s Formula, for
z ∈ B2ε(a) and x ∈ X we have

ϕ(z, x) =
1

2πi

∫ 2π

0

ϕ(γ(t), x)γ′(t)

γ(t)− z
dt.
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If z ∈ Bε(a) then |γ(t)− z| > ε for all t. Therefore, for distinct z1, z2 ∈ Bε(a) and
any x ∈ X, Cauchy’s Formula gives∣∣∣∣ϕ(z1, x)− ϕ(z2, x)

z1 − z2

∣∣∣∣
=

1

|z1 − z2|

∣∣∣∣ 1

2πi

∫ 2π

0

ϕ(γ(t), x)γ′(t)

γ(t)− z1
dt− 1

2πi

∫ 2π

0

ϕ(γ(t), x)γ′(t)

γ(t)− z2
dt

∣∣∣∣
≤ 1

2π

∫ 2π

0

1

|z1 − z2|

∣∣∣∣ 1

γ(t)− z1
− 1

γ(t)− z2

∣∣∣∣ |ϕ(γ(t), x)γ′(t)| dt

=
1

2π

∫ 2π

0

1

|γ(t)− z1| · |γ(t)− z2|
|ϕ(γ(t), x)γ′(t)| dt

≤ Mε

ε2
=
M

ε
.

This completes the proof. �

First solution. Let a ∈ Ω. We prove that f ′(a) exists, and in fact is equal to∫
X

D1ϕ(z, x) dµ(x).

Choose M such that |ϕ(z, x)| ≤ M for all (z, x) ∈ Ω × X. Choose ε > 0

such that B2ε(a) ⊂ Ω. Let (zn)n∈Z>0
be any sequence in Bε(a) \ {a} such that

limn→∞ zn = a. Let h be the Radon-Nikodym derivative of µ with respect to |µ|.
Then we can use the Dominated Convergence Theorem at the second step, with
the dominating function being M/ε (obtained from Lemma ??), to get

lim
n→∞

f(zn)− f(a)

zn − a
= lim
n→∞

∫
X

(
ϕ(zn, x)− ϕ(a, x)

zn − a

)
h(x) d|µ|(x)

=

∫
X

(
lim
n→∞

ϕ(zn, x)− ϕ(a, x)

zn − a

)
h(x) d|µ|(x)

=

∫
X

D1ϕ(a, x)h(x) d|µ|(x)

=

∫
X

D1ϕ(a, x) dµ(x).

In particular, since the sequence is arbitrary, f ′(a) exists. �

The second solution uses two further lemmas.

Lemma 6. Under the hypotheses of the problem, for every ε > 0 and every compact
set K ⊂ Ω, there is δ > 0 such that for every z1, z2 ∈ K with |z1 − z2| < δ, and for
every x ∈ X, we have |ϕ(z1, x)− ϕ(z2, x)| < ε.

This is the statement that continuity of z 7→ ϕ(z, x) is uniform in x ∈ X and
z ∈ K.

Proof of Lemma ??. Since K is compact, we have dist(K, C \ Ω) > 0. Choose
ρ > 0 such that ρ < 1

2dist(K, C \ Ω). Choose M such that |ϕ(z, x)| ≤ M for all
(z, x) ∈ Ω×X. Choose δ > 0 such that δ ≤ ρ and δ < ρε/M . Let x ∈ X, and let
z1, z2 ∈ K satisfy |z1 − z2| < δ. We show that |ϕ(z1, x) − ϕ(z2, x)| < ε. We may
clearly assume that z1 6= z2.
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The choice of ρ implies that B2ρ(z1) ⊂ Ω. Lemma ??, with a = z1 and ρ in place
of ε, implies that ∣∣∣∣ϕ(z1, x)− ϕ(z2, x)

z1 − z2

∣∣∣∣ ≤ M

ρ
.

Therefore

|ϕ(z1, x)− ϕ(z2, x)| ≤Mρ−1|z1 − z2| < Mρ−1δ ≤ ε.
This completes the proof. �

Lemma 7. Let T be a second countable metric space, let (X,B) be a measurable
space, and let ϕ : T × X → C be a function. Suppose that for every t ∈ T the
function x 7→ ϕ(t, x) is measurable. Suppose further that the functions t 7→ ϕ(t, x),
for x ∈ X, are uniformly equicontinuous. Then ϕ is measurable for the product
σ-algebra of the σ-algebra of Borel sets in T with B.

The uniform equicontinuity hypothesis means that for every ε > 0 there is δ > 0
such that for every s1, s2 ∈ T with d(s1, s2) < δ, and for every x ∈ X, we have
|ϕ(s1, x)− ϕ(s2, x)| < ε.

Proof of Lemma ??. It is enough to prove this when ϕ has real values.
Let {tn : n ∈ Z>0} be a countable dense subset of T . For each β ∈ Q and

n ∈ Z>0 let Eβ,n ⊂ X be

Eβ,n = {x ∈ X : ϕ(tn, x) > β}.

Let C be the collection of all sets

Br(tn)× Eβ,n ⊂ T ×X

for n ∈ Z>0, r ∈ Q ∩ (0,∞), and β ∈ Q. There are countably many such sets, and
they are all measurable rectangles, so it suffices to show that for every α > 0, every
t ∈ T , and every x ∈ X, if ϕ(t, x) > α then there is a set R ∈ C such that

(t, x) ∈ R ⊂ {(s, y) ∈ T ×X : ϕ(s, y) > α}.

So let α ∈ R, and suppose (t, x) ∈ T ×X and ϕ(t, x) > α. Choose β ∈ Q with
ϕ(t, x) > β > α. Set

ε = min(β − α, ϕ(t, x)− β).

Choose δ > 0 such that for every s1, s2 ∈ T with d(s1, s2) < δ, and for every x ∈ X,
we have

|ϕ(s1, x)− ϕ(s2, x)| < ε.

Choose r > 0 such that r ∈ Q and 3r < δ. Choose n ∈ Z>0 such that d(tn, t) < r.
Then B2r(tn)× Eβ,n ∈ C. We claim that

(t, x) ∈ B2r(tn)× Eβ,n ⊂ {(s, y) ∈ T ×X : ϕ(s, y) > α}.

That t ∈ B2r(tn) is clear. To see that x ∈ Eβ,n, we observe that

ϕ(tn, x) > ϕ(t, x)− ε ≥ β.

Now let s ∈ B2r(tn) and y ∈ Eβ,n. Then ϕ(tn, y) > β, so

ϕ(s, y) > ϕ(tn, y)− ε ≥ β − (β − α) = α.

This completes the proof of the claim, and of the lemma. �
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Second solution. It is sufficient to prove that f is holomorphic on every open ball
U ⊂ Ω.

We verify the hypotheses of Morera’s Theorem on U . Choose M such that
|ϕ(z, x)| ≤ M for all x ∈ X and z ∈ Ω. Let g be the Radon-Nikodym derivative
of µ with respect to |µ|. Then |g(x)| = 1 for almost every x ∈ X (with respect to
|µ|), so we may as well assume |g(x)| = 1 for every x ∈ X. We can then rewrite
the definition of f as

f(z) =

∫
X

ϕ(z, x)g(x) d|µ|(x).

We first show that f is continuous. Suppose zn → z. Then

lim
n→∞

ϕ(zn, x)g(x) = ϕ(z, x)g(x)

for all x ∈ X. We may apply the Dominated Convergence Theorem, with the
dominating function being the constant M , to get

f(zn) =

∫
X

ϕ(zn, x)g(x) d|µ|(x)→
∫
X

ϕ(z, x)g(x) d|µ|(x) = f(z).

Thus f is continuous.
Now let ∆ be any (oriented) triangle in U , and let γ : [α, β] → U be the closed

curve obtained from its boundary, as in the book. Then∫
γ

ϕ(z, x) dz = 0

for every x ∈ X, because U is convex.
Lemmas ?? and ?? imply that for every compact set K ⊂ Ω, the function ϕ|K×X

is measurable. Therefore ϕ is measurable, and it follows that (t, x) 7→ ϕ(γ(t), x) is
measurable. So the function

ψ(t, x) = ϕ(γ(t), x)g(x)γ′(t)

is measurable on [α, β]×X. It is bounded by

M sup
t∈[α,β]

|γ′(t)|.

Therefore ψ is integrable. Using Fubini’s Theorem at the third step and Cauchy’s
Theorem at the fifth step, we get:∫

γ

f(z) dz =

∫ β

α

f(γ(t))γ′(t) dt

=

∫ β

α

(∫
X

ϕ(γ(t), x)g(x)γ′(t) dµ(x)

)
dt

=

∫
X

(∫ β

α

ϕ(γ(t), x)g(x)γ′(t) dt

)
dµ(x)

=

∫
X

g(x)

(∫
γ

ϕ(z, x) dz

)
dµ(x) = 0.

It now follows from Morera’s Theorem that f is holomorphic on U . �


