
MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO

HOMEWORK 3

Conventions on measures: m is ordinary Lebesgue measure, m = (2π)−1/2m,
and in expressions of the form

∫
R f(x) dx, ordinary Lebesgue measure is assumed.

Problems and all other items use two independent numbering sequences. This is
annoying, but necessary to preserve the problem numbers in the solutions files.

Little proofreading has been done.
Some parts of problems have several different solutions.

Problem 1. Let X be a locally compact σ-compact Hausdorff space. Prove that
there is a sequence (gn)n∈Z>0

in C0(X) consisting of functions with compact support
and with values in [0, 1] such that for every f ∈ C0(X) we have limn→∞ ‖gnf −
f‖∞ = 0.

If X is not σ-compact, one needs a net instead of a sequence. You will need to
prove that there are compact subsets K1,K2, . . . ⊂ X such that

K1 ⊂ int(K2) ⊂ K2 ⊂ int(K3) ⊂ K3 ⊂ · · · and

∞⋃
n=1

Kn = X.

(I didn’t find this explicitly in Rudin’s book, but maybe I didn’t look in the right
place.)

As suggested above, the solution uses the following lemma, which doesn’t seem
to be explicitly in Rudin’s book.

Lemma 1. Let X be a locally compact σ-compact Hausdorff space. Then there
are compact subsets K1,K2, . . . ⊂ X such that

K1 ⊂ int(K2) ⊂ K2 ⊂ int(K3) ⊂ K3 ⊂ · · · and

∞⋃
n=1

Kn = X.

Proof. By hypothesis, there are compact subsets L1, L2, . . . ⊂ X such that
⋃∞
n=1 Ln =

X.
We construct compact sets Kn satisfying

Kn−1 ⊂ int(Kn), and L1, L2, . . . , Ln ⊂ Kn

for n ∈ Z>0 (with K0 = ∅). The construction is by induction. Define K1 = L1.
Given Kn, define

M = Kn ∪
n⋃
k=1

Lk,

which is a compact subset of X. Use Theorem 2.7 of Rudin to choose an open set
V with compact closure such that M ⊂ V . Then take Kn+1 = V . This completes
the induction step, and the proof. �
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Solution. Choose compact subsets K1,K2, . . . ⊂ X as in Lemma 1. For n ∈ Z>0

use Urysohn’s Lemma for locally compact spaces to choose a continuous function
gn : X → [0, 1] with compact support and such that gn(x) = 1 for all x ∈ Kn. Now
let f ∈ C0(X) and let ε > 0. By definition, there is a compact subset L ⊂ X such
that |f(x)| < ε

3 for all x ∈ X \ L. It is clear from the properties of the sets Kn We
have

X ⊃
∞⋃
n=1

int(Kn) ⊃
∞⋃
n=2

Kn−1 = X.

Since int(K1) ⊂ int(K2) ⊂ int(K3) · · · and L is compact, there exists N ∈ Z>0

such that L ⊂ int(KN ). Now let n ∈ Z>0 satisfy n ≥ N . For x ∈ Kn we have
gn(x) = 1, so |gn(x)f(x) − f(x)| = 0 < 2ε

3 . For x ∈ X \Kn, we have |f(x)| < ε
3

and 0 ≤ gn(x) ≤ 1, so

|gn(x)f(x)− f(x)| ≤ |gn(x)||f(x)|+ |f(x)| < ε

3
+
ε

3
=

2ε

3
.

Therefore

‖gnf − f‖∞ = sup
x∈X
|gn(x)f(x)− f(x)| ≤ 2ε

3
< ε.

This completes the proof. �

In the situation in the proof, one often wants supp(gn) ⊂ int(Kn+1), but we
don’t need that here.

Alternate solution (sketch). Choose gn as in the first solution. Prove that if f ∈
Cc(X) then gnf = f for all sufficiently large n. Now use density of Cc(X) in C0(X)
and an ε

3 -argument to get the result. �

Problem 2. Give a “direct” proof of the following part of Theorem 9.6 of Rudin’s

book: if f ∈ L1 then f̂ ∈ C0(R). That is, prove this first when f is the characteristic

function of a bounded interval, use this result and approximation to prove f̂ ∈
C0(R) when f ∈ Cc(R), and then use approximation to prove f̂ ∈ C0(R) for general
f ∈ L1.

You will need
∣∣f̂(t)

∣∣ ≤ ‖f‖1 for all t ∈ R. This proof takes longer than Rudin’s
proof, but the methods are useful much more generally, and the first step explains
why the result is even true.

Solution. In principle, before doing this problem we are not even supposed to know

that f̂ is measurable. The solution is therefore written so as to avoid implicit
references to L∞(R).

For a, b ∈ R with a < b, a computation shows that

χ̂(a,b](t) =

{
i√
2π·t

(
e−ibt − e−iat

)
t 6= 0

1√
2π

(b− a) t = 0.

This function is obviously continuous on R \ {0}, and it is easy to check (directly
from the definition of the derivative of the function t 7→ e−ibt − e−iat, or using
L’Hopital’s Rule) that it is continuous at 0. Also clearly χ̂(a,b] vanishes at infinity.

Now we show that if f ∈ Cc(R) then f̂ ∈ C0(R). Choose N ∈ Z>0 such that
supp(f) ⊂ [−N,N ]. For n ∈ Z>0 define

δn = sup
({
|f(x)− f(y)| : x, y ∈ R and |x− y ≤ 1

n

}
,
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and further define In,k =
(
k
n ,

k+1
n

]
for k = −nN, −nN + 1, . . . , nN − 1. Then

define

fn =

nN−1∑
k=−nN

f
(
k
n

)
χIn,k

.

Then

sup
({
|fn(x)− f(x)| : x ∈ R

})
≤ δ,

so

‖fn − f‖1 ≤
∫ N

−N
|fn(x)− f(x)| dm(x) ≤ 2Nδn√

2π
.

We have limn→∞ δn = 0 because f is uniformly continuous. So limn→∞ ‖fn−f‖1 =
0. Therefore

lim
n→∞

sup
({∣∣f̂n(t)− f̂(t)

∣∣ : t ∈ R
})

= 0,

that is, f̂n → f̂ uniformly. For n ∈ Z>0, fn is a linear combination of characteristic
functions of intervals of the form (a, b], so linearity of the Fourier transform implies

that f̂n ∈ C0(R). Therefore f̂ ∈ C0(R).
Now let f ∈ L1(R) be arbitrary. Choose a sequence (fn)n∈Z>0 in Cc(R) such

that limn→∞ ‖fn − f‖1 = 0. Then

lim
n→∞

sup
({∣∣f̂n(t)− f̂(t)

∣∣ : t ∈ R
})

= 0,

that is, f̂n → f̂ uniformly. We have seen that f̂n ∈ C0(R) for all n ∈ Z>0, so

f̂ ∈ C0(R). �

Problem 3 counts as two ordinary problems.

Problem 3 (Rudin, Chapter 9, Problem 13abc). For c ∈ (0,∞) define fc : R→ C
by fc(x) = exp(−cx2) for x ∈ R.

(1) Compute f̂c.

(2) Prove that there exists a unique c ∈ (0,∞) such that f̂c = fc.
(3) Let a, b ∈ (0,∞). Prove that there exist γ and c such that fa ∗ fb = γfc,

and find explicit formulas for γ and c in terms of a and b.

You may take as known the result that

(1)

∫ ∞
−∞

e−x
2

dx =
√
π.

(This is proved by writing the square of the integral as
∫
R2 e
−x2−y2 dxdy and com-

puting it using polar coordinates in R2.)

Hint for part (1). One method (not the only possible method) is to let g = f̂c,
and use integration by parts to get 2cg′(t) + tg(t) = 0 for all t ∈ R. If you use this
method, you will need to prove (directly, or by citing theorems) that this equation,
together with other information you have, determines g uniquely.

Remark 2. A change of variables in (1) shows that fc actually is in L1 for all
c ∈ (0,∞).
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Solution to (1). We have

g(t) = f̂c(t) =
1√
2π

∫ ∞
−∞

e−itx exp(−cx2) dx.

For every t, the imaginary part of the integrand, x 7→ sin(−tx) exp(−cx2), is an odd
function. Therefore g(t) is real for all t. Now, one checks directly that g(−t) = g(t)
for all t. Also, using a change of variables,

g(0) =
1√
2π

∫ ∞
−∞

exp(−(c1/2x)2) dx =
1√
2πc

∫ ∞
−∞

exp(−y2) dy =
1√
2c
.

According to Theorem 9.2(f) of Rudin, we have

g′(t) = f̂c(t) =
1√
2π

∫ ∞
−∞

e−itx(−ix exp(−cx2)) dx.

Integrating the right hand side by parts, we get

g′(t) = lim
a→∞

1√
2π

(
e−ita

(
i
2c

)
exp(−ca2)− e−it(−a)

(
i
2c

)
exp(−c(−a)2)

)
− 1√

2π

∫ ∞
−∞

(−ite−itx)
(
i
2c

)
exp(−cx2) dx.

The limit is zero, and rearranging the other term we get

g′(t) = − t
2cg(t).

This is valid for all t.
Let α = inf

({
t > 0: g(t) = 0

})
, which might possibly be ∞. For s ∈ [0, α) we

have
g′(s)

g(s)
= − s

2c
.

Let t ∈ [0, α), and integrate the equation above from 0 to t. Thus, there is a
constant r such that

log(g(t)) = − t
2

4c
+ r

for all t ∈ [0, α).
If α <∞, then

lim
t→α−

log(g(t)) = −∞ and lim
t→α−

(
− t

2

4c
+ r

)
= −α

2

4c
+ r 6= −∞.

This contradiction shows that α =∞, so log(g(t)) = − t2

4c+r for all t ≥ 0. Therefore

g(t) = exp(r) exp
(
− t2

4c

)
for all t ≥ 0. We already know g(0) = 1√

2c
and that g is

an even function, so it follows that

g(t) =
1√
2c

exp

(
− t

2

4c

)
for all t ∈ R. �

Remark 3. In the past, some people have proceeded as follows. After some com-
putation, they obtained

f̂c(t) =
e−t

2/(4c)

√
2π

∫ ∞
−∞

exp
(
−c
(
x+ it

2c

)2)
dx.
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Then they wanted to make the change of variable y = x+ it
2c .

This procedure is not legitimate, because it is not covered by any change of
variables theorem we have seen. Thus, even if correct, it is not allowed in the
proof. In fact, in general it is not even correct. Set

h(x) =
e−(x−i)

2

x− i
for x ∈ C \ {i}. It is possible to show (using methods from Chapter 10 of Rudin)
that

∫∞
−∞ h(x) dx = iπ. If a change of variables as above were legitimate, one could

change x to x+ 2i, getting ∫ ∞
−∞

e−(x+i)
2

x+ i
dx.

Again using methods from Chapter 10 of Rudin, this integral, however, is equal to
−iπ.

Remark 4. One can also finish the proof using the theorem on local existence and
uniqueness of solutions of differential equations of the form y′(x) = ϕ(x, y(x)) when
ϕ satisfies a suitable Lipschitz condition. We outline the method.

In our case, the differential equation is

y′(t) = − t

2c
· y(t) and y(0) =

1√
2c
,

so
ϕ(x, y) =

xy

2c
.

It is easy to check that the required Lipschitz condition is satisfied. Moreover, the
function

h(t) =
1√
2c

exp

(
− t

2

4c

)
satisfies the equation for all t ∈ R and h(0) has the correct value.

We claim that h(t) = g(t) for all t ∈ R. We consider only t > 0; the proof for
t < 0 is similar. Suppose not. Let α = inf

({
t > 0: g(t) 6= h(t)

})
. By continuity,

we have g(α) = h(α). Apply the existence and uniqueness theorem with the initial
condition y(α) = g(α). The conclusion is that there is δ > 0 such that the equation

y′(t) = ϕ(t, y(t)) and y(α) = g(α)

has a unique solution on the interval (α− δ, α+ δ). Since the restrictions of both g
and h to this interval satisfy the equation, we get g(t) = h(t) for all t ∈ (α−δ, α+δ),
contradicting the definition of α.

Remark 5. There are at least two other ways to calculate f̂c, but both depend on
the methods of Chapter 10. We give outlines.

The first step in both is to prove that the formula

g(z) = f̂c(t) =
1√
2π

∫ ∞
−∞

e−izx exp(−cx2) dx

defines a function which is holomorphic on the entire complex plane. We also
require the formula

g(z) =
e−z

2/(4c)

√
2π

∫ ∞
−∞

exp
(
−c
(
x+ iz

2c

)2)
dx,

obtained by combining the exponentials and completing the square in the exponent.
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Method 1: For b ∈ R, we calculate

g(ib) =
eb

2/(4c)

√
2π

∫ ∞
−∞

exp
(
−c
(
x− b

2c

)2)
dx.

In this expression, the change of variables y = x − b
2c is legitimate, and gives

g(ib) = eb
2/(4c)g(0). Substituting the value of g(0) found in the solution above, we

find that

g(z) =
1√
2c

exp

(
−z

2

4c

)
for all z ∈ iR. Since iR is a subset of C which contains a limit point of itself, and
since both sides of this equation are holomorphic functions of z, the corollary to
Theorem 10.18 of Rudin shows that the formula for g(z) holds for all z ∈ C. Take

z real to get f̂c.
Method 2: We justify, in this case, the change of variables in Remark 3. Take

t > 0; the case t < 0 is done the same way, or follows from the fact that f̂c is
an even function. For r > 0 let γr be the piecewise C1 closed curve consisting of
four straight line segments: from −r to r to r + it

2c to −r + it
2c and back to −r.

Since g is entire, we have
∫
γr
g(z) dz = 0 by Cauchy’s Theorem. Now explicitly

write
∫
γr
g(z) dz as the sum of path integrals along the four straight line segments,

and let r → ∞. One can easily prove that the integrals along the two vertical
line segments approach zero. The integral along the line segment from −r to r
approaches

e−t
2/(4c)

√
2π

∫ ∞
−∞

exp
(
−cx2

)
dx,

and the integral the line segment from r + it
2c to −r + it

2c approaches

−e
−t2/(4c)
√

2π

∫ ∞
−∞

exp
(
−c
(
x+ it

2c

)2)
dx.

Since the limit of the entire sum is zero, it follows that

e−t
2/(4c)

√
2π

∫ ∞
−∞

exp
(
−c
(
x+ it

2c

)2)
dx =

e−t
2/(4c)

√
2π

∫ ∞
−∞

exp
(
−cx2

)
dx,

as desired.
This method does not apply to the counterexample in Remark 3, because if one

tries it one finds that the function has a pole inside the relevant closed path. (This
is how I constructed the example.) One could also imagine an example in which
the change of variables fails because the integrals along the vertical segments don’t
converge to zero, but such an example seems tricky to construct.

Solution to (2). Part (1) gave

f̂c(t) =
1√
2c
e−t

2/(4c).

For c = 1
2 one checks directly that f̂c = fc. On the other hand, if f̂c = fc then

1 = fc(0) = f̂c(0) =
1√
2c
,

whence c = 1
2 . �
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Solution to (3). Using Part (1), we write

(fa ∗ fb)∧(t) = f̂a(t)f̂b(t) =

(
1√
2a
e−t

2/(4a)

)(
1√
2b
e−t

2/(4b)

)
=

1√
4ab

exp

(
− t

2

2

(
1

a
+

1

b

))
.

Set

γ =
1√

2(a+ b)
and c =

ab

a+ b
.

A direct substitution in the result of Part (1) gives γf̂c(t) = (fa ∗ fb)∧(t) for all t.
It follows from injectivity of the Fourier transform that fa ∗ fb = γfc as elements
of L1, so that

(2) (fa ∗ fb)(x) = γfc(x)

for almost all x ∈ R.
We finish by proving that (2) actually holds for all x ∈ R. Since the right hand

side is a continuous function of x, and since the measure of any nonempty open set
is nonzero, it suffices to show that the left hand side of (2) is defined for all x ∈ R,
and is a continuous function of x.

We saw in Remark 2 that fd ∈ L1 for all d ∈ (0,∞). (This is also easy to prove
directly without actually evaluating the integral.) Since fd is bounded, it follows
that fd ∈ L2. For α ∈ R, define τα : L2 → L2 by τα(x)(x) = f(x−α) for x ∈ R and
f ∈ L2, and define σ : L2 → L2 by σ(f)(x) = f(−x) for x ∈ R and f ∈ L2. Then,
since fb is real, we can write

(fa ∗ fb)(x) =
1√
2π

∫ ∞
−∞

fa(x− y)fb(y) dy =
〈
σ(τx(fa)), fb

〉
.

So (fa∗fb)(x) is defined for all x ∈ R. Theorem 9.5 of Rudin implies that y 7→ τy(fa)
is continuous from R to L2(R), and σ is continuous, so we also conclude that fa ∗fb
is continuous. �

Alternate solution. In the following computation, we complete the square at the
second step (algebra omitted), change the variable y to y − ax

a+b at the third step,

and change y to y
√
a+ b and use

∫∞
−∞ e−y

2

dy =
√
π at the fourth step:

(fa ∗ fb)(x) =
1√
2π

∫ ∞
−∞

e−a(y−x)
2

e−by
2

dy

=
1√
2π

exp
(
abx2

a+b

)∫ ∞
−∞

exp

(
−(a+ b)

(
y − ax

a+b

)2)
dy

=
1√
2π

exp
(
−abx

2

a+b

)∫ ∞
−∞

e−(a+b)y
2

dy

=
1√
2π

exp
(
abx2

a+b

)√
π
a+b

=
1√

2(a+ b)
exp

(
−abx

2

a+b

)
.
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The last expression is γfc(x) with

γ =
1√

2(a+ b)
and c =

ab

a+ b
.

This completes the proof. �

Problem 4 (Rudin, Chapter 10, Problem 1). Let (X, ρ) be a metric space, let
K ⊂ X be compact, and let E ⊂ X be closed. Suppose K ∩ E = ∅. Prove that
there is δ > 0 such that ρ(x, y) ≥ δ for all x ∈ K and y ∈ E.

Show by example that the conclusion fails if K is only assumed closed, even with
X = C and its usual metric.

(The example isn’t part of Rudin’s problem.)

The positive statement will be frequently used with X = C.

Solution for the positive statement. For x ∈ X define d(x) = infy∈E ρ(x, y), which
is the distance from x to E.

We claim that for x1, x2 ∈ X we have |d(x1)− d(x2)| ≤ ρ(x1, x2). To prove the
claim, first, for y ∈ E we have ρ(x1, y) ≤ ρ(x2, y) + ρ(x1, x2). Taking the infimum
over y ∈ E, we get d(x1) ≤ (x2) + ρ(x1, x2). Exchanging x1 and x2 and using
symmetry of ρ, we get d(x2) ≤ (x1) + ρ(x1, x2). The claim follows.

The claim immediately implies that that d is continuous. Also, if d(x) = 0, then
clearly x ∈ E. Since E is closed, this means x ∈ E. Therefore d(x) > 0 for all
x ∈ K. Since K is compact, it follows that infx∈K d(x) > 0, as desired. �

Alternate solution for the positive statement. Suppose the conclusion is false. For
n ∈ Z>0 choose xn ∈ K and yn ∈ E such that ρ(xn, yn) < 1

n . Since K is compact,
there is a subsequence (xk(n))n∈Z>0

of (xn)n∈Z>0
which converges to some x ∈ K.

Now

ρ(yn, x) ≤ ρ(yn, xn) + ρ(xn, x) <
1

n
+ ρ(xn, x),

so limn→∞ yn = x. We have x ∈ E since E is closed. This contradicts the assump-
tion K ∩ E = ∅. �

Second alternate solution for the positive statement. Let d : X → [0,∞) be as in
the first solution.

We claim that for δ > 0, the set Uδ =
{
x ∈ X : d(x) > δ

}
is open. To prove the

claim, let x ∈ Uδ. Set ε = 1
2 (d(x)− δ). Suppose ρ(x, y) < ε. Then for all z ∈ E we

have

ρ(y, z) ≥ ρ(x, z)− ρ(x, y) > d(x)− ε = d(x)− 1

2

(
d(x)− δ

)
=

1

2

(
d(x) + δ

)
.

Therefore

d(y) = inf
z∈E

ρ(x, z) ≥ 1

2

(
d(x) + δ

)
> δ,

so that y ∈ Uδ. The claim is proved.
We have Uδ1 ⊂ Uδ2 whenever δ1 ≥ δ2, and K ⊂

⋃
δ>0 Uδ. Since K is compact,

it follows that there is δ > 0 such that K ⊂ Uδ. �
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Counterexample when K is not compact. We write the example in terms of R2 in-
stead of C. Set

K = R× {0} ⊂ R2 and E =
{

(x, y) ∈ R2 : xy = 1
}
.

It is obvious that K is closed and K∩E = ∅. Also, E is closed because the function
f : R2 → R, given by f(x, y) = xy, is continuous, and E = f−1({1}).

For n ∈ Z>0, we have

(n, 0) ∈ K,
(
n, 1

n

)
∈ E, and ρ

(
(n, 0),

(
n, 1

n

))
= 1

n .

Therefore infx∈K, y∈E ρ(x, y) = 0. �

Of course, many other examples are possible.


