MATH 618 (SPRING 2025, PHILLIPS): SOLUTIONS TO
HOMEWORK 2

Conventions on measures: m is ordinary Lebesgue measure, m = (2m)~/?m,
and in expressions of the form fR f(z) dzx, ordinary Lebesgue measure is assumed.

Problems and all other items use two independent numbering sequences. This is
annoying, but necessary to preserve the problem numbers in the solutions files.

Little proofreading has been done.

Some parts of problems have several different solutions.

Problem 1 (Rudin, Chapter 9, Problem 4). Give an explicit example of a function
f € L*(R) such that f ¢ L*(R) but f € L'(R). Under what circumstances can this
happen?

Solution. We answer the second part first: f is such a function if and only if
fe LY(R) N L3(R) but f is not the Fourier transform of a function in L'(R). In
particular (although this is not the most general possibility), this will happen for
any f € L2(R) such that f € L'(R) but f & Co(R).

To get an example of such a function, choose g € [L*(R) N L'(R)] \ Co(R), and
let f be the inverse Fourier transform of g. (Taking f = g will also work, since then
f(t) = g(—t) for all t. One sees this immediately by comparing the formulas for
the Fourier transform and the inverse Fourier transform for, say, functions in the
Schwartz space, and using density of this space in L?(R).)

For a specific example, take g = x[_1,1) € L?(R). Then set

f@) = \/% /: it g (1) dt = \/12?/_11 ¢t gt — \/z (S”;(””)> .

The Fourier inversion formula for L?(R) implies that j?: g, which is in L*(R) as
desired. One can show directly that f ¢ L'(R), or simply observe that f is not
continuous. (]

Problem 2 (Rudin, Chapter 9, Problem 5). Let f € L!(R), and suppose that

\/% /]R |tf(#)] dt

is finite. Prove that there exists a function g: R — C such that f(z) = g(x) for
almost all € R and such that for all z € R we have

g (x) = E/Rtf(t)e”/dt.
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Solution. We claim that f € LY(R). To see this, use the fact that £ is continuous
to find M such that |f(t)| < M for all t € [-1,1]. Set E =R\ [-1,1].

Qﬂ/’f ldt = \/g/ )] dt + ;ﬁ/lf‘f(t)‘dt

1 ~

gﬁﬁlMdt+ﬁ/lﬂ|tf(t)\dt
1 ~

§2M+E/R|tf(t)’dt<oo.

This proves the claim. R
Define h(t) = f(t) and k(t ) = —itf(t) for t € R. Then h,k € L'(R). So Theorem
9.2(f) of Rudin 1mpheb that % is differentiable and (h) (x) = k(z) for all z € R.

Since f and h = f are in L'(R), the Fourier inversion theorem applies and shows
that for almost all z € R we have

flz) = (t)e! dt = h(—z).

1 / L
V21 Jr
Therefore the function g(z) = ﬁ(fx) agrees with f for almost all # € R, and
satisfies

~

g’(«f) = —(/]’;)/(—1‘) = —]{1(—]}) = \/% /Rtf(t)elxt dt.
This completes the proof. O

Alternate solution. For x € R, the function t tf(t)e“m is integrable because
|tf e'tr| = |tf )|- So we can define

h(z) = t)e'® dt.

i
e t
V4 QW/JR ft
We claim that h is continuous. Let x € R and let (z,)necz., be a sequence in R
such that lim, .o 2, = 2. The functions k(t) = tf(t)e!™® and k,(t) = tf(t)ei**»
for n € Zs satisfy lim, o kn(t) = k() for all ¢ € R. We may therefore apply the

Dominated Convergence Theorem, with the bounding function being ¢ — |t]?(t)|,
to conclude that

)
h(x) t)dt = lim ky(t)dt = lim h,(x).
‘/ n—oo V27T/R () n—o00 ( )

The claim follows. R

For every bounded interval I C R, the function (z,s) — sf(s)e’*® is integrable
on I x R. For t € R, we can therefore apply Fubini’s Theorem for integrable
functions at the second step (even if ¢ < 0, using I = [t,0]) to get

/Oth(m)dx: \/;? i (/Rsf(s)emds> do = \ﬁ (/ ’”dx) ds

1 7 ist s
= = [ Fe ~ s

We next claim that fe LY(R). The proof is the same as at the beginning of the
first solution.
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Given the claim, and using f € L!(R), the Fourier Inversion Theorem implies

that
1 N ist — x) — L £ s)ds
\/T?/ﬂ&f(S)(e _1)d8_f( ) \/ﬁ/ﬂﬁf()d

for almost every € R. Define

1 ~

o) = [ ") dy - C.

Thus g(z) = f(x) for almost every « € R. Since h is continuous, the Fundamental
Theorem of Calculus gives

"(z) = h :L/tAt itz gy
9 @) =hiw) = —= [ 17(0)
for all z € R. O

and for z € R define

Problem 3 (Rudin, Chapter 9, Problem 7). Let S be the set of all C*° functions
f: R — C such that for all m,n € Z>q we have

(1) sup|x”f(m)(x)| < 00.
z€R

Prove that f — fis a bijection from S to S. Give examples of nonzero elements
of S.

Comments: The space S is a topological vector space with topology given by the
seminorms implicit in (1) for m,n € Z>(, and the map f — J?is a homeomorphism.
Also, one gets the same topology with different choices of seminorms. For example,
one could use the family of seminorms given by

||me,n = </R(1 4 zzn)l/zf(m)(I”Qdm(x)) 1/2

for m,n € Zxg, or an LP version of these seminorms for any p € [1, 00). The reason
is that arbitrarily large powers of x appear. For example, if f is continuous and
x + 22 f(x) is bounded, then f is an L! function on R.

It is convenient to break the solution in several lemmas. We also let F' denote
the Fourier transform, as a map from L!(R) to Cy(R).

Lemma 4. We have S C L'(R) N Cy(R).

Proof. Let f € S. Since sup,cp |2 f(z)| < 0o and lim,_,« |z| = 0o, it is immediate
that lim, oo f(2) = 0. Similarly lim,_, o f(z) = 0. Thus f € Cy(R).
Now let

My =sup|z®f(z)| and My =sup|f(x)|.
z€R z€R

Define b(x) = min(Myz~2, Ms). Then b € L*(R) and |f| < b, so f € L}(R). O

Lemma 5. The space S is a vector space, and if f € S then the functions f’ and
x> xf(x) are in S.
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Proof. 1t is obvious that S is a vector space. It is also obvious that if f € S then
fles.
Now let f € S, and set g(x) = zf(z). An induction argument shows that

o) () = 7 (z) + mf ) 2)
for every m € Z~¢ and x € R. Therefore
sup |2"g\"™ ()] < sup |z ) (2)] 4 sup [ma™ £ (z)] < oo
T€R z€R zeR
Thus g € S. (]

The next lemma is the reverse of Theorem 9.2(f) of Rudin.

Lemma 6. Let f € L'(R) N Cy(R), and suppose that also f’ and x — zf(z) are
in LY(R) N Co(R). Then F(f")(t) = itF(f)(t) for all t € R.

Proof. We have
1 > ,
F’t:—/ e M f(x) da.
(0= 7= [ er@
Integrate by parts, using
lim e " f(z) = lim e “*f(x) =0,

T—r00 r—r—00

and the fact that z + xf(z) is in L}(R). O

Proposition 7. If f € S then fG S.

Proof. For m,n € Zzq set gmn(t) = t"(F(f))™(t), set fumo(z) = (—iz)™ f(),
and set fp, () = (—z)"ff,% It suffices to prove that g, ., € Co(R) for all m,n €
Z>¢. By repeated application of Theorem 9.2(f) of Rudin, using Lemmas 4 and 5
to verify its hypotheses at each step, we see that g, 0 = F(fm,0) for every m > 0.
Repeated application of Lemma 6, justified the same way, then shows that g, ,, =
F(fm,n) for every m,n > 0. Now gy, , € Co(R) because it is the Fourier transform

of the L' function fo, . O

Proposition 8. If f € S then there is g € S such that F(g) = f.

Proof. For every h € S we have both h € L*(R) and F(h) € L*(R). Therefore the
Fourier inversion theorem applies, and shows that

) = = [ EB 0 de = F(P)(-0)

for all € R. (The second step follows by inspection.) Repeating, we get h =
F*(h). Three applications of Proposition 7 show that F3(f) € S, so g = F3(f) will
work. (]

Alternate proof of Proposition 8. Using the same method as in the first proof of
Proposition 8, we show that for every h € S we have h(z) = F(F(h))(—=z) for
all z € R. Now set g(z) = F(f)(—x) for all x € X. Proposition 7 shows that
F(f) € S. Tt is easy to check that if h € S then so is the function k(x) = h(—2)
for x € R, and moreover (details omitted) that F(k)(t) = F(f)(—t) for all t € R.
Therefore g € S and F(g)(t) = F2(f)(—z) = f(z) for all z € R. O
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It is clear that F'|g is injective, because F itself is injective.

Now we give some examples of elements of S. We give proofs for several of them
below. You need to give, with proof, a nonzero example.

(1) The zero function is trivially in S.

(2) f(x) = exp(—a?) defines an element of S. Moreover, if p is any polynomial,
or any trigonometric polynomial, then g(x) = p(x)exp(—x?) defines an
element of S. One can use other functions too. For example,

= —2?)vV1+22 an x —M
g(z) = exp(—2”)V/1 + 22 d h(z) = V1+ 22

both define elements of S.

Proving that g(x) = p(z) exp(—2?) defines an element of S amounts to
showing that x — 2™ exp(—2?) is bounded for every n € Zxq. This can be
done using standard estimates, but one clever way to do it is to use methods
of elementary calculus to show that the maximum value of |2" exp(—x?)|
oceurs at £4/n/2.

(3) More generally, all that was said in (2) is also true if the function exp(—z?)
is replaced by exp(—z2") for any n € Zg.

(4) Any C* function with compact support is in S. Here is an explicit example.
Fix a,b € R with a < b, and take

0 r<a
_ _ 1
flx) =< exp ( (i_a)(b_m)) a<x<b
0 b<ux.

We give a straightforward proof that if p is any polynomial function, then x +—
p(7) exp(—2?) defines an element of S. The proof is just as easy with exp(—z2")
in place of exp(—x?), so we give it in that generality.

Proposition 9. Let r € Z~ and let p: R — C be any polynomial function. Define
f(z) = p(x) exp(—2*") for z € R. Then f € S.

Proof. For m € Zsxq, define a polynomial function ¢,: R — C inductively by
go(z) = p(z) for all z € R and gpy1(x) = ¢, (z) — 2rz* g, (z) for all z € R.
An induction argument shows that f(™)(z) = g,,(x) exp(—2?") for m € Zs, and
x € R. Let d,, be the degree of g,,.

Let m,n € Z>o, and choose | € Z>¢ such that 2rl > d,, +n. Let M be the
sum of the absolute values of the coefficients of g,,. Then |g,,(z)| < M|z
|z] > 1 and |gm(2)] < M when |z| <1, so

dm when

lgm (2)] < Mrnaux(|a;\dm7 1) = M max(|z, l)d’”

for all x € R. For z € R, we have

- — o1k z2rt 1 , 1 ,
exp(2?") = o > max (1, l‘) > (l') max(1, z?"!) = (l') max(|z|, 1),

k=0
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so that
n Mlzlm 1)dm
s a7 £ (0)| = sup M@ Ml max(el 1)
z€R zer  exp(z?") z€R (f;) max(|x\,1) "
M1! 1)dm+n
é sup maX(|x|72 l) — Ml' sup maX(|x|7 l)dm-‘rn—?Tl.
z€R (Jz], 1) z€R

Since d,, +n—2rl < 0, this last expression is at most MI!. Thus sup,cp [2" f(™)(z)|
is finite. Since m,n € Z>( are arbitrary, we have shown that f € S. ]

Problem 10 (Rudin, Chapter 9, Problem 9). Let p € [1,00), let f € LP(R), and
define g: R — C by

x+1
so)= [ sy,
Prove that g € Cp(R). What can you say if f € L>®(R)?

Solution. We prove that g is continuous. Let ¢ € (1, oo] satisfy ]% + % = 1. We can
write

g(fU)Z/RX[z,zH](t)f(t) dt:/RX[o,u(t—x)f(t)dt
- / Xio (O (¢ + ) dt = / Xiou) (B)f—s () dt.
R R

Theorem 9.5 of Rudin implies that x — f_, is continuous from R to L?(R), and
X[0,1] € LY(R), so

T = / Xjo,1)(t) f—z(t) dt
R
is continuous.

We now claim that

lim g(z) = lim g(x)=0.

Let € > 0. Since [, |f(t)[P dt < oo, it follows that

> n+1

> / If ()P dt < .

n=—oo Y™

Therefore there exists N € Zsq such that whenever n € Z satisfies |n| > N, we
have
n+1 Ep
P dt < —.
| vera<3

Now let € R satisfy |z] > N 4 3. Then there exists n € Z such that [n| > N,
[n+1| > N, and [z, 4+ 1] C [n, n+ 2]. Therefore, using Holder’s inequality at the
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third step, we have

n+1 n+2
9(x)] < / ()] dt + / ()] dt

+1

- / Xim sy (DI (0)] i + / O
R R

n+1 1/p n+2 1/p
snx[n,nﬂ]nq(/ If(t)l”dt> +|x[n+1,n+2]||q</ If(t)”dt>

+1
4 1/p &b 1/p
<(2,,) +(2p) -

This proves the claim, and we conclude that g € Cy(R).

Suppose now that f € L>®°(R). We claim that g is bounded and uniformly
continuous, but need not vanish at oo.

For the last part, taking f(x) = 1 for all z € R gives g(z) = 1 for all x € R.
Boundedness follows from the estimate

r+1
sl < [ 1f0]d <))

To prove uniform continuity, we write

o(z) = / N o) () (8) dt = / Xio)(t — ) f(t) dt = / (o) () F (2) dt.

Theorem 9.5 of Rudin implies that  — (x[0,1))« is continuous from R to L*(R),
and f € L®(R), so
o [ oafo)de

is uniformly continuous. (This argument actually works whenever p € (1, 00|, but
not for p = 1.) O



