
MATH 618 (SPRING 2025): FINAL EXAM SOLUTIONS

For some solutions, essentially no proofreading has been done.

1. (a) (10 points) State Rouché’s Theorem.

Solution. Theorem 10.43(b) of Rudin: Let Ω ⊂ C be open, let γ be a closed path
in Ω such that Indγ(z) = 0 for all z ∈ C \ Ω and Indγ(z) ∈ {0, 1} for all z ∈
C \ Ran(γ), and let f, g : Ω → C be holomorphic functions. Suppose that |f(z) −
g(z)| < |f(z)| for all z ∈ Ran(γ). Then f and g have the same number of zeroes,
counting multiplicity, in the set

{
z ∈ C : Indγ(z) = 1

}
. �

The hypothesis Indγ(z) ∈ {0, 1} for all z ∈ C \Ran(γ) is essential. Also, “count-
ing multiplicity” is essential.

The version stated in class was for a cycle in Ω, which is more general. This
version is perfectly acceptable.

It is not required to give the statement of Theorem 10.43(a) of Rudin.

(b) (10 points) State the Residue Theorem.

Solution. Theorem 10.42 of Rudin: Let Ω ⊂ C be open, and let f be a meromorphic
function on Ω. Let A be the set of points in Ω at which f has poles. Let Γ be a
cycle in Ω \A such that IndΓ(z) = 0 for all z ∈ C \ Ω. Then

1

2πi

∫
Γ

f(z) dz =
∑
a∈A

IndΓ(a)Res(f ; a).

�

(c) (10 points) State the Maximum Modulus Theorem.

Solution. Theorem 10.24 of Rudin: Let Ω ⊂ C be a region, and let f : Ω → C be
holomorphic. Let a ∈ Ω, and let r > 0 satisfy{

z ∈ C : |z − a| ≤ r
}
⊂ Ω.

Then

f(a) ≤ sup
θ∈[0,2π]

|f(a+ reiθ)|.

If equality holds, then f is constant. �

This is Rudin’s statement. I will also give most of the credit for the more
traditional statement (which is formally weaker): Let Ω ⊂ C be a region, and let
f : Ω→ C be holomorphic. If |f | has a local maximum in Ω, then f is constant.

2. (25 points) Let f, g ∈ L1(R). Assume that supp
(
f̂
)
⊂ (0,∞) and that

supp
(
ĝ
)
⊂ (−∞, 0). Prove that (f ∗ g)(x) = 0 for almost every x ∈ R.
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Solution. Set h = f ∗g. Then h ∈ L1(R) and ĥ = f̂ · ĝ. This product is zero because

supp(f̂) ∩ supp(ĝ) = ∅. Since ĥ = 0, the function h must be the zero element of
L1(R). �

3. (40 points) Suppose f : D → C is a holomorphic function on the open unit
disk D = {z ∈ C : |z| < 1}. If f is injective on D \ {0}, prove that f is injective
on D.

Solution. Suppose f is not injective on D. Then there exists z0 ∈ D \{0} such that
f(z0) = f(0). Choose disjoint open subsets V,W ⊂ D such that 0 ∈ V and z0 ∈W .
Clearly f is not constant, so f is an open mapping, and f(V ) and f(W ) are open.
Now f(0) ∈ f(V )∩f(W ), and {f(0)} is not open, so there is some w ∈ f(V )∩f(W )
with w 6= f(0). There are a ∈ V and b ∈ W such that f(a) = f(b) = w. Clearly
a 6= b and neither a nor b is zero. So f is not injective on D \ {0}. �

Alternate solution. If f ′ is constant, then either f is constant or there are a, b ∈ C
such that f(z) = az + b for all z ∈ D. In either case, the statement of the problem
is clear. So we can assume f ′ is not constant. Replacing f by f − f(0), we can
further assume that f(0) = 0.

Suppose f is not injective on D. Then there exists z0 ∈ D \ {0} such that
f(z0) = 0. Choose r such that |z0| < r < 1. Set C = 1

2 inf |z|=r |f(z)|. Since f is
injective on D \ {0} and f(z0) = 0, it follows that f(z) 6= 0 when |z| = r, so C > 0.
Choose δ > 0 such that δ < r and such that |z| < δ implies |f(z)| < C. Since f ′

is not constant, its zeros are isolated, and there is w ∈ D such that 0 < |w| < δ
and f ′(w) 6= 0. Therefore the function g(z) = f(z)− f(w) has a simple zero at w.
Since w 6= 0, the injectivity hypothesis implies that g has no other zeros in D.

When |z| = r, we have

|g(z)− f(z)| = |f(w)| < C < |f(z)|.

So Rouché’s Theorem implies that f and g have the same number of zeros in
{z ∈ C : |z| < r}, counting multiplicity. But we saw that g has only one zero, which
has multiplicity 1, while f has at least two zeros. This contradiction shows that f
is injective on D. �

Second alternate solution (sketch). In the alternate solution, instead of using f ′ not
constant to choose w, choose w arbitrarily and use the fact that if f − f(w) has a
zero at w of multiplicity more than 1, then f is not injective on any neighborhood
of w. �

4. (30 points) Let f be a bounded holomorphic function on C \ {i,−i}. Prove
that f is constant.

Solution. The function f is bounded on a neighborhood of i, so has a removable
singularity at i. Similarly, f has a removable singularity at −i. Thus there exists
an entire function g such that g|C\{i,−i} = f . Clearly g is bounded. Therefore g is
constant, by Liouville’s Theorem. It follows that f is constant. �

5. (35 points) Set Ω = {z ∈ C : Re(z) > −2}. Let f be a holomorphic function
on Ω such that f

(
1
n

)
= f

(
− 1

n

)
for n ∈ Z>0. Prove that there exists an entire

function g such that g|Ω = f .
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Solution. Set Ω0 = {z ∈ C : Re(z) < 2}, and define h : Ω0 → C by h(z) = f(−z) for
z ∈ Ω0. Then h is holomorphic. Moreover, h|Ω∩Ω0 and f |Ω∩Ω0 are two holomorphic
functions on Ω ∩ Ω0 which agree on the set

B =
{

1
n : n ∈ Z>0

}
.

The set Ω∩Ω0 is a connected open subset of C, and B has a cluster point in Ω, so
h|Ω∩Ω0 = f |Ω∩Ω0 . Therefore there is a holomorphic function g on Ω ∪Ω0 = C such
that g|Ω = f and g|Ω0

= h. �

6. (40 points) Let f be an entire function. Suppose that there are constants C
and M such that |f(z)| ≤ C +M |z| whenever Im(z) ≥ 0, and further suppose that
limr→∞ f(rz) exists whenever Im(z) > 0. Prove that

lim
r→∞

∫ r

−r

f(x)

1 + x2
dx

exists.

Solution. For r > 0, define paths γr : [−r, r]→ C, ρr : [0, π]→ C and σr : [π, 2π]→
C by γr(t) = t for t ∈ [−r, r], ρr(t) = eit for t ∈ [0, π], and σr(t) = eit for t ∈ [π, 2π].
Then [γr] + [ρr], [ρr] + [σr], and [γr]− [σr] are cycles.

The function

g(z) =
f(z)

1 + z2

is meromorphic on C, with (possibly removable) singularities at i and −i. We
have Ind[γr]+[ρr](−i) = 0, because the lower half plane is an unbounded set which
contains −i and is disjoint from Ran([γr] + [ρr]). Similarly Ind[γr]−[σr](i) = 0. For
r > 1, Theorem 10.11 of Rudin implies that Ind[ρr]+[σr](i) = 1, so

Ind[γr]+[ρr](i) = Ind[γr]−[σr](i) + Ind[ρr]+[σr](i) = 1.

It follows from the Residue Theorem that the function

r 7→
∫

[γr]+[ρr]

f(z)

1 + z2
dz

is constant on (1,∞) (with value 2πiRes(g; i)). Therefore it suffices to prove that

lim
r→∞

∫
ρr

f(z)

1 + z2
dz

exists.
We have ∫

ρr

f(z)

1 + z2
dz =

∫ π

0

f(reit)ireit

1 + (reit)2
dt.

Set

hr(t) =
f(reit)ireit

1 + (reit)2

for t ∈ [0, π] and r ∈ (1,∞). For t ∈ (0, π), we have Im(eit) > 0. Therefore
limr→∞ f(reit) exists, and it follows that limr→∞ hr(t) = 0. Thus hr(t) → 0
pointwise almost everywhere on [0, π]. Also, for r > 2 we have

∣∣1 + (reit)2
∣∣ ≥

r2 − 1 > 1
2r

2, so

|hr(t)| <
2|f(reit)| · r

r2
≤ 2(C +Mr)

r
≤ C + 2M.
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Since the constant function t 7→ C + 2M is integrable on [0, 2π], we can apply the
Dominated Convergence Theorem to conclude that, for every sequence (rn)n∈Z>0

in (2,∞) with limn→∞ rn = 0, we have

lim
n→∞

∫
ρrn

f(z)

1 + z2
dz = 0.

Therefore

lim
r→∞

∫
ρr

f(z)

1 + z2
dz = 0.

This completes the proof. �

One must use sequences in the Dominated Convergence Theorem, since the Dom-
inated Convergence Theorem does not work for more general nets.

One can use what in lecture was called the “path changing lemma” (Theorem
10.37 of Rudin’s book) to prove that Ind[γr]+[ρr](i) = 1, but the method described
is simpler.

(There really are functions f satisfying the hypotheses, such as f(z) = 1, f(z) =
eiz, and f(z) = zeiz. The function f(z) = z does not satisfy the hypotheses.)

Extra Credit. (30 extra credit points.) Let Ω ⊂ C be a bounded region such
that 0 ∈ Ω. Let µ be the restriction to Ω of planar Lebesgue measure on C = R2.
Prove that, among all holomorphic functions f : Ω → C such that f(0) = 0 and
|f(z)| < 1 for all z ∈ Ω, there is one which maximizes the value of

∫
Ω
|f | dµ.

Solution. Let F be the set of all holomorphic functions f : Ω→ C such that f(0) = 0
and |f(z)| < 1 for all z ∈ Ω. Then F is uniformly bounded, hence in particular
uniformly bounded on every compact set in Ω. Therefore F is a normal family, by
Theorem 14.6 of Rudin. Obviously F 6= ∅, since the zero function is in F .

Set

β = sup
f∈F

∫
Ω

|f | dµ.

Then β ≤ µ(Ω) <∞. Choose a sequence (fn)n∈Z>0 in F such that

lim
n→∞

∫
Ω

|fn| dµ = β.

Since F is a normal family, by passing to a subsequence, there is a holomorphic
function f : Ω→ C such that fn → f uniformly on compact subsets of Ω. Obviously
|f(z)| ≤ 1 for all z ∈ Ω, and f(0) = 0. Combining these two facts with the
Maximum Modulus Theorem, we get |f(z)| < 1 for all z ∈ Ω. Therefore f ∈ F .

Since fn → f pointwise and χΩ is integrable, the Dominated Convergence The-
orem implies that

lim
n→∞

∫
Ω

|fn| dµ =

∫
Ω

|f | dµ.

Therefore
∫

Ω
|f | dµ = β. �


