MATH 618 (SPRING 2025): FINAL EXAM SOLUTIONS

For some solutions, essentially no proofreading has been done.

1. (a) (10 points) State Rouché’s Theorem.

Solution. Theorem 10.43(b) of Rudin: Let Q C C be open, let v be a closed path
in © such that Ind(z) = 0 for all z € C\ Q and Ind,(z) € {0,1} for all z €
C\ Ran(y), and let f,g: © — C be holomorphic functions. Suppose that |f(z) —
g(z)| < |f(2)| for all z € Ran(vy). Then f and g have the same number of zeroes,
counting multiplicity, in the set {z € C: Ind,(z) = 1}. O

The hypothesis Ind, (z) € {0,1} for all z € C\ Ran(7) is essential. Also, “count-
ing multiplicity” is essential.

The version stated in class was for a cycle in €, which is more general. This

version is perfectly acceptable.
It is not required to give the statement of Theorem 10.43(a) of Rudin.

(b) (10 points) State the Residue Theorem.

Solution. Theorem 10.42 of Rudin: Let Q C C be open, and let f be a meromorphic
function on . Let A be the set of points in € at which f has poles. Let I' be a
cycle in Q\ A such that Indp(z) =0 for all z € C\ Q. Then

1 f(z)dz = Z Indr(a)Res(f;a).
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(¢) (10 points) State the Maximum Modulus Theorem.

Solution. Theorem 10.24 of Rudin: Let €2 C C be a region, and let f: Q2 — C be
holomorphic. Let a € 2, and let r > 0 satisfy

{zeC:lz—a|<r} Cc.
Then

fla) < sup [f(a+re?)|.
0€0,27]

If equality holds, then f is constant. O

This is Rudin’s statement. I will also give most of the credit for the more
traditional statement (which is formally weaker): Let Q@ C C be a region, and let
f: ©Q — C be holomorphic. If |f| has a local maximum in , then f is constant.

2. (25 points) Let f,g € L'(R). Assume that supp(f) C (0,00) and that
supp(ﬁ) C (=00, 0). Prove that (f x g)(z) = 0 for almost every = € R.
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Solution. Set h = f+g. Then h € L*(R) and h= f g. This product is zero because

supp(f) Nsupp(g) = @. Since h = 0, the function h must be the zero element of
L'(R). O

3. (40 points) Suppose f: D — C is a holomorphic function on the open unit
disk D = {z € C: |z| < 1}. If f is injective on D \ {0}, prove that f is injective
on D.

Solution. Suppose f is not injective on D. Then there exists zo € D\ {0} such that
f(z0) = £(0). Choose disjoint open subsets V, W C D such that 0 € V and zp € W.
Clearly f is not constant, so f is an open mapping, and f(V) and f(W) are open.
Now f(0) € f(V)Nf(W), and {f(0)} is not open, so there is some w € f(V)N f(W)
with w # f(0). There are a € V and b € W such that f(a) = f(b) = w. Clearly
a # b and neither a nor b is zero. So f is not injective on D \ {0}. O

Alternate solution. If f’ is constant, then either f is constant or there are a,b € C
such that f(z) = az+ b for all z € D. In either case, the statement of the problem
is clear. So we can assume f’ is not constant. Replacing f by f — f(0), we can
further assume that f(0) = 0.

Suppose f is not injective on D. Then there exists zg € D \ {0} such that
f(z0) = 0. Choose r such that 29| <7 < 1. Set C = 1 inf|,, |f(z)|. Since f is
injective on D\ {0} and f(z9) = 0, it follows that f(z) # 0 when |z| =, so C' > 0.
Choose § > 0 such that § < r and such that |z| < ¢ implies |f(z)] < C. Since f’
is not constant, its zeros are isolated, and there is w € D such that 0 < |w| < §
and f’(w) # 0. Therefore the function g(z) = f(z) — f(w) has a simple zero at w.
Since w # 0, the injectivity hypothesis implies that g has no other zeros in D.

When |z| = r, we have

l9(2) = F(2)| = [f(w)| < C <[ ()]

So Rouché’s Theorem implies that f and g have the same number of zeros in
{z € C: |z| < r}, counting multiplicity. But we saw that ¢g has only one zero, which
has multiplicity 1, while f has at least two zeros. This contradiction shows that f
is injective on D. O

Second alternate solution (sketch). In the alternate solution, instead of using f’ not
constant to choose w, choose w arbitrarily and use the fact that if f — f(w) has a
zero at w of multiplicity more than 1, then f is not injective on any neighborhood
of w. O

4. (30 points) Let f be a bounded holomorphic function on C\ {i, —i}. Prove
that f is constant.

Solution. The function f is bounded on a neighborhood of ¢, so has a removable
singularity at ¢. Similarly, f has a removable singularity at —i. Thus there exists
an entire function g such that glc\s,—s3 = f. Clearly g is bounded. Therefore g is
constant, by Liouville’s Theorem. It follows that f is constant. 0

5. (35 points) Set @ = {z € C: Re(z) > —2}. Let f be a holomorphic function
on ) such that f(%) = f( — %) for n € Z~o. Prove that there exists an entire

function g such that gl = f.
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Solution. Set Qy = {z € C: Re(z) < 2}, and define h: Qg — C by h(z) = f(—=z) for
z € Qg. Then h is holomorphic. Moreover, h|ong, and flonq, are two holomorphic
functions on N Qg which agree on the set

B={1:neZy}

The set Q2N Qp is a connected open subset of C, and B has a cluster point in €2, so
hlana, = flanq,- Therefore there is a holomorphic function g on QU Qy = C such
that glo = f and g|q, = h. O

6. (40 points) Let f be an entire function. Suppose that there are constants C
and M such that |f(z)| < C 4+ M|z| whenever Im(z) > 0, and further suppose that
lim,_, oo f(rz) exists whenever Im(z) > 0. Prove that

lim (2) dx
r—oo [_ . 1 —+ 11,‘2

exists.
Solution. For r > 0, define paths +,.: [-r,r] = C, p,: [0,7] — C and o,: [, 27] —
C by v,.-(t) = tfor t € [—r,7], ps(t) = €' for t € [0, 7], and o,.(t) = € for ¢t € [, 27].
Then [fy] + [or) [or] + [ov], and 3] — [ov] ave cyeles.
The function )
z

is meromorphic on C, with (possibly removable) singularities at ¢ and —i. We
have Indp,, j4(y,1(—%) = 0, because the lower half plane is an unbounded set which
contains —i and is disjoint from Ran([y,] + [p,]). Similarly Ind,,j_(s,1(i) = 0. For
r > 1, Theorem 10.11 of Rudin implies that Ind[,,j1[5,1(i) = 1, so

Indpy, 41,1 (7) = Indpy, 16,1 () + Indjp, 46,1 () = 1.
It follows from the Residue Theorem that the function
fe)

el (o) 1+ 22

T

is constant on (1, 00) (with value 2miRes(g;¢)). Therefore it suffices to prove that

=) 4,

lim
r—00 or 1 + 22
exists.
We have e
/ 1G) g [ It
o L+ 2 o 14 (re®)
Set ‘ ‘
() = f(re”)i?"e”
1+ (re®t)?

for t € [0,7] and r € (1,00). For t € (0,m), we have Im(e") > 0. Therefore
lim, oo f(re®) exists, and it follows that lim, ,o h.(t) = 0. Thus h,.(t) — 0
pointwise almost everywhere on [0,7]. Also, for » > 2 we have |1 + (reit)z‘ >
r?—1> %7"2, SO

ity .
- 2|f(re®)| - r < 2(C'+ Mr)

. < C+2M.

helt)] < =2
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Since the constant function ¢ — C' 4+ 2M is integrable on [0, 27], we can apply the
Dominated Convergence Theorem to conclude that, for every sequence (,)nez-,
in (2,00) with lim,,_,~ 7, = 0, we have

lim / f(z)2 dz = 0.
n—o0o0 Do 1 + z

Therefore

lim / f(z)2 dz = 0.
r—00 or 1 + z
This completes the proof. (I

One must use sequences in the Dominated Convergence Theorem, since the Dom-
inated Convergence Theorem does not work for more general nets.

One can use what in lecture was called the “path changing lemma” (Theorem
10.37 of Rudin’s book) to prove that Indy, j4(,,1() = 1, but the method described
is simpler.

(There really are functions f satisfying the hypotheses, such as f(z) =1, f(z) =
e, and f(z) = ze**. The function f(z) = z does not satisfy the hypotheses.)

Extra Credit. (30 extra credit points.) Let & C C be a bounded region such
that 0 € Q. Let p be the restriction to  of planar Lebesgue measure on C = R2.
Prove that, among all holomorphic functions f: Q@ — C such that f(0) = 0 and
|f(2)] <1 for all z €, there is one which maximizes the value of [, |f| dp.

Solution. Let F be the set of all holomorphic functions f: Q@ — C such that f(0) =0
and |f(z)] < 1 for all z € Q. Then F is uniformly bounded, hence in particular
uniformly bounded on every compact set in 2. Therefore F' is a normal family, by
Theorem 14.6 of Rudin. Obviously F' # &, since the zero function is in F'.

Set
5=sup [ |fld
fEF JQ

Then § < p(2) < co. Choose a sequence (fy)nez., in F such that

n—oo Q

Since F' is a normal family, by passing to a subsequence, there is a holomorphic
function f: Q — C such that f,, — f uniformly on compact subsets of 2. Obviously
lf(z)] < 1forall z € Q, and f(0) = 0. Combining these two facts with the
Maximum Modulus Theorem, we get |f(z)| < 1 for all z € Q. Therefore f € F.
Since f,, — f pointwise and xq is integrable, the Dominated Convergence The-

orem implies that
tiw [ \fulde= [ 1f1d

Therefore [, |f|dp = f. O



