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The first problem is about the Mean Value Theorem. The second is on a case in which L’Hopital’s
Rule appears to apply, but for which it does not actually work. We already did an example like
this one in the lecture of Monday 2 June, using methods like those on the worksheet of Tuesday
3 June. If we don’t get to this problem in class today (likely), do it at home.

1. Let f be a differentiable function defined on the open interval (0, 8). Suppose f(1) = 10 and
f ′(x) ≥ 5 for all x in (1, 4). What can you say about f(4)? Your answer should have one of the
forms

f(4) ≥ , f(4) > , f(4) ≤ , or f(4) < .

Solution. When f ′(x) ≥M for all x in (1, 4), we get f(4) ≥ f(1) +M(4− 1). So

f(4) ≥ f(1) + 5(4− 1) = 10 + 5 · 3 = 25.

In more detail, by the Mean Value Theorem, there is c in (1, 4) such that

f(4)− f(1)

4− 1
= f ′(c), that is, f(4)− f(1) = f ′(c)(4− 1).

But f ′(c) ≥ 5. �

Reminders on L’Hopital’s Rule.

Do NOT confuse L’Hopital’s Rule with the quotient rule!
Before using L’Hopital’s Rule, you must check that its hypotheses are satisfied!

A special case: if lim
x→∞

f(x) = ±∞ and lim
x→∞

g(x) = ±∞, and if lim
x→∞

f ′(x)

g′(x)
exists, then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

(Generally, one must have a fraction with an indeterminate form, such as “0
0” or “±∞±∞”.)

2. Consider lim
x→∞

2x

x+ sin(3x)
. Set f(x) = 2x and g(x) = x+sin(3x). Reminders for this problem:

lim
x→∞

cos(3x) does not exist (the function oscillates between −1 and 1) and, by the Squeeze Theorem,

lim
x→∞

sin(3x)

x
= 0.

(a) Find lim
x→∞

f(x).

Solution. Since lim
x→∞

x =∞, also

lim
x→∞

f(x) = lim
x→∞

2x =∞.

�
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(b) Find lim
x→∞

g(x).

Solution. Since lim
x→∞

x =∞ and, for all x, we have −1 ≤ sin(3x) ≤ 1, also

lim
x→∞

g(x) = lim
x→∞

(
x+ sin(3x)

)
=∞.

�

(c) Does lim
x→∞

2x

x+ sin(3x)
have an indeterminate form?

Solution. Yes, lim
x→∞

2x

x+ sin(3x)
has the indeterminate form “∞∞”. �

(d) Can we try L’Hopital’s Rule on lim
x→∞

2x

x+ sin(3x)
? Why?

Solution. Yes. It is the limit of a fraction, for which the limit has an indeterminate form. �

(e) What happens if we try L’Hopital’s Rule on lim
x→∞

2x

x+ sin(3x)
?

Solution. We have f ′(x) = 2 and g′(x) = 1 + 3 cos(3x). So we get

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞

2

1 + 3 cos(3x)
.

This limit doesn’t exist, because cos(3x) oscillates between −1 and 1. So L’Hopital’s Rule tells us
nothing.

Things are actually worse than they appear at first: the function q(x) =
2

1 + 3 cos(3x)
has infin-

itely many vertical asymptotes, namely whenever cos(3x) = −1
3 .

To illustrate, here is a graph.

Plot 
 1+ 3 cos 3 x

2
    for -0.1 < x <17.5

Related Queries:

integrate 2/(1 + 3 cos(3 x)) image mosaic image of 2/(1 + 3 cos(3 x))
2/(1 + 3 cos(3 x)) vs differentiate 2/(1 + 3 cos(3 x)) morphological erosion of image of 2/(1 + 3 cos(3 x))
unbounded periods for simple quadratic family
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Obviously the limit at ∞ does not exist, not even as ∞ or −∞. �

(f) Use some other method to find lim
x→∞

2x

x+ sin(3x)
. Hint: Multiply the numerator and denom-

inator by 1
x . We used this method on a similar problem in class Monday.

Solution. We have lim
x→∞

sin(3x)

x
= 0. (Squeeze Theorem.) So

lim
x→∞

2x

x+ sin(3x)
= lim

x→∞

1
x(2x)

1
x(x+ sin(3x))

= lim
x→∞

2

1 + sin(3x)
x

=
2

1 + limx→∞
sin(3x)

x

=
2

1 + 0
= 2.
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