

# WORKSHEET SOLUTIONS: L'HOPITAL'S RULE

Names and student IDs: Solutions  $[\pi\pi\pi-\pi\pi-\pi\pi\pi\pi]$

**Do NOT confuse L'Hopital's Rule with the quotient rule!**

**Before using L'Hopital's Rule, you must check that its hypotheses are satisfied!**

A special case: if  $\lim_{x \rightarrow a} f(x) = 0$  and  $\lim_{x \rightarrow a} g(x) = 0$ , and if  $\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$  exists, then

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$$

(Generally, one must have a fraction with an **indeterminate form**, such as " $\frac{0}{0}$ " or " $\frac{\infty}{\infty}$ ".)

1. Consider  $\lim_{x \rightarrow 0} \frac{e^{2x} - 1}{\sin(3x)}$ . In the above, we will take  $f(x) = e^{2x} - 1$  and  $g(x) = \sin(3x)$ .

(a) What is  $\lim_{x \rightarrow 0} (e^{2x} - 1)$ ?

*Solution.*  $\lim_{x \rightarrow 0} (e^{2x} - 1) = e^{2 \cdot 0} - 1 = 0$ . □

(b) What is  $\lim_{x \rightarrow 0} \sin(3x)$ ?

*Solution.*  $\lim_{x \rightarrow 0} \sin(3x) = \sin(3 \cdot 0) = 0$ . □

(c) Does  $\lim_{x \rightarrow 0} \frac{e^{2x} - 1}{\sin(3x)}$  have an indeterminate form?

*Solution.* Yes,  $\lim_{x \rightarrow 0} \frac{e^{2x} - 1}{\sin(3x)}$  has the indeterminate form " $\frac{0}{0}$ ". □

(d) Find  $\lim_{x \rightarrow 0} \frac{e^{2x} - 1}{\sin(3x)}$ .

*Solution.* Since the limit has an indeterminate form we may try L'Hopital's Rule. We have

$$\frac{d}{dx}(e^{2x} - 1) = 2e^{2x}, \quad \frac{d}{dx}(\sin(3x)) = 3\cos(3x), \quad \text{and} \quad \lim_{x \rightarrow 0} \frac{2e^{2x}}{3\cos(3x)} = \frac{2e^{2 \cdot 0}}{3\cos(3 \cdot 0)} = \frac{2}{3}.$$

Therefore, by L'Hopital's Rule,

$$\lim_{x \rightarrow 0} \frac{e^{2x} - 1}{\sin(3x)} = \lim_{x \rightarrow 0} \frac{2e^{2x}}{3\cos(3x)} = \frac{2}{3}.$$

□

2. Differentiate the function  $f(x) = \frac{e^{2x} - 1}{\sin(3x)}$ .

*Solution.* This problem has **nothing to do with L'Hopital's Rule!**. Use the quotient rule:

$$f'(x) = \frac{\frac{d}{dx}(e^{2x} - 1)\sin(3x) - (e^{2x} - 1)\frac{d}{dx}(\sin(3x))}{\sin^2(3x)} = \frac{2e^{2x}\sin(3x) - (e^{2x} - 1) \cdot 3\cos(3x)}{\sin^2(3x)}.$$

□

3. Consider  $\lim_{x \rightarrow 0} \frac{x}{x + 2}$ .

(a) What is  $\lim_{x \rightarrow 0} x$ ?

*Solution.*  $\lim_{x \rightarrow 0} x = 0$ . □

(b) What is  $\lim_{x \rightarrow 0} (x + 2)$ ?

*Date:* 4 June 2025.

*Solution.*  $\lim_{x \rightarrow 0} (x + 2) = 2$ . This is neither 0 nor  $\infty$ , so you can tell that L'Hopital's Rule **does not apply**.  $\square$

(c) Does  $\lim_{x \rightarrow 0} \frac{x}{x + 2}$  have an indeterminate form?

*Solution.* No. You get  $\frac{0}{2}$ .  $\square$

(d) Find  $\lim_{x \rightarrow 0} \frac{x}{x + 2}$ .

*Solution.* The function  $f(x) = \frac{x}{x + 2}$  is defined and continuous at 0, so

$$\lim_{x \rightarrow 0} \frac{x}{x + 2} = \frac{0}{0 + 2} = 0.$$

L'Hopital's Rule would give **the wrong answer** (namely 1).  $\square$

A different special case: **if**  $\lim_{x \rightarrow \infty} f(x) = \pm\infty$  **and**  $\lim_{x \rightarrow \infty} g(x) = \pm\infty$ , and if  $\lim_{x \rightarrow \infty} \frac{f'(x)}{g'(x)}$  exists, then

$$\lim_{x \rightarrow \infty} \frac{f(x)}{g(x)} = \lim_{x \rightarrow \infty} \frac{f'(x)}{g'(x)}.$$

(Generally, one must have a fraction with an **indeterminate form**, such as “ $\frac{0}{0}$ ” or “ $\frac{\pm\infty}{\pm\infty}$ ”.)

4. Consider  $\lim_{x \rightarrow \infty} \frac{x}{e^{8x} + 3x}$ .

(a) What should  $f(x)$  and  $g(x)$  be?

*Solution.*  $f(x) = x$  and  $g(x) = e^{8x} + 3x$ .  $\square$

(b) What is  $\lim_{x \rightarrow \infty} f(x)$ ?

*Solution.*  $\lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} x = \infty$ .  $\square$

(c) What is  $\lim_{x \rightarrow \infty} g(x)$ ?

*Solution.* Since  $\lim_{x \rightarrow \infty} e^{8x} = \infty$  and  $\lim_{x \rightarrow \infty} 3x = \infty$ , we have

$$\lim_{x \rightarrow \infty} g(x) = \lim_{x \rightarrow \infty} (e^{8x} + 3x) = \infty.$$

$\square$

(d) Does  $\lim_{x \rightarrow \infty} \frac{x}{e^{8x} + 3x}$  have an indeterminate form?

*Solution.* Yes,  $\lim_{x \rightarrow \infty} \frac{x}{e^{8x} + 3x}$  has the indeterminate form “ $\frac{\infty}{\infty}$ ”.  $\square$

(e) Find  $\lim_{x \rightarrow \infty} \frac{x}{e^{8x} + 3x}$ .

*Solution.* Since the limit has an indeterminate form we may try L'Hopital's Rule. We have

$$\frac{d}{dx}(x) = 1, \quad \frac{d}{dx}(e^{8x} + 3x) = 8e^{8x} + 3, \quad \lim_{x \rightarrow \infty} 1 = 1, \quad \text{and} \quad \lim_{x \rightarrow \infty} (e^{8x} + 3) = \infty.$$

Therefore  $\lim_{x \rightarrow \infty} \frac{1}{e^{8x} + 3} = 0$ . (This limit has the form “ $\frac{1}{\infty}$ ”, which is **not** an indeterminate form!)  $\square$

So, by L'Hopital's Rule,  $\lim_{x \rightarrow \infty} \frac{x}{e^{8x} + 3x} = \frac{1}{e^{8x} + 3} = 0$ .  $\square$