

WORKSHEET: DERIVATIVES AND LOCAL EXTREMUMS 2

Names and student IDs: _____

Recall that a differentiable function f is increasing on (a, b) exactly when $f'(x) \geq 0$ on (a, b) , and that f is decreasing on (a, b) exactly when $f'(x) \leq 0$ on (a, b) .

Let $k(x) = -x^3 - 9x^2 + 21x + 2$. We are going to identify the open intervals on which k is increasing, those on which k is decreasing, and all critical points, local minimums, and local maximums.

Recall that x is a critical point if $k'(x) = 0$ or $k'(x)$ does not exist.

1. Find $k'(x)$.
2. Find all critical points of k . (You should find two of them, both integers.)
3. Find the possible open intervals of increase and decrease for k . (There should be three such intervals.)
4. For each of the intervals above, determine whether k is increasing or decreasing on that interval.
5. Use the information above to determine, for each critical point, whether it is a local minimum or local maximum for k .
6. Use the second derivative test to determine, for each critical point, whether it is a local minimum or local maximum for k .