

MATH 251 (PHILLIPS) QUIZ 3, Tuesday 13 May 2025. 20 minutes; 20 points.

NAME: SOLUTIONS

Student id: $\pi\pi\pi-\pi\pi-\pi\pi\pi\pi$

Standard exam instructions apply. In particular, no calculators, no communication devices, and no notes except a 3×5 file card, written on both sides. Also, all notation must be correct, with “ $=$ ”, “ \lim ”, etc. everywhere they are supposed to be, and nowhere they are not supposed to be. Write answers on this page. Use the back if necessary.

1. (20 points) If $\cos(y) = (4x - y)^3 - \arctan(17)$, find $\frac{dy}{dx}$ by implicit differentiation. (You must solve for $\frac{dy}{dx}$.)

Solution. Let's write it with y as an explicit function $y(x)$ of x :

$$\cos(y(x)) = (4x - y(x))^3 - \arctan(17).$$

Differentiate both sides with respect to x , using the chain rule on both sides:

$$-\sin(y(x))y'(x) = 3(4x - y(x))^2 \frac{d}{dx}(4x - y(x)) = 3(4x - y(x))^2 (4 - y'(x)).$$

(The derivative of $\arctan(17)$ is zero because $\arctan(17)$ is a constant.)

Now solve for $y'(x)$:

$$\begin{aligned} -\sin(y(x))y'(x) &= 12(4x - y(x))^2 - 3(4x - y(x))^2 y'(x) \\ 3(4x - y(x))^2 y'(x) - \sin(y(x))y'(x) &= 12(4x - y(x))^2 \\ y'(x) &= \frac{12(4x - y(x))^2}{3(4x - y(x))^2 - \sin(y(x))}. \end{aligned}$$

This expression can't be further simplified.

For those who prefer the other notation, here it is written with $\frac{dy}{dx}$. Differentiate with respect to x , using the chain rule on both sides, just as before:

$$-\sin(y) \frac{dy}{dx} = 3(4x - y)^2 \frac{d}{dx}(4x - y) = 3(4x - y)^2 \left(4 - \frac{dy}{dx}\right).$$

(The derivative of $\arctan(17)$ is zero because $\arctan(17)$ is a constant.)

Now solve for $\frac{dy}{dx}$:

$$\begin{aligned} -\sin(y) \frac{dy}{dx} &= 12(4x - y)^2 - 3(4x - y)^2 \frac{dy}{dx} \\ 3(4x - y)^2 \frac{dy}{dx} - \sin(y) \frac{dy}{dx} &= 12(4x - y)^2 \\ \frac{dy}{dx} &= \frac{12(4x - y)^2}{3(4x - y)^2 - \sin(y)}. \end{aligned}$$

As before, this expression can't be further simplified. \square