

WORKSHEET SOLUTIONS: INFINITE LIMITS

Names and student IDs: Solutions $\pi\pi\pi-\pi\pi-\pi\pi\pi\pi$

Recall: We say $\lim_{x \rightarrow a} f(x) = \infty$ (even though ∞ is not a number) if one can force $f(x)$ to be as large as one wants by requiring that x be close enough to a . In particular, f has a vertical asymptote at $x = a$, near which the graph goes up on both sides. Example: $\lim_{x \rightarrow 0} \frac{1}{x^2} = \infty$.

Plot this on your calculator to see, moving the screen around to show the parts of the function near $x = 0$.

Also look at the following table of values. You see that when x is close to zero (with either $x > 0$ or $x < 0$), then x^2 is positive and close to zero, and $\frac{1}{x^2}$ is positive and large.

x	x^2	$\frac{1}{x^2}$
1	1	1
0.1	0.01	100
0.01	0.0001	10,000
0.0001	0.00000001	100,000,000
-1	1	1
-0.1	0.01	100
-0.01	0.0001	10,000
-0.0001	0.00000001	100,000,000

Similar considerations give meanings to $\lim_{x \rightarrow a} f(x) = -\infty$, $\lim_{x \rightarrow a^-} f(x) = \pm\infty$, $\lim_{x \rightarrow \infty} f(x) = \pm\infty$, etc.

1. What are the following? Try computing some values if needed. After you have answered, look at calculator graphs to check.

Solution. a. $\lim_{x \rightarrow 0} \left(-\frac{1}{x^2} \right) = -\infty$.

Some values:

x	x^2	$-\frac{1}{x^2}$
1	1	-1
0.1	0.01	-100
0.01	0.0001	-10,000
0.0001	0.00000001	-100,000,000
-1	1	-1
-0.1	0.01	-100
-0.01	0.0001	-10,000
-0.0001	0.00000001	-100,000,000

When x is close to zero, then x^2 is very close to zero and positive, so $-\frac{1}{x^2}$ is very far from zero and **negative**. \square

Solution. b. $\lim_{x \rightarrow 0^-} \frac{1}{x} = -\infty$.

Some values:

x	$\frac{1}{x}$
-1	-1
-0.1	-10
-0.01	-100
-0.0001	-10,000

When x is close to zero **and negative**, then $\frac{1}{x}$ is very far from zero and **negative**. \square

Solution. c. $\lim_{x \rightarrow 0^-} \left(\frac{1}{x} + 45 \right) = -\infty$.

Some values:

x	$\frac{1}{x}$
-1	-44
-0.1	-35
-0.01	-55
-0.0001	-9955
-0.00001	-99,955

When x is close to zero **and negative**, then $\frac{1}{x}$ is very far from zero and **negative**, so also $\frac{1}{x} + 45$ is very far from zero and **negative**. \square

Solution. d. $\lim_{x \rightarrow 2^+} \frac{3}{x-2} = \infty$.

Some values:

x	$x-2$	$\frac{3}{x-2}$
3	1	3
2.1	0.1	30
2.01	0.01	300
2.0001	0.0001	30,000

When x is close to 2 **and** $x > 2$, then $x-2$ is close to zero and **positive**, so $\frac{3}{x-2}$ is very far from zero and **positive**. \square

Solution. e. $\lim_{x \rightarrow 2^+} \frac{x+1}{x-2} = \infty$.

Some values:

x	$x-2$	$\frac{1}{x-2}$	$x+1$	$\frac{x+1}{x-2}$
3	1	1	4	3
2.1	0.1	10	3.1	31
2.01	0.01	100	3.01	301
2.0001	0.0001	10,000	3.0001	30,001

When x is close to 2 **and** $x > 2$, then $x-2$ is close to zero and **positive**, and $x+1$ is close to 3, so $\frac{x+1}{x-2}$, like $\frac{3}{x-2}$, is very far from zero and **positive**. \square

Solution. f. $\lim_{x \rightarrow -\infty} (7x^2 + 1) = \infty$.

Some values:

x	x^2	$7x^2 + 1$
-1	1	8
-10	100	701
-100	10,000	70,001
-10,000	100,000,000	700,000,001

When x is very far from zero and negative (that is, x is negative and $|x|$ is very large), then $7x^2 + 1$ **positive** and very large. \square

2. Suppose $\lim_{x \rightarrow 3} f(x) = \infty$ and $\lim_{x \rightarrow 3} g(x) = \infty$. What can you say about $\lim_{x \rightarrow 3} (f(x) + g(x))$ and $\lim_{x \rightarrow 3} (f(x) - g(x))$?

Solution. $\lim_{x \rightarrow 3} (f(x) + g(x)) = \infty$. If both $f(x)$ and $g(x)$ are positive and very large, then so is $f(x) + g(x)$.

You can't say anything about $\lim_{x \rightarrow 3} (f(x) - g(x))$. As just one example, take $f(x) = \frac{1}{(x-3)^2}$ and $g(x) = \frac{1}{(x-3)^2} + 3\pi^4$. Then $\lim_{x \rightarrow 3} (f(x) - g(x)) = -3\pi^4$. This is an **indeterminate form**. \square