

WORKSHEET SOLUTIONS: IMPLICIT DIFFERENTIATION

Names and student IDs: Solutions $[\pi\pi\pi-\pi\pi-\pi\pi\pi\pi]$

Recall the chain rule: If g is differentiable at x and f is differentiable at $g(x)$, and if $h(x) = f(g(x))$ for all x (in a suitable open interval), then

$$h'(x) = f'(g(x)) \cdot g'(x).$$

1. Consider the problem: use implicit differentiation to find $\frac{dy}{dx}$: $x^2 + y^2 = 49$. You **must** solve for $\frac{dy}{dx}$. Read the discussion below before trying this problem!

1a. When you differentiate $x^2 + y^2 = 49$ or $x^2 + [y(x)]^2 = 49$ with respect to x , there is one term on which you will need the chain rule. Which term is it?

Solution. The term y^2 or $[y(x)]^2$, depending on which notation you use. □

1b. Differentiate $x^2 + y^2 = 49$ or $x^2 + [y(x)]^2 = 49$ with respect to x , remembering (if you use the first notation) that y is a function of x . Show an intermediate step, using $\frac{d}{dx}(\dots)$ notation.

Solution. Version 1: write y explicitly as a function of x , getting:

$$x^2 + y(x)^2 = 49$$

Differentiate, **remembering to use the chain rule**:

$$\begin{aligned} \frac{d}{dx}(x^2) + \frac{d}{dx}(y(x)^2) &= \frac{d}{dx}(49). \\ 2x + 2y(x)y'(x) &= 0 \end{aligned}$$

Version 2, in physicists' notation: Differentiate, **remembering to use the chain rule**:

$$\begin{aligned} \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) &= \frac{d}{dx}(49). \\ 2x + 2y \frac{dy}{dx} &= 0 \end{aligned}$$
□

If your solution contains $\cancel{\frac{dy}{dx}(x^2)}$ or $\cancel{\frac{dy}{dx}(y^2)}$, it is wrong!

1c. In the result you got above, solve for $\frac{dy}{dx}$ or $y'(x)$, depending on which notation you use.

Solution. Version 1, with y explicitly as a function of x :

$$\begin{aligned} 2x + 2y(x)y'(x) &= 0 \\ 2y(x)y'(x) &= -2x \\ y'(x) &= \frac{-2x}{2y(x)} = -\frac{x}{y(x)}. \end{aligned}$$

Version 2, in physicists' notation:

$$\begin{aligned} 2x + 2y \frac{dy}{dx} &= 0 \\ 2y \frac{dy}{dx} &= -2x \\ \frac{dy}{dx} &= \frac{-2x}{2y} = -\frac{x}{y}. \end{aligned}$$

□

2. If $y^3 = x^2 + \sin(y) + 5$, find $\frac{dy}{dx}$ by implicit differentiation. (You must solve for $\frac{dy}{dx}$.)

Steps:

2a. When you differentiate $y^3 = x^2 + \sin(y) + 5$ or $y^3 = x^2 + \sin(y(x)) + 5$ with respect to x , there are two terms on which you will need the chain rule. Which terms are they?

Solution. The terms y^3 and $\sin(y)$, or $[y(x)]^3$ and $\sin(y)$, depending on which notation you use. □

2b. Differentiate $y^3 = x^2 + \sin(y) + 5$ or $y^3 = x^2 + \sin(y(x)) + 5$ with respect to x , remembering (if you use the first notation) that y is a function of x . Show an intermediate step, using $\frac{d}{dx}(\dots)$ notation.

Solution. Version 1, with y explicitly as a function of x :

$$y(x)^3 = x^2 + \sin(y(x)) + 5$$

Differentiate, **remembering to use the chain rule**:

$$\begin{aligned} \frac{d}{dx}(y(x)^3) &= \frac{d}{dx}(x^2) + \frac{d}{dx}(\sin(y(x))) = \frac{d}{dx}(5). \\ 3y(x)^2y'(x) &= 2x + \cos(y(x))y'(x) \end{aligned}$$

Version 2, in physicists' notation: Differentiate, **remembering to use the chain rule**:

$$\begin{aligned} \frac{d}{dx}(y^3) &= \frac{d}{dx}(x^2) + \frac{d}{dx}(\sin(y)) = \frac{d}{dx}(5). \\ 3y^2 \frac{dy}{dx} &= 2x + \cos(y) \frac{dy}{dx} \end{aligned}$$

□

If your solution contains $\frac{dy}{dx}(y^3)$, $\frac{dy}{dx}(x^2)$, or $\frac{dy}{dx}(\sin(y))$, it is wrong!

2c. In the result you got above, solve for $\frac{dy}{dx}$ or $y'(x)$, depending on which notation you use.

Solution. Version 1, with y explicitly as a function of x :

$$\begin{aligned} 3y(x)^2y'(x) &= 2x + \cos(y(x))y'(x) \\ 3y(x)^2y'(x) - \cos(y(x))y'(x) &= 2x \\ (3y(x)^2 - \cos(y(x)))y'(x) &= 2x \\ y'(x) &= \frac{2x}{3y(x)^2 - \cos(y(x))} \end{aligned}$$

Version 2, in physicists' notation:

$$\begin{aligned} 3y^2 \frac{dy}{dx} &= 2x + \cos(y) \frac{dy}{dx} \\ 3y^2 \frac{dy}{dx} - \cos(y) \frac{dy}{dx} &= 2x \\ (3y^2 - \cos(y)) \frac{dy}{dx} &= 2x \\ \frac{dy}{dx} &= \frac{2x}{3y^2 - \cos(y)}. \end{aligned}$$

□