WORKSHEET SOLUTIONS: INVERSE FUNCTIONS

Names and student IDs: Solutions [rrm-mr-m7mT]

Recall the chain rule: If g is differentiable at x and f is differentiable at g(z), and if h(x) = f(g(x))
for all z (in a suitable open interval), then

W(x) = f'(9(x)) - g'(x).

You will also need tan’(z) = sec?(x).

1. First, just an example. Differentiate the function ¢(z) = arcsin(e™*), which is defined and
differentiable for x > 0.

Solution. Use the chain rule twice:
d d 1 d e "
() = — (arcsin(e ™)) = arcsin’(e *)— (¢ ¥) = ———€ " —(—2) = —————.
¢(2) = - (arcsin(e ™)) ) = e ) = s
This computation can’t be written using Leibniz notation throughout without using extra

letters, such as v = —z and u = e™%, so don’t try. O

Next, let’s find arctan’(z), from “scratch”.

2. Is it more useful to differentiate both sides of the equation of functions arctan(tan(z)) = x
(valid when —F < 2 < ) or tan(arctan(z)) = = (valid for all real )7 Remember that you will use
the chain rule, and you want arctan’(x) somewhere in the answer.

Solution. Differentiate both sides of tan(arctan(x)) = x. O
3. Carry out the differentiation from the previous step, and solve for arctan’(z).

Solution. Since tan(arctan(z)) = x is an equation of functions, we can differentiate both sides
with respect to . Use the chain rule on the left:
d

d
@(tan(arctan(@)) = %(x)

tan’(arctan(z)) arctan’(z) = 1
sec?(arctan(z)) arctan’(z) = 1
1
sec2(arctan(z))’

arctan’(z) =
U

4. Use a trigonometric identity to eliminate all trigonometric functions in the previous answer.
(The identity is less commonly used than the one needed for arcsin’(z), but the other steps are less
complicated.)
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Solution. The identity to use is sec?(f) = 1 + tan?(f). Put # = arctan(z), and remember that
tan(arctan(z)) = x for all real x, to get:

sec?(arctan(zr)) = 1+ tan?(arctan(z)) = 1 + 22.

Therefore
1 1

sec(arctan(x)) T 1422

arctan’(z) =
O

5. Now repeat for the inverse function @ (defined for all real ) of the function h(z) = 27 +x 4 6.
You won’t be able to simplify the way we did with arcsin’(z) and arctan’(z).

Solution. We have h(Q(z)) = x for all real x. Use the chain rule to differentiate the functions on
each side of the equation h(Q(z)) = =:

1= L (h(Q) = H(@@)Q @) = (106) + 1)@ w)
by 1
R T N
Using h(Q(x)) = = and the formula for h, one can rewrite this as
o Q(x)
@) = Tr —42 — 6Q(x)’

but that isn’t much of an improvement. O



