

WORKSHEET SOLUTIONS: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Names and student IDs: Solutions $[\pi\pi\pi-\pi\pi-\pi\pi\pi\pi]$

Recall the chain rule: If g is differentiable at x and f is differentiable at $g(x)$, and if $h(x) = f(g(x))$ for all x (in a suitable open interval), then

$$h'(x) = f'(g(x)) \cdot g'(x).$$

Also,

$$\frac{d}{dx}(e^x) = e^x \quad \text{and} \quad \frac{d}{dx}(\ln(x)) = \frac{1}{x}.$$

For each of the following functions, differentiate the function and simplify the derivative, or else tell me that no differentiation rule you have seen so far applies:

1. $f(x) = x \ln(x) - x.$

Solution. Use the product rule: $f'(x) = \frac{d}{dx}(x) \ln(x) + x \ln'(x) - 1 = \ln(x) + x(\frac{1}{x}) - 1 = \ln(x).$ \square

2. $g(x) = e^{x^2+7x}.$

Solution. Use the chain rule. Write $e^y = \exp(y)$ for clarity. (This is standard notation.) So $g(x) = \exp(x^2 + 7x)$ and

$$g'(x) = \exp'(x^2 + 7x) \frac{d}{dx}(x^2 + 7x) = \exp(x^2 + 7x)(2x + 7) = (2x + 7)e^{x^2+7x}.$$

Note: $\exp(x^2 + 7x)2x + 7$ is wrong, because of missing parentheses. \square

3. $q(x) = \ln(x^2 + e^x).$

Solution. Use the chain rule:

$$q'(x) = \ln'(x^2 + e^x) \frac{d}{dx}(x^2 + e^x) = \left(\frac{1}{x^2 + e^x} \right) (2x + e^x) = \frac{2x + e^x}{x^2 + e^x}.$$

This expression can't be further simplified. (See the Midterm Zero problems.) \square

4. $s(x) = e^{x^2 \sin(x)}.$

Solution. Use the chain rule and the product rule. Write $e^y = \exp(y)$. Then

$$\begin{aligned} s'(x) &= \exp'(x^2 \sin(x)) \frac{d}{dx}(x^2 \sin(x)) \\ &= \exp(x^2 \sin(x)) (2x \sin(x) + x^2 \cos(x)) = e^{x^2 \sin(x)} (2x \sin(x) + x^2 \cos(x)). \end{aligned}$$

□

5. $p(x) = 7^x$.

Solution. No rule we have seen applies. (Not the power rule: that is for functions like x^7 , in which the exponent is a constant.)

It can, however, be done. Write $7 = e^{\ln(7)}$, so

$$7^x = (e^{\ln(7)})^x = e^{\ln(7)x} = \exp(\ln(7)x).$$

Now use the chain rule:

$$p'(x) = \exp'(\ln(7)x) \frac{d}{dx}(\ln(7)x) = \exp(\ln(7)x) \cdot \ln(7) = \ln(7) \cdot 7^x.$$

□

6. $a(x) = x^{\sin(x)}$.

Solution. No rule we have seen applies. (Not the power rule: that is for functions like x^7 , in which the exponent is a constant. Not the rule for e^x either: that is for functions like $e^{\sin(x)}$, in which the base is a constant.)

It can, however, be done. Write $x = e^{\ln(x)}$, so

$$x^{\sin(x)} = (e^{\ln(x)})^{\sin(x)} = e^{\ln(x) \sin(x)} = \exp(\ln(x) \sin(x)).$$

Now use the chain rule, and the product rule on the insides:

$$\begin{aligned} p'(x) &= \exp'(\ln(x) \sin(x)) \frac{d}{dx}(\ln(x) \sin(x)) \\ &= \exp(\ln(x) \sin(x)) (\ln'(x) \sin(x) + \ln(x) \sin'(x)) \\ &= \exp(\ln(x) \sin(x)) \left(\frac{\sin(x)}{x} + \ln(x) \cos(x) \right). \end{aligned}$$

□