

WORKSHEET SOLUTIONS: SQUEEZE THEOREM AND TRIGONOMETRIC DERIVATIVES

Names and student IDs: Solutions $[\pi\pi\pi-\pi\pi-\pi\pi\pi\pi]$

Solutions have not been properly proofread. Remember that there is extra credit for reporting errors!

Recall the Squeeze Theorem: if $f(x) \leq g(x) \leq h(x)$ on an open interval containing a , except at a itself, $\lim_{x \rightarrow a} f(x) = L$, and $\lim_{x \rightarrow a} h(x) = L$, then $\lim_{x \rightarrow a} g(x) = L$. In particular, $\lim_{x \rightarrow a} g(x)$ exists.

1. Does the Squeeze Theorem apply to $\lim_{x \rightarrow 0} x^4 \sin\left(\frac{1}{x^2}\right)$? If so, what do you take for $f(x)$, $g(x)$, and $h(x)$? If not, why not?

Solution. Yes. Since $-1 \leq \sin\left(\frac{1}{x^2}\right) \leq 1$ when $x \neq 0$, we can take, for $x \neq 0$,

$$f(x) = -x^4, \quad g(x) = x^4 \sin\left(\frac{1}{x^2}\right), \quad \text{and} \quad h(x) = x^4.$$

Then $f(x) \leq g(x) \leq h(x)$ for all $x \neq 0$, and $\lim_{x \rightarrow 0} f(x) = 0$ and $\lim_{x \rightarrow 0} h(x) = 0$, so

$$\lim_{x \rightarrow 0} x^4 \sin\left(\frac{1}{x^2}\right) = \lim_{x \rightarrow 0} g(x) = 0.$$

□

2. Does the Squeeze Theorem apply to $\lim_{x \rightarrow 0} (1 + x^4) \sin\left(\frac{1}{x^2}\right)$? If so, what do you take for $f(x)$, $g(x)$, and $h(x)$? If not, why not?

Solution. No. Since $-1 \leq \sin\left(\frac{1}{x^2}\right) \leq 1$ when $x \neq 0$, the plausible choices for $f(x)$, $g(x)$, and $h(x)$ are

$$f(x) = -(1 + x^4), \quad g(x) = (1 + x^4) \sin\left(\frac{1}{x^2}\right), \quad \text{and} \quad h(x) = 1 + x^4.$$

Then $f(x) \leq g(x) \leq h(x)$ for all $x \neq 0$, but unfortunately $\lim_{x \rightarrow 0} f(x) = -1$ and $\lim_{x \rightarrow 0} h(x) = 1$. These are not equal, so the Squeeze Theorem doesn't apply.

In fact, $\lim_{x \rightarrow 0} (1 + x^4) \sin\left(\frac{1}{x^2}\right)$ does not exist. (Try graphing the function with your calculator.)

□

3. Does the Squeeze Theorem apply to $\lim_{x \rightarrow 0} x^4 \left(1 + \sin\left(\frac{1}{x^2}\right)\right)$? If so, what do you take for $f(x)$, $g(x)$, and $h(x)$? If not, why not? (Be careful!)

Solution. Yes. Since $-2 \leq 1 + \sin\left(\frac{1}{x^2}\right) \leq 2$ when $x \neq 0$, we can take, for $x \neq 0$,

$$f(x) = -2x^4, \quad g(x) = x^4 \left(1 + \sin\left(\frac{1}{x^2}\right)\right), \quad \text{and} \quad h(x) = 2x^4.$$

Then $f(x) \leq g(x) \leq h(x)$ for all $x \neq 0$, and $\lim_{x \rightarrow 0} f(x) = 0$ and $\lim_{x \rightarrow 0} h(x) = 0$, so

$$\lim_{x \rightarrow 0} x^4 \left(1 + \sin\left(\frac{1}{x^2}\right)\right) = \lim_{x \rightarrow 0} g(x) = 0.$$

(Actually, you could even take $f(x)$ to be the constant function 0.)

□

Recall the derivatives of $\tan(x)$ and $\sec(x)$: $\tan'(x) = \sec^2(x)$ and $\sec'(x) = \sec(x) \tan(x)$.

4. Find $\frac{d}{dx}(\tan(x^3 + 5x))$.

Solution. Use the chain rule:

$$\frac{d}{dx}(\tan(x^3 + 5x)) = \tan'(x^3 + 5x) \frac{d}{dx}(x^3 + 5x) = \sec^2(x^3 + 5x)(3x^2 + 5).$$

(All parentheses in this solution are essential.) □

5. Find $\frac{d}{dt}(\sec(8t))$.

Solution. Use the chain rule:

$$\frac{d}{dt}(\sec(8t)) = \sec'(8t) \frac{d}{dt}(8t) = \sec(8t) \tan(8t) \cdot 8 = 8 \sec(8t) \tan(8t).$$

□