

WORKSHEET: CHAIN RULE

Names and student IDs: _____

Chain rule: If g is differentiable at x and f is differentiable at $g(x)$, and if

$$h(x) = f(g(x))$$

for all x (in a suitable open interval), then

$$h'(x) = f'(g(x)) \cdot g'(x).$$

Example for the chain rule: If $h(x) = \sin(x^3)$ then write $h(x) = f(g(x))$ with

$$f(u) = \sin(u) \quad \text{and} \quad g(x) = x^3.$$

Thus

$$h'(x) = f'(g(x)) \cdot g'(x) = \sin'(x^3) \cdot \frac{d}{dx}(x^3) = \cos(x^3) \cdot 3x^2 = 3x^2 \cos(x^3).$$

The last step is conventional. Caution: “ $\sin'(x^3)$ ” means you take the derivative of the sine function and evaluate it at x^3 . It does *not* mean $\frac{d}{dx}(\sin(x^3))$. The expression $\frac{d}{dx}(\sin(x^3))$ means $h'(x)$, the derivative with respect to x of the function whose value at x is $\sin(x^3)$.

Now differentiate the following functions, identifying the appropriate choices of f and g in the formula above. (If we don't get to these in class, do them at home.)

Let $w(x) = \cos(x^4)$. First, if we want to usefully write $w(x) = f(g(x))$, then

$$f(u) = \quad \text{and} \quad g(x) =$$

Now, if $w(x) = \cos(x^4)$ then $w'(x) =$

Let $p(x) = (x^{11} + 3x + 1)^{109}$. First, if we want to usefully write $p(x) = f(g(x))$, then

$$f(u) = \quad \text{and} \quad g(x) =$$

Now, $\frac{d}{dx}((x^{11} + 3x + 1)^{109}) =$