

WORKSHEET SOLUTIONS: PRODUCT AND QUOTIENT RULES

Names and student IDs: Solutions $[\pi\pi\pi-\pi\pi-\pi\pi\pi\pi]$

Recall the product rule: if f and g are differentiable for all x in a suitable open interval, then

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Also recall that, using **radians**,

$$\sin'(x) = \cos(x) \quad \text{and} \quad \cos'(x) = -\sin(x)$$

for all real x .

Use the product rule to differentiate the following functions.

1. $q(x) = 3x^7 \cos(x)$.

Solution. Write $q(x) = f(x)g(x)$ with

$$f(x) = 3x^7 \quad \text{and} \quad g(x) = \cos(x).$$

Thus:

$$\begin{aligned} q'(x) &= f'(x)g(x) + f(x)g'(x) = \frac{d}{dx}(3x^7) \cos(x) + 3x^7 \cos'(x) \\ &= 21x^6 \cos(x) + 3x^7(-\sin(x)) = 21x^6 \cos(x) - 3x^7 \sin(x). \end{aligned}$$

□

2. $P(t) = (27t^{10} + 3t - 8)(11t^6 - 101t^4)$. (Don't multiply anything out.)

Solution.

$$\begin{aligned} P'(t) &= \frac{d}{dt}(27t^{10} + 3t - 8)(11t^6 - 101t^4) + (27t^{10} + 3t - 8)\frac{d}{dt}(11t^6 - 101t^4) \\ &= (270t^9 + 3)(11t^6 - 101t^4) + (27t^{10} + 3t + 8)(66t^5 - 404t^3). \end{aligned}$$

□