

WORKSHEET SOLUTIONS: DERIVATIVES FROM THE DEFINITION

Names and student IDs: Solutions [πππ-ππ-ππππ]

1. Find $\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{2x^2 + x + 7}$.

Solution. Since $2 \cdot 3^2 + 3 + 7 = 28 \neq 0$, the function $f(x) = \frac{x^2 - x - 6}{2x^2 + x + 7}$ is defined and continuous at $x = 3$. Therefore

$$\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{2x^2 + x + 7} = \lim_{x \rightarrow 3} f(x) = f(3) = \frac{3^2 - 3 - 6}{2 \cdot 3^2 + 3 + 7} = \frac{0}{28} = 0.$$

Notation: in this computation, the expression “ $\lim_{x \rightarrow 3}$ ” must appear everywhere it is written and nowhere else, and may **never** have an equals sign immediately **after** it. \square

2. Find $\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{x^2 + x - 12}$.

Solution. Both the numerator and denominator have the value 0 when $x = 3$. Therefore the limit has the indeterminate form “ $\frac{0}{0}$ ”, so work is needed (if it can be done at all). Here, factor the numerator and denominator, and cancel common factors:

$$\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{x^2 + x - 12} = \lim_{x \rightarrow 3} \frac{(x-3)(x+2)}{(x-3)(x+4)} = \lim_{x \rightarrow 3} \frac{x+2}{x+4} = \frac{3+2}{3+4} = \frac{5}{7}.$$

Notation: in this computation, the expression “ $\lim_{x \rightarrow 3}$ ” must appear everywhere it is written and nowhere else, and may **never** have an equals sign immediately **after** it. \square

Recall: if f is a function defined on an open interval containing a , then the derivative of f at a is $f'(a) = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$, **if this limit exists**. (An alternate formulation is: the derivative of f at a is $f'(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}$, **if this limit exists**.)

3. Let $k(x) = x^2$ for all real numbers x . Find $k'(3)$ directly from the definition. (You should get $k'(3) = 6$.)

Solution. We find the limit of the difference quotient. Direct substitution gives the expression “ $\frac{0}{0}$ ”, which is an indeterminate form. Therefore we use the technique of cancelling common factors in the numerator and denominator to handle the resulting expression:

$$\begin{aligned} k'(3) &= \lim_{h \rightarrow 0} \frac{k(3+h) - k(3)}{h} = \lim_{h \rightarrow 0} \frac{(3+h)^2 - 3^2}{h} = \lim_{h \rightarrow 0} \frac{(3^2 + 2 \cdot 3 \cdot h + h^2) - 3^2}{h} \\ &= \lim_{h \rightarrow 0} \frac{6h + h^2}{h} = \lim_{h \rightarrow 0} \frac{(6+h)h}{h} = \lim_{h \rightarrow 0} (6+h) = 6. \end{aligned}$$

Notation: the parentheses in “ $\lim_{h \rightarrow 0} (6+h)$ ” are **essential**. \square

4. Let k be as above. Let a be an arbitrary real number. Find $k'(a)$ directly from the definition. (You should get $k'(a) = 2a$.)

Solution. We find the limit of the difference quotient. Direct substitution gives the expression $\frac{0}{0}$, which is an indeterminate form. Therefore we use the technique of cancelling common factors in the numerator and denominator to handle the resulting expression:

$$\begin{aligned} k'(a) &= \lim_{h \rightarrow 0} \frac{k(a+h) - k(a)}{h} = \lim_{h \rightarrow 0} \frac{(a+h)^2 - a^2}{h} = \lim_{h \rightarrow 0} \frac{(a^2 + 2ah + h^2) - a^2}{h} \\ &= \lim_{h \rightarrow 0} \frac{2ah + h^2}{h} = \lim_{h \rightarrow 0} (2a + h) = 2a. \end{aligned}$$

□

5. If $k(x) = x^2$ for all real numbers x , then for all real numbers x , we have $k'(x) = \underline{2x}$.

6. Expand the expression $(x+h)^3$.

Solution.

$$\begin{aligned} (x+h)^3 &= (x+h)(x+h)^2 = (x+h)(x^2 + 2xh + h^2) \\ &= (x^3 + 2x^2h + xh^2) + (x^2h + 2xh^2 + h^3) = x^3 + 3x^2h + 3xh^2 + h^3. \end{aligned}$$

□

7. Let $l(x) = x^3$ for all real numbers x . Let a be an arbitrary real number. Find $l'(x)$ directly from the definition. You should get $l'(x) = 3x^2$.

Solution. We find the limit of the difference quotient. Direct substitution gives the expression $\frac{0}{0}$, which is an indeterminate form. Therefore we use the technique of cancelling common factors in the numerator and denominator to handle the resulting expression:

$$\begin{aligned} l'(x) &= \lim_{h \rightarrow 0} \frac{l(x+h) - l(x)}{h} = \lim_{h \rightarrow 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \rightarrow 0} \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - x^3}{h} \\ &= \lim_{h \rightarrow 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \rightarrow 0} (3x^2 + 3xh + h^2) = 3x^2. \end{aligned}$$

□

8. For a nonnegative integer n , let $P_n(x)$ be the function $P_n(x) = x^n$ for all real numbers x . (Take $P_0(0) = 1$.)

You have seen $P'_0(x)$, $P'_1(x)$, $P'_2(x)$, and $P'_3(x)$. What do you think $P'_4(x)$ is? What do you think $P'_n(x)$ is?

Solution. The obvious guesses are $P'_4(x) = 4x^3$ and $P'_n(x) = nx^{n-1}$. These are in fact correct, even when n isn't an integer. □