

WORKSHEET: DERIVATIVES FROM THE DEFINITION

Names and student IDs: _____

1. Find $\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{2x^2 + x + 7}$.

2. Find $\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{x^2 + x - 12}$.

Recall: if f is a function defined on an open interval containing a , then the derivative of f at a is $f'(a) = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}$, if this limit exists. (An alternate formulation is: the derivative of f at a is $f'(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}$, if this limit exists.)

3. Let $k(x) = x^2$ for all real numbers x . Find $k'(3)$ directly from the definition. (You should get $k'(3) = 6$.)

4. Let k be as above. Let a be an arbitrary real number. Find $k'(a)$ directly from the definition. (You should get $k'(a) = 2a$.)

Continued on back or next page.

Date: 7 April 2025.

5. If $k(x) = x^2$ for all real numbers x , then for all real numbers x , we have $k'(x) = \underline{\hspace{2cm}}$.

Do the remaining problems at home after class if we run out of time.

6. Expand the expression $(x + h)^3$.

7. Let $l(x) = x^3$ for all real numbers x . Let a be an arbitrary real number. Find $l'(x)$ directly from the definition. You should get $l'(x) = 3x^2$.

8. For a nonnegative integer n , let $P_n(x)$ be the function $P_n(x) = x^n$ for all real numbers x . (Take $P_0(0) = 1$.)

You have seen $P'_0(x)$, $P'_1(x)$, $P'_2(x)$, and $P'_3(x)$. What do you think $P'_4(x)$ is? What do you think $P'_n(x)$ is?