

**MATH 251 (PHILLIPS) MIDTERM 0 EXTRA PROBLEM LIST SET 4
SOLUTIONS**

Warning: Not enough proofreading has been done! (People have gotten extra credit for catching previous errors.)

1. Suppose $g(x) = 2x^3 - 10x^2 + 2$. Find the exact value of $g(3)$.

Solution:

$$g(3) = 2(3)^3 - 10(3)^2 + 2 = 2(27) - 10(9) + 2 = 54 - 90 + 2 = -34.$$

2. Write as a single fraction, and simplify as much as possible: $\frac{1}{x+3} - \frac{1}{x-4}$

Solution:

$$\frac{1}{x+3} - \frac{1}{x-4} = \frac{x-4}{(x+3)(x-4)} - \frac{x+3}{(x+3)(x-4)} = \frac{x-4-x-3}{(x+3)(x-4)} = -\frac{7}{(x+3)(x-4)}.$$

3. Find all real solutions to the equation $\frac{e^x + x^3}{x^3} = 1$. If no real solution exists, write “no solution”.

Solution:

$$\begin{aligned} \frac{e^x + x^3}{x^3} &= 1 \\ e^x + x^3 &= x^3 \\ e^x &= 0. \end{aligned}$$

Since e^x can never be zero, there are no solutions.

4. Find all real numbers a such that $\frac{1}{|a|} = -\frac{1}{a}$.

Solution: Clearly we can't have $a = 0$. For $a \neq 0$, by taking reciprocals, we see that the equation is equivalent to $|a| = -a$. This is true if and only if $a \leq 0$. Since we must exclude $a = 0$ in the original equation, it follows that $\frac{1}{|a|} = -\frac{1}{a}$ if and only if $a < 0$.

5. Find all real solutions to the equation $x(x-1) = 20$. If no real solution exists, write “no solution”.

Solution:

$$\begin{aligned} x(x-1) &= 20 \\ x^2 - x &= 20 \\ x^2 - x - 20 &= 0 \\ (x+4)(x-5) &= 0 \\ x = -4 \quad \text{or} \quad x &= 5. \end{aligned}$$

Since there is no partial credit, no credit is given for only one of the two solutions.

6. Let $f(x) = 2 - x$. Evaluate the expression $f(x+3) - f(2x+1)$, and simplify it as much as possible.

Solution:

$$f(x+3) - f(2x+1) = 2 - (x+3) - (2 - (2x+1)) = 2 - x - 3 - 2 + 2x + 1 = x - 2.$$

7. Multiply out: $(6x - 2)(3x + 4)$.

Solution:

$$(6x - 2)(3x + 4) = 18x^2 + 24x - 6x - 8 = 18x^2 + 18x - 8.$$

8. Simplify the following expression as much as possible. If no simplification is possible, write “not possible”: $\frac{2t^2 + 2}{2t^2 + 6}$

Solution:

$$\frac{2t^2 + 2}{2t^2 + 6} = \frac{2(t^2 + 1)}{2(t^2 + 3)} = \frac{t^2 + 1}{t^2 + 3}.$$

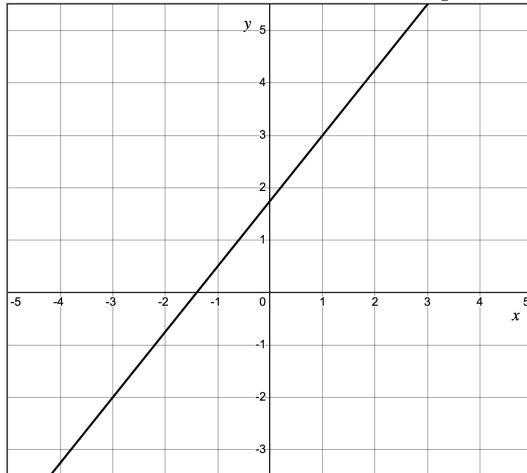
The last expression can't be further simplified.

9. Assuming $y > 0$, write the expression $\frac{\sqrt[7]{y}}{7}$ as a numerical constant (possibly a fraction) multiplied by a power of y . (y may not appear in a denominator.)

Solution:

$$\frac{\sqrt[7]{y}}{7} = \frac{1}{7}y^{1/7}.$$

10. Determine the exact value of the **slope** of the line in the graph below.



Solution: You can tell by reading the graph that the points $(x_1, y_1) = (-3, -2)$ and $(x_2, y_2) = (1, 3)$ are on the line. Therefore the slope is

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-2)}{1 - (-3)} = \frac{5}{4}.$$

Another approach is to simply observe from the graph that the line goes up 5 units for each 4 units to the right.