

MATH 251 (PHILLIPS) MIDTERM 0 EXTRA PROBLEM LIST SET 2
SOLUTIONS

Warning: Not enough proofreading has been done! (People have gotten extra credit for catching previous errors.)

1. Find all real solutions to the equation $\frac{6}{x} + \frac{7}{x^2} = 1$. If no real solution exists, write “no solution”.

Solution: This is a quadratic equation in $1/x$:

$$\begin{aligned} \frac{6}{x} + \frac{7}{x^2} &= 1 & \left(7\left(\frac{1}{x}\right) - 1\right)\left(\frac{1}{x} + 1\right) &= 0 \\ 7\left(\frac{1}{x}\right)^2 + 6\left(\frac{1}{x}\right) - 1 &= 0 & \frac{1}{x} = \frac{1}{7} & \text{ or } \frac{1}{x} = -1. \\ x = -1 & \text{ or } x = 7. \end{aligned}$$

Note that both answers actually are solutions to the original equation, that is, that multiplying both sides by x at the last step did not introduce any extraneous solutions.

Since there is no partial credit, no credit is given for only one of the two solutions.

Alternate solution: Multiply through by x^2 first, getting:

$$\begin{aligned} 6x + 7 &= x^2 & (x + 1)(x - 7) &= 0 \\ x^2 - 6x - 7 &= 0 & x = -1 & \text{ or } x = 7. \end{aligned}$$

Note that both answers actually are solutions to the original equation, that is, that multiplying both sides by x^2 at the first step did not introduce any extraneous solutions.

Since there is no partial credit, no credit is given for only one of the two solutions.

2. Simplify the following expression as much as possible. If no simplification is possible, write “not possible”: $\frac{x^3 + 7x}{x^3 + 2x}$

Solution:

$$\frac{x^3 + 7x}{x^3 + 2x} = \frac{x(x^2 + 7)}{x(x^2 + 2)} = \frac{x^2 + 7}{x^2 + 2}.$$

The last expression can't be further simplified.

3. Assuming $x > 0$, write the expression $\frac{x^2}{2\sqrt{x}}$ as a numerical constant (possibly a fraction) multiplied by a power of x . (x may not appear in a denominator.)

Solution:

$$\frac{x^2}{2\sqrt{x}} = \frac{x^2}{2x^{1/2}} = \frac{1}{2}x^{2-\frac{1}{2}} = \frac{1}{2}x^{3/2}.$$

4. Multiply out: $(y - 5)(y^2 + 3y - 2)$.

Solution:

$$(y - 5)(y^2 + 3y - 2) = y^3 - 5y^2 + 3y^2 - 15y - 2y + 10 = y^3 - 2y^2 - 17y + 10.$$

5. Let $f(x) = 7 - x$. Evaluate the expression $f(2 - x) - f(x)$, and simplify it as much as possible.

Solution:

$$f(2 - x) - f(x) = 7 - (2 - x) - (7 - x) = 7 - 2 + x - 7 + x = 2x - 2.$$

6. Find all real numbers a such that $|a + 2| = -a - 2$.

Solution: $|a + 2| = -a - 2$ if and only if $|a + 2| = -(a + 2)$. Since $|x| = -x$ if and only if $x \leq 0$, this happens if and only if $a + 2 \leq 0$, which is true if and only if $a \leq -2$.

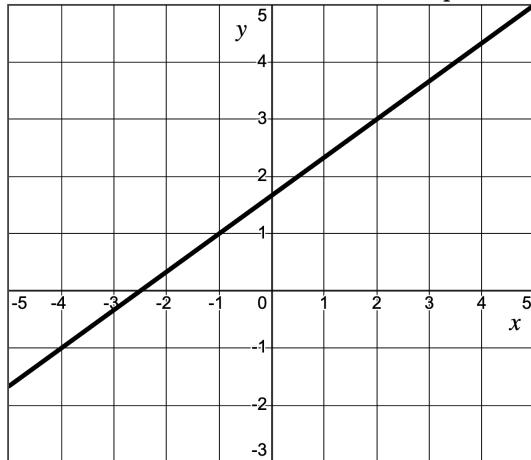
7. Find all real solutions to the equation $3y^{-3} = 0$. If no real solution exists, write “no solution”.

Solution: Multiply both sides by y^3 to get $3 = 0$. Therefore there are no solutions. (Alternatively, write $3y^{-3} = 3/y^3$, which can obviously never be zero.)

8. Suppose $f(x) = 2x^3 - 4x^2 - x$. Find the exact value of $f(-10)$.

Solution:

$$f(-10) = 2(-10)^3 - 4(-10)^2 - (-10) = 2(-1000) - 4(100) + 10 = -2000 - 400 + 10 = -2390.$$


9. Write as a single fraction, and simplify as much as possible: $\frac{2}{p+4} - \frac{1}{p+5}$

Solution:

$$\frac{2}{p+4} - \frac{1}{p+5} = \frac{2(p+5) - (p+4)}{(p+4)(p+5)} = \frac{2p+10-p-4}{(p+4)(p+5)} = \frac{p+6}{(p+4)(p+5)}.$$

10. Determine the exact value of the **slope** of the line in the graph below.

Solution: You can tell by reading the graph that the points $(x_1, y_1) = (2, 3)$ and $(x_2, y_2) = (-1, 1)$ are on the line. Therefore the slope is

$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{3 - 1}{2 - (-1)} = \frac{2}{3}.$$

Another approach is to simply observe from the graph that the line goes up two units for each three units to the right.