

MATH 251 (PHILLIPS) MIDTERM 0 EXTRA PROBLEM LIST SET 1
SOLUTIONS

Warning: Not enough proofreading has been done! (People have gotten extra credit for catching previous errors.)

1. Simplify the following expression as much as possible. If no simplification is possible, write “not possible”: $\frac{\sin(7x) + 7}{\sin(7x) - 7}$

Solution: The expression $\frac{\sin(7x) + 7}{\sin(7x) - 7}$ can't be simplified.

2. Assuming $c > 0$, write the expression $\frac{2}{3\sqrt[3]{c}}$ as a numerical constant (possibly a fraction) multiplied by a power of c . (c may not appear in a denominator.)

Solution:

$$\frac{2}{3\sqrt[3]{c}} = \frac{2}{3c^{1/3}} = \frac{2}{3} \cdot c^{-1/3}.$$

3. Find all real solutions to the equation $\frac{e^{-5x}}{x^2} = 0$. If no real solution exists, write “no solution”.

Solution: Multiply both sides by x^2 to get $e^{-5x} = 0$. Since e^{-5x} can never be zero there are no solutions.

(Alternatively, since e^{-5x} can never be zero, it is obvious that $\frac{e^{-5x}}{x^2}$ can never be zero.)

4. Let $g(x) = 7 - 4x$. Evaluate the expression $\frac{g(5+h) - g(5)}{h}$, and simplify it as much as possible.

Solution:

$$\frac{g(5+h) - g(5)}{h} = \frac{7 - 4(5+h) - (7 - 4 \cdot 5)}{h} = \frac{7 - 20 - 4h - 7 + 20}{h} = \frac{-4h}{h} = -4.$$

5. Write as a single fraction, and simplify as much as possible: $\frac{3}{x+4} - \frac{1}{x-5}$

Solution:

$$\frac{3}{x+4} - \frac{1}{x-5} = \frac{3(x-5) - (x+4)}{(x+4)(x-5)} = \frac{3x-15-x-4}{(x+4)(x-5)} = \frac{x-19}{(x+4)(x-5)}.$$

6. Find all real solutions to the equation $\frac{8}{x} - x = -2$. If no real solution exists, write “no solution”.

Solution:

$$\begin{aligned} \frac{8}{x} - x &= -2 \\ 8 - x^2 &= -2x \\ x^2 - 8 &= 2x \\ x^2 - 2x - 8 &= 0 \\ (x-4)(x+2) &= 0 \end{aligned}$$

$$x = 4 \quad \text{or} \quad x = -2.$$

Note that both answers actually are solutions to the original equation, that is, that multiplying both sides by x at the first step did not introduce any extraneous solutions.

Since there is no partial credit, no credit is given for only one of the two solutions.

7. Suppose $f(x) = 3x^3 + 4x^2 - 2x$. Find the exact value of $f(-2)$.

Solution:

$$f(-2) = 3(-2)^3 + 4(-2)^2 - 2(-2) = 3(-8) + 4(4) + 4 = -24 + 16 + 4 = -4.$$

8. Find the domain of the function $r(x) = (-x)^{-1/4}$.

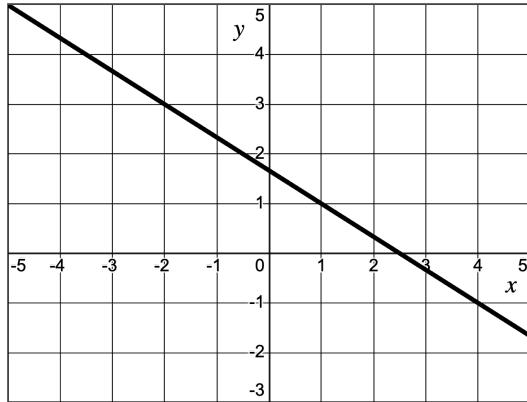
Solution: Rewrite $r(x) = \frac{1}{\sqrt[4]{-x}}$. We can now see that x is in the domain if and only if $-x \geq 0$ (so that $\sqrt[4]{-x}$ is defined) and $\sqrt[4]{-x} \neq 0$ (so that $\frac{1}{\sqrt[4]{-x}}$ is also defined). The first condition requires $x \leq 0$, and the second rules out $x = 0$, so the answer is all real x with $x < 0$.

9. Multiply out: $(3t - 2)(4t - 6)$.

Solution:

$$(3t - 2)(4t - 6) = 12t^2 - 18t - 8t + 12 = 12t^2 - 26t + 12.$$

10. Determine the exact value of the **slope** of the line in the graph below.



Solution: You can tell by reading the graph that the points $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (-2, 3)$ are on the line. Therefore the slope is

$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{1 - 3}{1 - (-2)} = \frac{-2}{3} = -\frac{2}{3}.$$

Another approach is to simply observe from the graph that the line goes down two units for each three units to the right.