

MATH 251: SUMMARY OF TOPICS

1. SUMMARY OF THE MAIN TOPICS

See the separate page about arithmetic you are expected to be able to do without a calculator. Also, remember that notation counts! See the separate notation page.

Here is a list of most of the topics of the course (not necessarily complete).

- (1) Understanding the meaning of the limit, both one sided and two sided, at finite values and at $\pm\infty$, and which have finite values, are $\pm\infty$, or do not exist and are not even $\pm\infty$. Understanding includes recognizing them from graphs and numerical interpretation, for example, how the values of $f(2.1)$, $f(2.01)$, $f(2.001)$, etc. and $f(1.9)$, $f(1.99)$, $f(1.999)$ etc. relate to $\lim_{x \rightarrow 2} f(x)$.
- (2) Limit laws, and finding limits of all the kinds above. We have seen many methods for doing this. See Section 2 for more.
- (3) Continuity, in particular, its relation to limits and recognizing continuity from the graph.
- (4) Definition, meaning, and interpretation of the derivative:
 - (a) $f'(a) = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$, if the limit exists.
 - (b) Limit of the slopes of secant lines to the graph.
 - (c) Slope of the tangent line to the graph.
 - (d) Recognizing differentiability (existence of a tangent line) from the graph.
 - (e) Instantaneous rate of change. The most common example is velocity, but there are many other rates of change, some of which don't involve time. (Acceleration is included here: it is the rate of change of velocity.)
 - (f) Linear approximation.
- (5) Applications of derivatives. Some examples, not already in (4):
 - (a) Shape of a graph:
 - (i) Critical points.
 - (ii) Local minimums and maximums.
 - (iii) Relation between the sign of the derivative and whether the function is increasing or decreasing.
 - (iv) Relations between the second derivative and concavity.
 - (v) Inflection points.

- (vi) Second derivative test for a local minimum or maximum.
- (b) Finding the maximum or minimum of a function on a closed bounded interval.
- (c) Applied maximization and minimization problems. (See the cartoon at the end.)
- (d) Related rates.
- (e) Using the Mean Value Theorem to get information about the change in a function from information about its derivative.

2. ADDITIONAL COMMENTS ON LIMITS

Warning: using L'Hopital's Rule when its hypotheses don't apply will result in getting the entire problem wrong. This could cost **half or more of a letter grade** on the final exam.

Warning: you will be expected to know that $\sin(0) = 0$, $\cos(0) = 1$, $\ln(e) = 1$, $a^0 = 1$ when $a \neq 0$, etc. **without using a calculator.** Getting these wrong may result in a misidentification of an indeterminate form, and thus getting an entire limit problem wrong, costing **half or more of a letter grade** on the final exam.

We have seen at least seven methods for calculating limits at finite values of the variable.

- (1) Direct substitution: if f is continuous at a , then $\lim_{x \rightarrow a} f(x) = f(a)$.
Always check first if this case applies!
- (2) Cancellation of common factors in a fraction.
- (3) Rationalization in a ratio containing roots.
- (4) Identifying vertical asymptotes, for example in a limit of the form $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ in which $g(a) = 0$ but $f(a) \neq 0$. (Vertical asymptotes also occur elsewhere. For example, $\lim_{x \rightarrow 0^+} \ln(x) = -\infty$.)
- (5) L'Hopital's Rule, but **only** for indeterminate forms!
- (6) Squeeze Theorem.
- (7) The limit does not exist because the function oscillates too much.
For example, $\lim_{x \rightarrow 0} \sin\left(\frac{1}{x}\right)$ does not exist. (But $\lim_{x \rightarrow 0} x \sin\left(\frac{1}{x}\right) = 0$ by the Squeeze Theorem.)

As an example, specifically for fractions, consider $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$. For the purposes of illustration, assume that f and g are both continuous at a . Then there are three possibilities.

(1) $g(a) \neq 0$. Then the function $q(x) = \frac{f(x)}{g(x)}$ is continuous at a , so

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} q(x) = q(a) = \frac{f(a)}{g(a)}.$$

This is true even if $f(a) = 0$.

(2) $g(a) = 0$ but $f(a) \neq 0$. Then the function $q(x) = \frac{f(x)}{g(x)}$ has a vertical asymptote at $x = a$. (The limit $\lim_{x \rightarrow \pi/2} \tan(x)$ is of this type.) This is **not** an indeterminate form, since no finite limit is possible. You expect the one sided limits $\lim_{x \rightarrow a^+} \frac{f(x)}{g(x)}$ and $\lim_{x \rightarrow a^-} \frac{f(x)}{g(x)}$ to be ∞ or $-\infty$. If they aren't both the same, then $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist, even as ∞ or $-\infty$.

(3) $g(a) = 0$ and $f(a) = 0$. This is an indeterminate form, and methods like cancelling common factors, rationalization, or L'Hopital's Rule might be useful. You can certainly try L'Hopital's Rule, but **only** in this case..

It may be that instead $\lim_{x \rightarrow a} f(x) = \pm\infty$, $\lim_{x \rightarrow a} g(x) = \pm\infty$, or both. Among these cases, only $\lim_{x \rightarrow a} f(x) = \pm\infty$ and $\lim_{x \rightarrow a} g(x) = \pm\infty$ is an indeterminate form, namely " $\frac{\pm\infty}{\pm\infty}$ ". But some other combinations, for example $\lim_{x \rightarrow a} f(x) = \pm\infty$ and $\lim_{x \rightarrow a} g(x) = 0$, that is, the form " $\frac{\pm\infty}{0}$ ", give vertical asymptotes.

We have seen a similar collection of methods for calculating limits at $\pm\infty$. First, here are examples of limits at infinity which we implicitly already knew before this course, for example just by looking at the graphs:

$$\lim_{x \rightarrow \infty} x = \lim_{x \rightarrow \infty} x^2 = \lim_{x \rightarrow \infty} x^3 = \lim_{x \rightarrow \infty} \sqrt{x} = \infty, \quad \text{etc.}$$

$$\lim_{x \rightarrow \infty} x = \lim_{x \rightarrow \infty} x^3 = \lim_{x \rightarrow \infty} x^5 = -\infty, \quad \text{etc.}$$

$$\lim_{x \rightarrow \infty} x^2 = \lim_{x \rightarrow \infty} x^4 = \lim_{x \rightarrow \infty} x^6 = \infty, \quad \text{etc.}$$

$$\lim_{x \rightarrow \infty} e^x = \infty, \quad \lim_{x \rightarrow -\infty} e^x = 0, \quad \lim_{x \rightarrow \infty} \ln(x) = \infty, \quad \lim_{x \rightarrow \infty} \arctan(x) = \frac{\pi}{2}, \quad \text{etc.}$$

$$\lim_{x \rightarrow \infty} \frac{1}{x} = \lim_{x \rightarrow \infty} \frac{1}{x^2} = \lim_{x \rightarrow \infty} \frac{1}{x^3} = \lim_{x \rightarrow \infty} \frac{1}{\sqrt{x}} = 0, \quad \text{etc.}$$

$$\lim_{x \rightarrow -\infty} \frac{1}{x} = \lim_{x \rightarrow -\infty} \frac{1}{x^2} = \lim_{x \rightarrow -\infty} \frac{1}{x^3} = 0, \quad \text{etc.}$$

Here are some of the methods we have seen.

(1) Limits of combinations of the functions appearing above gotten by using the limit laws and reasoning with $\pm\infty$ in ways analogous to the limit laws. (These are the analogs of both direct substitution in

continuous functions and some cases of identifying vertical asymptotes.)

- (2) Multiplying both numerator and denominator of a fraction by $\frac{1}{x^n}$, or similar things (for example, e^{-2x}). This is the analog of cancellation of common factors in a fraction.
- (3) L'Hopital's Rule, but **only** for indeterminate forms!
- (4) Squeeze Theorem.
- (5) The limit does not exist because the function oscillates too much. For example, $\lim_{x \rightarrow \infty} \sin(x)$ does not exist. (But $\lim_{x \rightarrow 0} \frac{\sin(x)}{x} = 0$ by the Squeeze Theorem.)

