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1. INTRODUCTION AND MOTIVATION

These notes are an introduction to group actions on C*-algebras and their crossed
products, primarily by discrete groups and with emphasis on situations in which the
crossed products are simple and at least close to the class of C*-algebras expected
to be classifiable in the sense of the Elliott program. They are aimed at graduate
students who have had a one semester or one year course on the general theory of
C*-algebras. (We give more details on the prerequisites later in this section.) These
notes are not intended as a reference work. Our emphasis is on explaining ideas and
methods, rather than on giving complete proofs. For some results, different proofs
are given at different locations in these notes, or special cases are proved of results
which are proved later in greater generality by quite different methods. For others,
some of the main ideas are explained and simpler versions of some of the relevant
lemmas are proved, but we refer to the research papers for the full proofs. Other
results and calculations are left as exercises; the reader is strongly encouraged to
do many of these, to develop facility with the material. Yet other results, needed
for the proofs of the theorems described here but not directly related to dynamics,
are quoted with only some general description, or with no background at all.

Before giving a general outline, we describe some of the highlights of our treat-
ment. We give a very large collection of examples of actions of groups on C*-algebras
(Part 1), and we give a number of explicit computations of crossed products (Sec-
tion 10). We give most or all of the proofs of the following results, including
background:

e The reduced C*-algebra of a finitely generated nonabelian free group is
simple (Theorem 6.6) and has a unique tracial state (Theorem 6.7).

e If G is an amenable locally compact group, then the map C*(G, A, ) —
Cr (G, A, ) is an isomorphism (Theorem 9.7; proved using the Fglner con-
dition).

e If G is a discrete group, then the standard conditinal expectation from
Cr (G, A, a) to A is faithful (Proposition 9.16(4); this is hard to find in the
literature).

e The crossed product of an AF algebra by a Rokhlin action of a finite group
is AF (Theorem 13.15).

e The crossed product of a simple tracially AF C*-algebra by a tracial Rokhlin
action of a finite group is tracially AF (Theorem 14.17).

e The reduced crossed product of a locally compact Hausdorff space by a
minimal and essentially free action of a discrete group is simple (Theo-
rem 15.10).
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We give substantial parts of the proofs of the following results, including the relevant
dynamics background:

e Let X be a finite dimensional infinite compact metric space, and let h: X —
X be a minimal homeomorphism. Suppose that the image of Ko(C*(Z, X, h))
is dense in Aff(T(C*(Z,X,h))). Then C*(Z, X, h) has tracial rank zero.
(See Theorem 16.1.) This includes the proof of Theorem 17.19, giving
the recursive subhomogeneous structure of the orbit breaking subalgebra
C*(Z, X, h)y of Definition 16.18 when ¥ C X is closed and int(Y) # &,
for which as far as we know a detailed proof has not been published.

e Let h: X — X be a minimal homeomorphism of a compact metric space.
Assume that there is a continuous surjective map from X to the Cantor
set. Then the radius of comparison of C*(Z, X, h) is at most half the mean
dimension of h. (See Theorem 23.14.)

We give a brief description of the contents. Parts 1 and 2 (Sections 2-10) are
quite elementary in nature. Part 1 gives many examples of group actions on C*-
algebras. Part 2 develops the theory of full and reduced group C*-algebras and full
and reduced crossed products, with full details given for discrete groups and some
indications of the theory for general locally compact groups. This part ends with
a number of explicit computations of crossed products by discrete groups.

Part 3 (Sections 11-14) is about structure theory for crossed products of simple
C*-algebras by finite groups. Section 11 discusses (giving some proofs, but not a
complete presentation) some of the relevant structural properties of C*-algebras. In
the rest of this part, we consider crossed products, primarily under the assumption
that the action has the Rokhlin property or the tracial Rokhlin property. The
presentation of the crossed product related machinery is fairly detailed but not
complete, and a few results from other parts of the theory of C*-algebras are used
with little indication of proof.

Part 4 (Sections 15-17) is a first look at minimal homeomorphisms of compact
metric spaces and their crossed products. We give a complete proof of simplicity
of reduced crossed products by essentially free minimal actions of discrete groups.
When we turn to stronger structure theorems, for the case of actions of Z, much
more outside material is needed, and our presentation accordingly becomes much
more sketchy.

In Part 5 (Sections 18-24), we discuss the machinery of large subalgebras, which
is used to prove further results about the structure of crossed products by mini-
mal homeomorphisms (and by free minimal actions of some other groups, as well
as automorphisms of some noncommutative C*-algebras). Large subalgebras are
motivated by the proofs in Section 16 and those sketched in Section 17. The theory
here is considerably more technical, and uses considerably more material from out-
side the theory of crossed products. In particular, the Cuntz semigroup plays a key
role in the statements of some results, and in the proofs of some results whose state-
ment does not mention the Cuntz semigroup. Our presentation here is accordingly
much less complete. In a number of cases, we give direct proofs of results which in
the original papers are derived from stronger results with more complicated proofs,
or we prove only special cases or simplified statements. These proofs are simpler,
but are still not simple. The hope is that the presentation here can serve as an
introduction to the machinery of large subalgebras, and enable beginners in the
area to better understand the research papers using this method.
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These notes are a greatly expanded version of lectures on crossed product C*-
algebras given at the Ottawa Summer School in Operator Algebras, 20-24 August
2007. It contains additional material from lectures given at the Fields Institute in
Fall 2007, from graduate courses given at the University of Oregon in Spring 2008
and Spring 2013 and at the University of Toronto in Winter 2014, and from lecture
series given in Lisbon, Seoul, Shanghai, Barcelona, Kyoto, and Laramie.

These notes are still rough. There are surely many remaining misprints and some
more serious errors. Some references are incomplete or missing entirely. There is no
index. Even given the omissions discussed below, there should have been, as just
one example, enough discussion of groupoids and their C*-algebras to identify the
orbit breaking subalgebras (Definition 16.18) of crossed products, used in Parts 4
and 5, as C*-algebras of open subgroupoids of the transformation group groupoid.
The author plans to keep a list of misprints, and a corrected and possibly expanded
version of these notes, on his website.

Developments in the theory of Part 5, and even to some extent in the theory of
Part 3, are quite rapid, and are faster than it is possible to keep up with in writ-
ing these notes. In particular, four extremely important developments are barely
mentioned here. One is the use of versions of the tracial Rokhlin property (for
both finite and countable amenable groups) which do not require the presence of
projections. Several more sections could be written in Part 3 based on these de-
velopments. The second is the importance of stability under tensoring with the
Jiang-Su algebra Z as a regularity condition. This condition is barely mentioned in
Part 3, and deserves a much more substantial treatment there. Third, essentially
nothing is said about higher dimensional Rokhlin properties, despite their impor-
tance even for finite groups and also as a competing method for obtaining results of
some of the same kinds as in Part 5. Finally, essentially nothing is said about clas-
sifiability and related weaker conditions for crossed products of simple C*-algebras
by infinite discrete groups, not even by Z. Our discussion of crossed products of
simple C*-algebras stops after considering finite groups, and the actions of infinite
groups we consider almost all come from actions on compact metric spaces.

These notes assume the basic theory of C*-algebras, including:

e The basics of representation theory (including states and the Gelfand-
Naimark-Segal construction).

e Type I C*-algebras.

e Some familiarity with nuclear C*-algebras.

e Direct limits and the usual examples constructed with them, such as UHF
algebras, AF algebras, AT algebras, and AH algebras.

e Tensor products of Hilbert spaces.

e Some familiarity with minimal and maximal tensor products of C*-algebras.

e The basics of C*-algebras given by generators and relations and the usual
elementary examples (such as M,,, C(S'), C(S!, M,,), the Toeplitz algebra,
and the Cuntz algebras).

e Multiplier algebras.

e The Double Commutant Theorem.

We will give some exposition of the following topics, but not enough to substitute
for a thorough presentation:

e Stable rank one.
e Real rank zero.
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Tracial rank zero.

The Cuntz semigroup.

Recursive subhomogeneous C*-algebras.

Dimension theory for compact metric spaces.

The mean dimension of a homeomorphism.

Graph C*-algebras.

There will be occasional comments assuming other material, but which are not
essential to the development:

e Larger values of topological stable rank, real rank, and tracial rank.

e K-theory. (C*-algebras satisfying the Universal Coefficient Theorem will
be mentioned moderately often.)

e Morita equivalence.

e Groupoids and their C*-algebras.

e Partial actions and their crossed products.

e Free products and reduced free products.

e Quasitraces.

In a number of places, we make comments which refer to later material. We encour-
age the reader to jump back and forth. Some statements are given without proof:
the proofs are either left as exercises or are beyond the scope of these notes. In
Part 2, although the definitions related to group C*-algebras and crossed products
are presented for actions of general locally compact groups, most of the proofs and
examples are restricted to the discrete case, which is often considerably easier.

Items labelled “Exercise” are intended to be done by the reader. Items labelled
“Problem” or “Question” are open questions.

By convention, all topological groups will be assumed to be Hausdorff. Homo-
morphisms of C*-algebras will be *-homomorphisms. We also use the following
terminology.

Definition 1.1. A Kirchberg algebra is a separable nuclear purely infinite simple
C*-algebra.

We don’t assume that a Kirchberg algebra satisfies the Universal Coefficient
Theorem.

We now give enough of the basic definitions related to group actions on C*-
algebras and locally compact spaces that the discussion in the rest of this section
will make sense.

Definition 1.2. Let G be a topological group, and let A be a C*-algebra. An action
of G on A is a group homomorphism a: G — Aut(A4), usually written g — ay, such
that, for every a € A, the function g — «,4(a), from G to A, is norm continuous.

The continuity condition is the analog of requiring that a unitary representation
of G on a Hilbert space be continuous in the strong operator topology. It is usually
much too strong a condition to require that g — a4 be a norm continuous map
from G to the bounded operators on A. For example, let G be a locally compact
group, and let a: G — Aut(Cy(G)) be the action given by o, (f)(k) = f(g~'k) for
f € Co(G) and g,k € G. We certainly want this action to be continuous. Suppose
g,h € G with g # h. Then |lagy — ay|| > 2, as can be seen by choosing f € Cy(G)
such that f(g~%) =1, f(h™') = —1, and || f|| = 1. Indeed, one gets

llg = anll > llag(f) = an(H)Il = lag(£H)(1) = an(HHDI = 1f(g™") = fF(R7)] = 2.
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(The inequality ||ag — ap|| < 2 is easy.) Thus, if G is not discrete, then g — ¢ is
never norm continuous.

Of course, if G is discrete, there is no difference between the continuity condi-
tions.

Isomorphism of actions is called conjugacy.

Definition 1.3. Let G be a group, let A and B be C*-algebras, and let a: G —
Aut(A) and B: G — Aut(B) be actions of G on A and B. A homomorphism
p: A — B is called equivariant if ¢ o g = B4 0 ¢ for all g € G. The actions « and
[ are called conjugate if there is an equivariant isomorphism p: A — B.

Equivariance means that the following diagram commutes for all g € G:

A2y 4

el
Bg
B ——— B.

Given a: G — Aut(A), we will construct in Section 8 below a crossed prod-
uct C*-algebra C*(G, A, «) and a reduced crossed product C*-algebra C*(G, A, «).
(There are many other commonly used notations. See Remark 8.19. We may omit
« if it is understood.) If A is unital and G is discrete, the crossed products are
a suitable completion of the algebraic skew group ring A[G], with multiplication
determined by gag~! = a4(a) for g € G and a € A. The main subject of these
notes is some aspects of the structure of crossed products. Earlier sections give a
large collection of examples of group actions on C*-algebras, and discuss the full
and reduced group C*-algebras, which are the crossed products gotten from the
trivial action of the group on C.

Just as locally compact spaces give commutative C*-algebras, group actions on
locally compact spaces give group actions on commutative C*-algebras.

Definition 1.4. Let G be a topological group, and let X be a topological space. An
action of G on X is a continuous function G x X — X usually written (g, x) — g -z
or (g,xz) — gz, such that (gh)x = g(hz) forall gyh € Gandz € X and 1 -z =z
for all x € X.

Discontinuous actions on spaces are of course also possible, but we will encounter
very few of them.

Definition 1.5. Let G be a topological group, let X be a locally compact Hausdorff
space, and let (g,z) — gz be an action of G on X. We define the induced action
of G on Cp(X), say a, by a,(f)(z) = f(g7'z) for g € G, f € Cp(X), and x € X.
(Exercise 1.6 asks for a proof that we really get an action.)

The inverse appears for the same reason it does in the formula for the left regular
representation of a group. If G is not abelian, the inverse is necessary to get agoay
to be agp, rather than apy. If K C X is a compact open set, so that its characteristic
function xx is in Co(X), then ay(xx) = XgK, DOt Xg-1k-

We write C*(G, X)) for the crossed product C*-algebra and C}(G, X) for the
reduced crossed product C*-algebra. We call them the transformation group C*-
algebra and the reduced transformation group C*-algebra.

Exercise 1.6. Let G be a topological group, and let X be a locally compact
Hausdorff space. Prove that the formulas given above determine a one to one



CROSSED PRODUCT C*-ALGEBRAS 7

correspondence between continuous actions of G on X and continuous actions of
G on Cy(X). (The main point is to show that an action on X is continuous if and
only if the corresponding action on Cy(X) is continuous.)

For the special case G = Z, the same notation is often used for the action
and for the automorphism which generates it. Thus, if A is a C*-algebra and
a € Aut(A), one often writes C*(Z, A, «). For a homeomorphism h of a locally
compact Hausdorff space X, one gets an automorphism « € Aut(Cy(X)), and thus
an action of Z on Cy(X). We abbreviate this crossed product to C*(Z, X, h).

We give some motivation for studying group actions on C*-algebras and their
crossed products.

(1) Let G be a locally compact group obtained as a semidirect product G =
N x H. The action of H on N gives actions of H on the full and reduced
group C*-algebras C*(N) and C}(N), and one has C*(G) = C*(H, C*(N))
and C*(G) 2 C¥(H, C*(N)).

(2) Probably the most important group action is time evolution: if a C*-
algebra A is supposed to represent the possible states of a physical system
in some manner, then there should be an action a: R — Aut(A) which
describes the time evolution of the system. Actions of Z, which are easier
to study, can be though of as “discrete time evolution”.

(3) Crossed products are a common way of constructing simple C*-algebras.
Here are some of the more famous examples.

e The irrational rotation algebras. See Example 10.25 below. They were
not originally defined as crossed products.

e The Bunce-Deddens algebras. See [39] or Section V.3 of [52]; one
crossed product realization is Theorem VIL.4.1 of [52], and another,
for a specific choice of Bunce-Deddens algebra, and using an action of
the dyadic rationals on the circle, can be found at the beginning of
Section VIIL.9 of [52].

e The reduced C*-algebra of the free group on two generators. See Sec-
tion VIL.7 of [52]; simplicity is proved in Theorem 6.6.

We will see other examples later.

(4) If one has a homeomorphism h of a locally compact Hausdorff space X,
the crossed product C*(Z,X,h) sometimes carries considerable informa-
tion about the dynamics of h. The best known example is the result of [94]
on minimal homeomorphisms of the Cantor set: isomorphism of the trans-
formation group C*-algebras is equivalent to strong orbit equivalence of the
homeomorphisms.

(5) For compact groups, equivariant indices take values in the equivariant K-
theory of a suitable C*-algebra with an action of the group. When the
group is not compact, one usually needs instead the K-theory of the crossed
product C*-algebra, or of the reduced crossed product C*-algebra. (When
the group is compact, this is the same thing.)

In other situations as well, the K-theory of the full or reduced crossed

product is the appropriate substitute for equivariant K-theory.

There are many directions in the theory of crossed products. These notes are
biased towards the general problem of understanding the structure of crossed prod-
ucts by finite groups, by Z, and by more complicated groups, in cases in which
these crossed products are expected to be simple, and, in good cases, classifiable
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in the sense of the Elliott program. I should at least mention some of the other
directions. Some of these are large and very active areas of research, some are
small but active areas of research, in some it seems that most of the theory has
been worked out, and some are just beginning. The list is not complete, and there
is also interesting work which doesn’t fit under any of these directions. Directions
of work on group actions which don’t involve crossed products (such as work on
classification of actions) are mostly not mentioned. The references provided are not
necessarily recent or representative of work in the subject; they are often just ones
I have managed to find, sometimes with the help of people in the area. Moreover,
some very active areas have very few references listed, perhaps only one or two
books or survey articles.

e The relation between the structure of a nonminimal homeomorphism and
the structure of its crossed product. See [280], [281], and [282]. The arti-
cle [272] is one example of more recent work in this direction.

e The structure of crossed products of continuous trace C*-algebras by ac-
tions for which the induced action on the primitive ideal space is proper.
See the textbook [236].

e Extensions of the notion of crossed product to coactions and actions of
C* Hopf algebras (“quantum groups”), and the associated duality theory.
The textbook [279] on quantum groups has a chapter on this subject. One
of the classic papers is [12], which uses the formalism of multiplicative
unitaries and, among other things, give a version of Takai duality for crossed
products by quantum groups. For a recent survey of this area, see [56]. For
one application (imprimitivity theorems, in connection with induction and
restriction of representations of quantum groups), see [287], and the earlier
paper [64].

e Crossed products twisted by cocycles. Cocycles can be untwisted by stabi-
lization, so such crossed products are stably isomorphic to ordinary crossed
products. See Corollary 3.7 of [192], with further applications in [193]. But
for some purposes, one doesn’t want to stabilize.

e Von Neumann algebra crossed products. There are several chapters on
group actions and crossed products in Volume 2 [277] and Volume 3 [278§]
of Takesaki’s three volume work on operator algebras. One direction with
major recent activity is the classification of von Neumann algebra crossed
products by ergodic measure preserving actions of countable nonamenable
groups on probability spaces, including cases in which the group and the
action can be recovered from the von Neumann algebra. See [119] for a
recent survey. The papers [225], [288], and [289] are older surveys. Two
of the important early papers in this direction are [223] and [224]. Two of
many more recent important papers are [226] and [118].

e Smooth crossed products. See [252] and [253] for some of the foundations.
See [175] and [71] for cyclic cohomology of crossed products by Z and R,
and see [216] for their K-theory.

e C*_algebras of groupoids, and crossed products by actions of groupoids on
C*-algebras. The original book is [238]; a more recent book is [196]. There
is much more work in this direction.

e Computation of the K-theory of crossed products, from the Pimsner-Voicu-
lescu exact sequences [221], [221] their generalization [219] and the Connes
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isomorphism [42] through the Baum-Connes conjecture. See [165] for a
survey of the Baum-Connes conjecture and related conjectures.

e The Connes spectrum and its generalizations. See [179], [180], [181], and
[141] for some of the early work for abelian groups. The Connes spectrum
for compact nonabelian groups was introduced in [97], and for actions of
compact quantum groups in [62]. These ideas have even been extended into
ring theory, in which there is no topology [188].

e The ideal structure of crossed products, without assuming analogs of free-
ness or properness. Much of Williams’ book [292] is related to this subject.
A generalization to groupoids can be found in [239]. See [256], [63], and [66]
for examples of more recent work. The Connes spectrum is also relevant
here.

e Structural properties of crossed products which are inspired by those related
to the Elliott program, but in cases in which neither the original algebra
nor the crossed product is expected to be simple. (See [194] and [195] for
some recent work, and [247], [95], [139], and [140] for a related direction.)

e Crossed products by endomorphisms, semigroups, and partial actions. The
book [82] will appear soon, and is already available on the arXiv. A recent
paper with some relation to problems considered here is [95].

e Semicrossed products: nonselfadjoint crossed products gotten from semi-
group actions on C*-algebras. This area has a long history, starting with
Arveson in the weak operator closed case [9] and with Arveson and Joseph-
son in the norm closed case [10]. See [55] and [54] for two much more recent
survey articles in the area, and [53] for a recent substantial paper.

e Crossed products by actions of locally compact groups on nonselfadjoint
Hilbert space operator algebras. This is a very new field, in effect started
in [133]. It already has applications to crossed products of C*-algebras;
see [132].

e L! crossed products, so far mostly of C'(X) by Z. See [58], [57], [145], and
references in these papers.

e Algebraic crossed products of C*-algebras by discrete groups, so far mostly
of C(X) by Z. See [269], [270], and [271].

e General Banach algebra crossed products. The beginnings of a general
theory appear in [59].

e Crossed products of algebras of operators on LP spaces. This is very recent.
See [212].

We will not touch at all on many of these directions. However, work on the structure
and classification of simple crossed products does not occur in isolation, and we
will need some information from some of the other directions, including K-theory,
groupoids, and partial actions.

The textbook references on crossed products that I know are Chapters 7 and 8
of [198] (very condensed; the primary emphasis is on properties of group actions
rather than of crossed products), [292] (quite detailed; the primary emphasis is on
ideal structure of general crossed products), and Chapter 8 of [52] (the primary
emphasis is on crossed products, especially by Z, as a means of constructing inter-
esting examples of C*-algebras). There are no textbooks with primary emphasis
on classification of crossed products or on crossed products by minimal homeomor-
phisms.
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The “further reading” section in the introduction of [292] gives a number of
references for various directions in the theory of crossed products which are treated
neither in [292] nor here.

I am grateful to Ken Davidson, Ruy Exel, Eusebio Gardella, Adrian Ioana,
Elias Katsoulis, Jae Hyup Lee, Hutian Liang, Adam Skalski, Stuart White, Dana
Williams, Guoliang Yu, and many others for comments, suggestions, answering
questions, finding misprints (many of which remain), and providing solutions to
problems left open in earlier versions.

Part 1. Group Actions
2. EXAMPLES OF GROUP ACTIONS ON LocALLY COMPACT SPACES

This is the first of three sections devoted to examples of group actions.

In this section, we give examples of actions on commutative C*-algebras. In
Section 3 we give a variety of examples of actions on noncommutative C*-algebras,
and in Section 4 we give an additional collection of examples of actions that are
similar to gauge actions.

Some general comments are in order. The main focus of the later part of these
notes is group actions a: G — Aut(A) for a locally compact group G on a C*-
algebra A such that the crossed product C*(G, A, ) or reduced crossed product
Cr (G, A, «) (as defined in Sections 8 and 9) is at least as complicated as A itself. In
particular, we usually want the (reduced) crossed product to be simple, and to be
purely infinite if A is. There are many interesting and sometimes very important
actions whose nature is quite different, and in our examples we do not discriminate:
we give a very broad collection.

We make some comments (without proof) about the kinds of crossed products
one gets. These don’t make sense without knowing at least a little about crossed
products (Sections 8 and 9), so it is useful to come back to the examples after
reading much farther into these notes. Some of the comments made will be proved
in the later part of these notes, but for many no proof will be given at all. For
actions of compact groups, the crossed product is often closely related to the fixed
point algebra A% (or A when necessary to avoid confusion), given by

A% ={a€ A: ay(a) = a for all g € G}.

Instead of commenting on the crossed product, we therefore sometimes comment
on the fixed point algebra.

There is one way in which we do discriminate. Crossed products only exist for
actions of locally compact groups, because the group must have a Haar measure.
With very few exceptions, we therefore only give examples of actions of locally
compact groups.

We will also sometimes mention the Rokhlin property or related conditions on
actions. Some of these are defined later. (The Rokhlin property for actions of finite
groups is in Definition 13.1, and the tracial Rokhlin property for actions of finite
groups is in Definition 14.1.) For some, however, no definition will be given in these
notes.

Turning specifically to the commutative case, recall from Definition 1.5 and
Exercise 1.6 that giving an action of a topological group G on a commutative
C*-algebra Cy(X) is the same as giving an action of G on the underlying space X.
When G is locally compact, the crossed product C*-algebra C*(G, Cp(X)) is usually
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abbreviated to C*(G, X). (See Definition 8.20.) As noted above, we are mostly
interested in the case in which C*(G, X) is simple. So as to be able to make
meaningful comments, we discuss several easy to state conditions on an action on
a locally compact space which are related to simplicity of the crossed product. We
will say more about these conditions in Section 15.

Definition 2.1. Let a topological group G act continuously on a topological
space X. The action is called minimal if whenever T' C X is a closed subset
such that ¢7" C T for all g € G, then T is trivial, that is, T =@ or T = X.

Lemma 2.2. Let a topological group G act continuously on a topological space X.
The action is minimal if and only if for every x € X, the orbit Gx = {gz: g € G}
is dense in X.

Proof. If there is x € X such that Gz is not dense, then Gz is a nontrivial G-
invariant closed subset of X. For the converse, let T C X be a nontrivial G-
invariant closed subset of X. Choose any x € T. Then Gz C T and is therefore
not dense. (I

Lemma 15.3 gives a number of weaker equivalent conditions for minimality for
the special case G = Z and X is compact.

As shown by the action of Z on its one point compactification (in Example 2.15
below), it is not enough to require that one orbit be dense. There are special
circumstances under which density of one orbit is sufficient, such as for an action
of a subgroup by translation on the whole group. See Proposition 2.18 below.

It follows from Theorem 9.24(4) that minimality is a necessary condition for
simplicity of C}(G,X), and from Theorem 8.32 that minimality is a necessary
condition for simplicity of C*(G, X). (As we will see in Section 9, C*(G, X) is a
quotient of C*(G, X), so we really only need to cite Theorem 9.24(4).)

Definition 2.3. Let a locally compact group G act continuously on a locally com-
pact space X. The action is called free if whenever g € G\ {1} and = € X, then
gr # x. The action is called essentially free if whenever g € G\ {1}, the set
{z € X: gz = z} has empty interior.

Essential freeness makes sense in general, but for nonminimal actions it is not the
most useful condition. One should at least insist that the restriction of the action
to any closed invariant subset be essentially free in the sense of Definition 2.3. The
action of Z on its one point compactification by translation is essentially free in
the sense of Definition 2.3, but but does not satisfy the stronger condition, and its
transformation group C*-algebra does not behave the way that a good version of
essential freeness for nonminimal actions should imply.

Proposition 2.4. Let G be an abelian group. Then every minimal and essentially
free action of G on a topological space X is free.

Proof. Let (g,x) — gz be a minimal action of G which is not free. Then there is
h € G\ {1} such that the closed set T'= {x € X : ha = x} is not empty. We claim
that T is invariant. To see this, let g € G and let € T'. Then h(gz) = g(hx) = gz,
so gx € T. This proves the claim. By minimality, T = X. Therefore the action is
not essentially free. O

The actions in Example 2.35 and Example 2.38 below are minimal and essentially
free but not free.
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The following theorem (to be proved in Section 15) provides a very useful suffi-
cient condition for simplicity of C} (G, X).

Theorem 2.5 (Theorem 15.10). Let a discrete group G act minimally and essen-
tially freely on a locally compact space X. Then C}(G, X) is simple.

This condition is not necessary; it follows from Theorem 6.6 that the trivial
action of the free group on two generators on a one point space has a simple reduced
crossed product.

The analog of minimality for actions on measure spaces is ergodicity.

Definition 2.6. Let (X, B, i) be a measure space, let G be a group, and let (g, z) —
gx be an action of G on X. For each g € G, assume that the map h9: X — X,
given by h9(z) = gz, is measurable and preserves the measure u. We say that the
action is ergodic if whenever a measurable set £ C X satisfies gF = F for all g € G,
then u(F) =0or u(X \ E) =0.

The conditions on the action are just that the o-algebra B and the measure p
are both G-invariant. That is, for all ¢ € G and all E € B, we have gFE € B
and p(gE) = p(F). (Actually, all that one needs is that the measure class of u is
G-invariant, that is, that u(gE) = 0 if and only if u(E) =0 for E € Band g € G.)

Definition 2.7. Let X be a compact metric space, let G be a topological group,
and let (g,x) — gz be an action of G on X. We say that the action is uniquely
ergodic if there is a unique G-invariant Borel probability measure on X.

In Definition 2.7, it turns out that the measure u is necessarily ergodic. More
generally, the G-invariant Borel probability measures on X form a (possibly empty)
weak™® compact convex subset K of the dual space C'(X)*. We prove the standard
result that such a measure p is ergodic if and only if it is an extreme point of K,
under the assumption that the group is discrete and countable. This hypothesis
is stronger than necessary, but avoids some technicalities. The proof that extreme
points are ergodic measures works in complete generality, in particular, no matter
what the group is.

Theorem 2.8. Let X be a compact metric space, let G be a countable discrete
group, and let (g,z) — gz be an action of G on X. Then a G-invariant Borel
probability measure p on X is ergodic if and only if it is an extreme point in the
set of all G-invariant Borel probability measures on X.

Proof. First assume that p is not ergodic. Choose a G-invariant Borel set F' C X
such that 0 < u(F) < 1. Define G-invariant Borel probability measures p1 and po
on X by

_uEnr) _ WENX\F))

for every Borel set E C X. Taking a = p(F), we have ap; + (1 — a)ue = u,
w1 # po, and a € (0,1). So u is not an extreme point.

Now assume that u is ergodic. Suppose that pu; and po are G-invariant Borel
probability measures, that a € (0, 1), and that ap; + (1 — a)pe = u. We prove that
p1 = p. We have pg < o tu, so uy < p. Let fo: X — [0, 00] be a Radon-Nikodym
derivative of py with respect to p. Since py and p are G-invariant, for every g € G
the function z — fo(g~'x) is also a Radon-Nikodym derivative of y; with respect
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to p, and is therefore equal to fo(x) almost everywhere with respect to p. Now
define

f(z) = sup fo(g~'a).

geG
Since G is countable, this function is equal to fo(z) almost everywhere with respect
to p, so

p(E) = /E fdp
for every Borel set E C X. Also, f is exactly G-invariant.
For 8 € [0, 00) set
Es={z e X: f(z) >3}

Then Ej is a G-invariant Borel set, so u(Eg) € {0,1}. Whenever 3,7 €
satisfy v > B, we have E, C Eg, so p(Eg) > p(E,). Also, u(Eyg) =
#(Ey-111) = 0. Define

r=sup ({8 €[0,00): p(Eg) =1}).
If r =0 then f = 0 so pu; = 0, which is clearly impossible. So there is a strictly
increasing sequence (85, )nez., in [0,00) such that lim, o 8, = r. We have

[0, 00)
1 and

oo
X\ B = [J(X\ Es,),
n=1
so u(E,) = 1. Tt follows that f is equal to the constant function r almost everywhere
with respect to p. Since p1(X) =1, we get r = 1. So p1 = p, as desired. O

Theorem 2.9. Let X be a compact metric space, let G be an amenable locally
compact group, and let (g,z) — ga be an action of G on X. Then there exists a
G-invariant Borel probability measure on X.

See the discussion before Theorem 5.50 for more on amenable groups.
Proof. In [100], combine Theorem 3.3.1 and Theorem 2.2.1. O

Corollary 2.10. Let X be a compact metric space, let G be an amenable locally
compact group, and let (g, x) — gx be an action of G on X. Then there exists an
ergodic G-invariant Borel probability measure p on X.

Proof. Theorem 2.9 shows that the set of G-invariant Borel probability measures
on X is not empty. It is easily seen to be a weak* compact convex subset of the
dual space of C(X). Therefore it has an extreme point, by Alaoglu’s Theorem.
Any extreme point is an ergodic measure by Theorem 2.8. (This direction of the
proof of Theorem 2.8 did not need any hypotheses on the group.) [l

Part of the significance of G-invariant Borel probability measures is that, when
G is discrete, they give tracial states (Definition 11.23) on the crossed product C*-
algebra. See Example 11.31. Moreover, if the action is free, then sometimes all
tracial states on the crossed product arise this way. See Theorem 15.22.

Now we give examples.

Example 2.11. The group G is arbitrary locally compact, the space X consists of
just one point, and the action is trivial. This action is minimal, but is as far from
being free as possible. It gives the trivial action of G on the C*-algebra C. The
full and reduced crossed products are the usual full and reduced group C*-algebras
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C*(G) and C¥(G), discussed in Section 5 (when G is discrete) and Section 7. As we
will see, this is essentially immediate by comparing definitions. See Example 10.1
below.

More generally, any group has a trivial action on any space.

Example 2.12. The group G is arbitrary locally compact, X = G, and the action
is given by the group operation: g-x = gx. The full and reduced crossed products
are both isomorphic to K(L?(G)). We will prove this for the discrete case in
Example 10.8 below.

This action is called (left) translation. It is clearly free. It is also minimal,
but in a rather trivial way: there are no nontrivial invariant subsets, closed or
not. As we will see, in the interesting examples, with more interesting crossed
products, the orbits are dense but not equal to the whole space. See the irrational
rotations in Example 2.16. Also see Proposition 2.18, Example 2.19, Example 2.21,
Definition 2.22, and Example 2.24. Many further examples will appear.

More generally, if H C G is a closed subgroup, then G acts continuously on
G/H by translation. Example 2.11 is the case H = G. See Example 10.11 below
for the computation of the crossed product when G = Z and H = nZ, and for the
description of the crossed product in the general case. This action is still minimal
(in the same trivial way as before), but for H # {1} it is no longer free.

Example 2.13. We can generalize left translation in Example 2.12 in a different
way. Again let G be an arbitrary locally compact group, set X = G, and let H C G
be a closed subgroup. Then H acts on X = G by left translation. The action is
still free, but is now no longer minimal (unless H = G).

The crossed product C*(H, G) turns out to be stably isomorphic to K (L?(H))®
Co(G/H). Stably, there is no “twisting”, even though G may be a nontrivial bundle
over G/H. See Theorem 14 and Corollary 15 in Section 3 of [98].

Example 2.14. Let G be any locally compact group. Then G acts on itself by
conjugation: g -k = gkg~! for g,k € G. Unless G = {1}, this action is neither free
nor minimal, since 1 is a fixed point.

There is also a conjugation action of G on any normal subgroup of G.

Example 2.15. Let G = Z and let X = ZT, the one point compactification
Z\U{c} of Z. Then Z acts on Z* by translation, fixing co. This action has a dense
orbit (namely Z), but is not minimal (since {oo} is invariant) and not free.

Here are some related examples. The group Z acts on Z U {—00, 00} by trans-
lation, fixing —oo and oo. Both R and Z C R act on both RT = ! and [—oo, o0
by translation, fixing the point or points at infinity. None of these actions is either
free or minimal.

Example 2.16. Take X = S! = {¢ € C: |(| = 1}. Taking G = S!, acting by
translation, gives a special case of Example 2.12. But we can also take G to be the
finite subgroup of S* of order n generated by exp(27i/n), still acting by translation
(in this case, usually called rotation). This is a special case of Example 2.13. The
computation of the crossed product for this case is in Example 10.9. Or we can
fix # € R, and take G = Z, with n € Z acting by ¢ — exp(2mind)(. (The use
of exp(2mif) rather than exp(if) is standard here.) These are rational rotations
(for 6 € Q) or irrational rotations (for 6§ ¢ Q). The rational rotations are neither
free nor minimal. (Their crossed products are discussed in Example 10.16.) The
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irrational rotations are free (easy) and minimal (intuitively clear but slightly tricky;
see Lemma 2.17 and Proposition 2.18 below). Irrational rotations are also uniquely
ergodic. (Theorem 1.1 of [90] gives unique ergodicity for a class of homeomorphisms
of the circle which contains the irrational rotations.)

Lemma 2.17. Let € R\ Q. Then {€?™"?(: n € Z} is dense in S'.

There are a number of ways to prove this lemma. In [292] (see the proof of
Lemma 3.29), the basic idea is that all proper closed subgroups of S! are finite.
One can also get the result from number theory: there is a constant ¢ such that
there are pairs (p, q) of integers, with ¢ arbitrarily large, such that |6 —p/q| < cq~2.
(See Corollary 1B of [250]. The best general constant is 1/v/5; see Theorem 2F
of [250]. We thank Shabnam Akhtari for pointing out this reference.) We give here

a proof close to that of [292].

Proof of Lemma 2.17. Tt suffices to prove that Z + 07 is dense in R. Suppose not.
Let t = inf ({x €EL+0Z: x> O}) We will show that ¢ = 0. So suppose t > 0.

We claim that Z 4+ 0Z = Zt. First, Z + 07 is clearly a subgroup of R. So
Zt C Z + 07Z. Suppose the reverse inclusion is false. Then there are m € Z and
r € Z + 0Z such that mt < r < (m + 1)t. But then r — mt € Z + 07 N (0,t). This
contradiction proves the claim.

It is clear that the only subset of R whose closure is Zt is Zt itself. So Z+-07Z = Zt.
Therefore there are m,n € Z with § = mt and 1 =nt. Son # 0 and 6 = == € Q.
This contradiction shows that ¢t = 0.

Now let r € R. We claim that r € Z 4 6Z. Let € > 0. Choose s € Z + 6Z such
that 0 < s < . Choose n € Z such that ns <r < (n+ 1)s. Then ns € Z + 0Z and
|r — ns| < s <e. So the closure of Z + 0Z contains r. The claim follows. O

Here is a second proof, based on part of a lecture by David Kerr. Again, it
suffices to prove that Z + 6Z is dense in R. Suppose this fails. Choose A1, A2 € R
such that (A1, A2) is a connected component of R\ Z + 0Z. Let F be the image of
Z + 07 in R/Z, which we identify with S'. Since 6 is irrational, F is infinite, so
that for every € > 0 there are distinct points in F' whose arc length distance is less
than . Equivalently, for every £ > 0 there are r, s € Z+60Z such that 0 < s—r < ¢.
Choose such numbers r and s for € = Ay — A1. We have A\ € Z + 0Z, so there is
t € Z+ 0Z such that |t — \| < s—7. Since t € (A1, A2) and s — 7 < Ay — A1, we
have Ay — (s —r) <t < Ay. Therefore

M <t+(s—7)<t+A— A <.
It follows that t + (s — ) € (Z 4 0Z) N (A1, A2), which is a contradiction.

Proposition 2.18. Let G be a topological group, and let H C G be a dense
subgroup. Then the action of H on G be left translation (in which h - g is just the
group product hg for h € H and g € G) is a free minimal action of H on G.

Proof. That this formula defines an action is obvious, as is freeness. For minimality,
let T C G be a nonempty closed H-invariant subset. Choose go € T. Then Hgy C
T. Moreover, H is dense in G and right multiplication by g¢ is a homeomorphism,
so Hgo is dense in G. Therefore T'= G. ]
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Example 2.19. Let v € R, let d € Z, and let f: S* — R be continuous. The
associated Furstenberg transformation h. 4 7: S1 x S — S1 x S1 (introduced in
Section 2 of [90]) is defined by

a5 (G, G2) = (€77¢1, exp(2mif(C1))¢i¢C2)

for (1, (2 € S'. The inverse is given by

Bya,f(CiaGo) = (7™, exp (2mi[dy — f(e™ 2™ ()]) ¢ %)

for ¢1,( € S'. If v ¢ Q and d # 0, Furstenberg proved that h. 4 ; is minimal.
(See the discussion after Theorem 2.1 of [90].) By Theorem 2.1 of [90], if f is in
addition smooth (weaker conditions suffice), then h. 4 ¢ is uniquely ergodic. For
arbitrary continuous f, Theorem 2 in Section 4 of [121] shows that h, g4 ; need not
be uniquely ergodic.

These homeomorphisms, and higher dimensional analogs (which also appear
in [90]), have attracted significant interest in operator algebras. See, for exam-
ple, [189], [129], [146], and [237]. The higher dimensional version has the general
form

(G, Gy Gn) > (€577¢1, 92(G) G2y 93(C1b o)y v vy G (CiuCoyee ey Gum1)Cn)

for fixed v € R and continuous functions
ga: St — S, gs: St x St — St cee gn: (SH"1 = St

There are further generalizations, called skew products. Furstenberg transforma-
tions and their generalizations have also attracted interest in parts of dynamics not
related to C*-algebras; as just two examples, we mention [121] and [248].

Examples 2.35 and 2.36 are related but more complicated. “Noncommuta-
tive” Furstenberg transformations (Furstenberg transformations on noncommuta-~
tive analogs of S' x S1) are given in Example 3.18.

Example 2.20. Take X = {0,1}%, with elements being described as = (z,)nez
with x,, € {0,1} for all n € Z. (This space is homeomorphic to the Cantor set.)
Take G = 7Z, with action generated by the shift homeomorphism h(x),, = 2,41 for
r € X and n € Z. This action is neither free nor minimal; in fact, it has fixed
points.

One can replace {0,1} by some other compact metric space K. (See Defini-
tion 23.9.) Further examples (“subshifts”) can be gotten by restricting to closed
invariant subsets of X. Some of these are minimal. For example, substitution min-
imal systems and Toeplitz flows (mentioned after Example 2.21) can be obtained
this way, using a general finite set in place of {0, 1}.

Example 2.21. Fix a prime p, and let X = Z,,, the group of p-adic integers. This
group can be defined as the completion of Z in the metric d(m,n) = p~¢ when p?
is the largest power of p which divides n —m. Alternatively, it is lim Z/p?Z. It is a
compact topological group, and as a metric space it is homeomorpﬁc to the Cantor
set. Let h: X — X be the homeomorphism defined using the group operation in
the completion by h(x) = z+1 for € X. The resulting action is free and minimal
by Proposition 2.18.

Next, we consider odometers. They are a generalization of Example 2.21. See
Example (i) on page 210 of [258], Section VIIL.4 of [52], and the first example
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in Section 2 of [229]. We refer to these sources for more information, including
minimality.

Definition 2.22. Let d = (dy)nez., be a sequence in Zso with d,, > 2 for all n €
Z~q. The d-odometer is the minimal system (X, hq) defined as follows. Set

Xg= H{07172a"'7dn_1}7
n=1

which is homeomorphic to the Cantor set. For & = (25 )nez., € X4, let
ng = inf ({n €L~y Ty # dy — 1})
If ng = oo set hq(z) = (0,0,...). Otherwise, hq(z) = (ha(2)n)nez., I8

0 n < ng
ha(z)n = q 20 +1 n=mng
Ty n > nop.

The homeomorphism is “addition of (1,0,0,...) with carry to the right”. When
ng # 0o, we have

h(z) = (0,0,...,0,xn0 + 1, Zh041, Trgt2, - )

Exercise 2.23. Prove that the odometer homeomorphism of Definition 2.22 is
minimal.

See Theorem VIII.4.1 of [52] for the computation of the crossed product by an
odometer action.

There are many other classes of interesting minimal homeomorphisms of the
Cantor set, such as substitution minimal systems (Section 5 of [258]), Toeplitz
flows (Section 6 of [258]), topological versions of interval exchange transformations
(the second example in Section 2 of [229]), and restrictions to their minimal sets
of Denjoy homeomorphisms, which are nonminimal homeomorphisms of the circle
whose rotation numbers are irrational ([234]). The relation of strong orbit equiva-
lence of minimal homeomorphisms of the Cantor set is defined in [94], where it is
shown to be equivalent to isomorphism of the transformation group C*-algebras.
Sugisaki has shown ([265], [266], and [267]) that all possible values of entropy in
[0, 00] occur in all strong orbit equivalence classes of minimal homeomorphisms of
the Cantor set.

One can make various other kinds of examples of free minimal actions using
Proposition 2.18. Here is one such example.

Example 2.24. Let ki, ko,... € {2,3,...}. Set X = [[°2,Z/k,Z, which is a
compact group. Take G = @, , Z/k,Z, which is a dense subgroup of X. Give G
the discrete topology, so that G becomes a locally compact group. Then the action
of G on X by left translation is free and minimal, by Proposition 2.18. The crossed
product turns out to be the UHF algebra @~ , My, . See Exercise 10.29.

Example 2.25. The locally compact (but noncompact) Cantor set X is a metriz-
able totally disconnected locally compact space with no isolated points and which
is not compact. This description determines it uniquely up to homeomorphism, by
Proposition 2.1 of [51]. Minimal homeomorphisms of X have been studied in [51]
and [166]. Section 3 of [51] contains a good sized collection of easy to construct
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examples, although the construction is slightly more complicated than we want to
present here. The comment after Theorem 2.11 of [166] proves the existence of a
much larger class of examples.

Example 2.26. For each minimal homeomorphism hg: Xy — Xy of the Can-
tor set Xy, Gjerde and Johansen construct in [96] a minimal homeomorphism
h: X — X of a compact metric space X which has hg: Xy — Xy as a factor
(see Definition 2.27 below), and in which some of the connected components of X
are points (as for the Cantor set) but some are compact intervals. Among other
things, these examples show that if A: X — X is a minimal homeomorphism, then
the space X need not be “homogeneous”: different points can give different local
properties of the space, and, in particular, for x,y € X there need not be a home-
omorphism from any neighborhood of z to any neighborhood of y which sends x
to y.

Definition 2.27. Let G be a group, let X and Y be compact Hausdorff spaces, and
assume G acts continuously on X and Y. We say that the dynamical system (G,Y")
is a factor of the dynamical system (G, X) if there is a a surjective continuous map
f: X =Y (the factor map) such that f(gz) =gf(x) for all g € G and = € X.

If we take G = Z, then the actions are given by homeomorphisms h: X — X and
k:Y — Y. Then we are supposed to have a surjective continuous map f: X — Y
such that g o h = k o g. That is, the following diagram commutes:

X " x

1

y Lty
In general, there should be such a diagram for the action of every group element
g € G (always using the same choice of f).
Essentially, (G,Y) is supposed to be a topological quotient of (G, X). Without
compactness, presumably one should ask that f be a quotient map of topological
spaces.

Example 2.28. Take X = S = {z € R"*!: ||z||z = 1}. Then the homeomor-
phism z — —z has order 2, and so gives an action of Z/2Z on S™. This action
is free but is far from minimal. See Example 10.10 below for a description of the
crossed product (without proof).

Example 2.29. Take X = S' = {¢ € C:|¢| = 1}, and consider the order 2
homeomorphism ¢ +— (. We get an action of Z/2Z on S'. This action is neither
free nor minimal. See Example 10.18 below for the computation of the crossed
product.

Example 2.30. The group SLy(Z) acts on S* x St as follows. For
ni1 MNiz2
= ' “ ) € SLa(Z),
(n2,1 712,2) 2< )

let n act on R? via the usual matrix multiplication. Since n has integer entries, one
gets nZ? C Z2, and thus the action is well defined on R?/Z? = S* x S1.
Similarly, SL4(Z) acts on (S*)<.
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In fact, the larger group GL2(Z) acts on S* x S! in the same way, and the larger
group GL4(Z) acts on (S1)? in the same way. We have emphasized the action of
SL2(Z) because it extends much more easily to noncommutative deformations. See
Example 3.12.

These actions are neither free nor minimal, because the image of 0 € R? (or R%)
is a fixed point.

Example 2.31. Let G be the symmetric group S,,, consisting of all permutations of
{1,2,...,n}. Let X be any compact metric space. Let S,, act on X™ by permuting
the coordinates:

o (:1713 L2, 'axn) = (560—1(1)7 Lo=1(2)y + -+ :Ca'*l(n))'
(One must use o~ in the formula in order to get o - (7 - z) = (07) - x rather than
(to) - x.)
These actions are not free. Unless X has only one point, they are also far from
minimal.

Example 2.32. The unitary group U(M,,) of the n x n matrices acts on the unit
sphere S?"~1 C C", since S?"~! is invariant under the action of U(M,,) on C™.
This is actually a special case of Example 2.12, gotten by taking G = U(M,,) and
H =U(M,,_1), embedded as a closed subgroup of G via the map h — (£ 9). The
action is thus minimal in a trivial way, but not free.

Restricting to the scalar multiples of the identity, we get an action of S!' on
S27=1 This action is free but not minimal.

Similarly, U(M,,) and S! act on the closed unit ball in C".

Example 2.33. Let Z be a compact manifold, or a connected finite complex.
(Much weaker conditions on Z suffice, but Z must be path connected.) Let X = Z
be the universal cover of Z, and let G = m1(Z) be the fundamental group of Z.
Then there is a standard action of G on X. The space X is locally compact when
Z is locally compact, and compact when Z is compact and m(Z) is finite.

Spaces with finite fundamental groups include real projective spaces (in which
case this example is really just Example 2.28) and lens spaces (Example 2.43
of [106]). In Example 1.43 of [106], there is some discussion of spaces with non-
abelian finite fundamental groups whose universal covers are spheres, equivalently,
free actions of nonabelian finite groups on spheres.

There are also many spaces with interesting infinite fundamental group. Any
(discrete) group G is the fundamental group of a two dimensional CW complex X
(Corollary 1.28 of [106]), and (as is clear from the proof), if G is finitely presented
then X can be taken to be a finite complex.

These actions are all free but are far from minimal.

One can get free minimal actions of Z2? on compact metric spaces by letting
h1: X7 — X7 and hg: X5 — X5 be minimal homeomorphisms of infinite compact
metric spaces, setting X = X; x Xy, letting one generator of Z2 act on X via
hy x idx,, and letting the other generator of Z? act on X via idy, x hy. A few
other examples are known, but examples seem to be hard to find. Here is one,
taken from [172].

Example 2.34 (Item 2 on page 311 of [172]). Fix # € R\ Q. Then the homeomor-
phisms Ay, he: (S1)? — (S1)3 (called o and ay in [172]) determined by

hi(CiyCo,Gs) = (Gry €™, 1G) and ho(Gr, Go, G) = (€2™9¢0, (o, (2G3)
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for (1, (2, (3 € S*, commute and generate a free minimal action of Z2 on (S%)3.

The next two examples have some similarity with Example 2.19, but are more
complicated.

Example 2.35. Let H be the discrete Heisenberg group, that is,

1 n k
H = 0 1 m|:kEkmneZz
0 0 1

Equivalently, H = Z3 as a set, and the group operation is
(k1,m1,m1)(k2, ma,ng) = (k1 + k2 +nyma, my + ma,ny + nz)

for k1, m1,n1, ks, mo,no € Z. This formula comes from the assignment

1 n k
(k,myn)— [0 1 m
0 0 1

for k,m,n € Z. The proof of Theorem 1 of [172] uses a minimal action of H on
(S1)? which depends on a parameter § € R\ Q. It is given by

(kym,n) - (C1, Go) = (€7270¢y, 2T mn=Ro¢me,)
for k,m,n € Z and (1, (> € S'. This action is not free. For example,
(=1,1,0) - (€*™ 1) = (™7 1).
However, it is essentially free.

Example 2.36. Let H be the discrete Heisenberg group, as in Example 2.35. The
proofs of Theorem 2 and Theorem 4 of [173] use free minimal actions of H on (S')3
which depend on a parameter § € R\ Q and (for Theorem 2) on relatively prime
integers p and ¢q. The action used in Theorem 2 of [173] is given by

(k) - (G oy Ga) = (770G, 27wy c2millbakmamnld gy, )

for k,m,n € Z and (1, (2,(3 € S'. The action used in Theorem 4 of [173] is given
by

(k,m,n) . (Cla <23 <3) — (627rim0<-1’ 627ri(m+n)0<27 827ri[2k7mn+m(mfl)/2]0<1—n<§ncg)
for k,m,n € Z and (1, (s, (3 € St

Example 2.37. Let GG be a discrete group. Then the action of G on itself by trans-
lation (Example 2.12) extends to an action of G on the Stone-Cech compactification
BG of G, and thus to an action of G on the remainder 5G \ G.

Example 2.38. Let n € {2,3,...}. The Gromov boundary 0F, of F,, consists
of all right infinite reduced words in the generators and their inverses, with the
topology (given in detail below) in which two words are close if they have the same
long finite initial segment. The group F,, acts on it by left translation. We claim
that this action is minimal and essentially free, but not free.

Call the standard generators g1, g2, . .., gn. Set

S = {91,91_1,92,92_1,...,gn,grjl},
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with the discrete topology. Then OF,, is the subset of the compact set SZ>° con-
sisting of those sequences z = (z1,2,...) € SZ>0 such that z,,,1 # z,! for all
n € Z>o. This set is an intersection of closed sets, hence compact.

The element x = g1 - g1 - - -+ is a right infinite word such that g;o = x. Thus the
action is not free. (More generally, if h € F,, \ {1} is arbitrary, then the reduced
form of h-h---- is in OF, and is a fixed point for h.)

We show that the action is minimal. We use Lemma 2.2. Let x,y € 9F,. Use
sequence notation as above. It suffices to show that for every n € Zx( there is
g € F,, such that (ga)r =y, for k=1,2,...,n. Let go = y1y2 - - yn € F,,. Choose
h € S such that h ¢ {y;lmfl}. Then z = (y1,Y2,- .-, Yn, b, T1,22,...) is a right
infinite reduced word which agrees with y in positions 1,2,...,n. Moreover, with
g = goh, we get gx = 2. This completes the proof of minimality.

It remains to show that the action is essentially free. By Definition 2.3, it suffices
to show that if h € F,, \ {1} and = € OF),, there is y € OF,, such that y; = x;
for j = 1,2,...,n and such that hy # y. If hx # x, there is nothing to prove. So
suppose hx = x. Write h as a reduced word h = hihg - -- by with hy, ha, ..., h; € S.
There is k € {0,1,...,1} such that, in reduced form, we have

(2.1) hz = (hl, hay ooy Bky Ti_ga1, Ti_gao, )
That is, hzx is one of
(hl, ho, ..., hy, x1, 1'2,...), (hl, ho, ..., hj_1, xa, :rg,...),
(hl, ho, ..., hi_o, T3, x4,.. .), e ($l+1, Ti142, T143, - - )
We claim that [ # 2k. (This means that passing from x to hx actually shifts

the sequence x, so that z is eventually periodic.) Suppose that [ = 2k. The
cancellations which occur to make the formula for hz correct imply that

W=7t hio1 =37, cees hi—ps1 =}, "
Looking at the first k positions of the equation hx = x, we get
hlzl‘l, hQZ.’L‘Q, RN hk:l‘k.

Combine these (in the opposite order) and use | — k = k to get

hiesr =hy', b =hily, o ha=hh
Therefore h = 1. This is a contradiction, and the claim follows.
By the definition of k, we have (hz); = xj ok for j = k+1,k+2,.... Set

m =mn+1+1. Choose y,, € S\ {x:nl_l,x;@ﬂ_l,xm}. Then setting y; = z; for
Jj € Zso \ {m} gives a reduced right infinite word y € 0F,,. Clearly y; = z; for
7=1,2,...,n. Since m > 1 —k — 1, we have

(2.2) hy = (ha, hay .o hiey Yi—kt1s Yi—ks2, ---)-
Therefore, using 2k — I # 0 at the first step, (2.1) at the third step, and (2.2) at
the fifth step, we get
Ym+42k—1 = Tm42k—1 = (hx)m+2k—l = Tm 7é Ym = (hy)m+2k—l-
Thus hy # y.

A related example, in which G is a finite free product of at least two nontriv-
ial cyclic groups (excluding Z/27Z % 7./27), acting on the Cantor set, is given in
Definition 2.1 of [260]. Essential freeness is a consequence of Lemma 3.12 of [260].
Minimality isn’t explicitly stated, but it is shown in some cases that the crossed
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products are simple, by explicitly computing them. (See Example 2.8 and Remark
2.9 of [260].) Actions of a subclass of these groups on the Cantor set are given in
Definition 2.1 of [261] and the comment afterwards, and are shown to be minimal
and essentially free in Theorem 3.3 of [261]. The crossed products are proved to be
Cuntz-Krieger algebras in Theorem 2.2 of [261].

Some further examples of this general nature are given in Section 3 of [149], and
some more are in Section 3 of [3].

We mention a few other examples very briefly.

A general construction known as the flow under a ceiling function starts with a
homeomorphism h of, say, a compact metric space X, and yields an action of R on
a space that looks like the mapping cylinder of X. One can consider this action or
the action of Z generated by the time ¢ map of this action for a fixed t € R. The
crossed products by some interesting examples of this construction are considered
in [122], with X taken to be the Cantor set. We refer to [122] for further details.

Let X be the Cantor set. There are interesting classes of minimal homeomor-
phisms of S x X and of S1 x S! x X. See [154], [155], and [156] for S x X and [268]
for ST x S' x X. (The spaces S' x X are locally homeomorphic to those of [122].)

The geodesic flow on a compact Riemannian manifold M is an action of R on the
unit sphere bundle X over M. At v € T, M it follows the geodesic starting at z in
the direction v at unit speed, carrying v with it. Various dynamical properties of this
flow are considered in Chapter 12 of [14]. For example, under suitable conditions
on M, it is topologically transitive (Theorem 12.2.10 of [14]). If the Riemannian
metric on M is C® and the sectional curvatures are all strictly negative, then the
geodesic flow is ergodic with respect to the standard measure. See Theorem 5.5 in
the appendix to [13].

We would also like to mention several existence theorems for actions.

Theorem 2.39 (Theorem 1.1 of [115]). Let G be an infinite countable discrete
group. Then there exists a free action of G on the Cantor set which has an invariant
Borel probability measure.

By passing to a minimal set for such an action, one obtains:

Corollary 2.40 (Corollary 1.5 of [115]). Let G be an infinite countable discrete
group. Then there exists a free minimal action of G on the Cantor set.

The action in Corollary 2.40 need not have an invariant Borel probability mea-
sure. However, if G is amenable, then, by Theorem 2.9, every action on a compact
metric space has an invariant Borel probability measure.

Theorem 2.41 (Theorem 6.11 of [247]). Let G be an infinite countable discrete
group which is exact but not amenable. Then there exists a free minimal action of
G on the Cantor set X such that the transformation group C*-algebra C*(G, X) is
a Kirchberg algebra satisfying the Universal Coefficient Theorem.

The following result is a special case of the combination of Theorem 1 and The-
orem 3 of [86]. In [86], freeness of the action of S! is weakened to the requirement
that the stabilizers of all points be finite and that the action be effective.

Theorem 2.42. Let M be a connected compact C'°° manifold which admits a free
C> action of S'. Then there exists a uniquely ergodic minimal diffeomorphism
of M.
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The most obvious examples are spheres S?"~! for n € Zq. The free action of
S1 is the one in Example 2.32.

By contrast, there are no minimal homeomorphisms of even spheres. This can
be easily proved using the Lefschetz fixed point theorem. The general result is as
follows (a special case of Theorem 3 of [89]).

Theorem 2.43. Let X be a finite complex with nonzero Euler characteristic. Then
every homeomorphism of X has a periodic point.

The Euler characteristic of an even sphere is 2.
The proof of Theorem 2.42 uses a Baire category argument. For n > 1, there is
no known explicit formula for even a minimal homeomorphism of 271,

Problem 2.44. Find an explicit formula for a minimal homeomorphism of S3.

Theorem 2.45 ([293]). Let M be a connected compact C* manifold which admits
a free C™ action of S', and let k € Z~(. Then there exists a minimal diffeomor-
phism of M which admits exactly k ergodic invariant Borel probability measures.

The following result is a special case of the combination of Theorem 2 and
Theorem 4 of [86]. In [86], freeness of the action of St is weakened in the same way
as for Theorem 2.42.

Theorem 2.46. Let n € Z~(, and let M be a connected compact C'*° manifold
which admits a free C* action of (S*)"*1. Then there exists a uniquely ergodic
free minimal action of R™ on M.

By embedding Z? in R as a dense subgroup, one gets:

Corollary 2.47. Let d € Z~o with d > 2, and let M be a connected compact
C*> manifold which admits a free C* action of S! x S!. Then there exists a
uniquely ergodic minimal action of Z¢ on M.

3. EXAMPLES OF GROUP ACTIONS ON NONCOMMUTATIVE C*-ALGEBRAS

In this section, we turn to examples of group actions on noncommutative C*-
algebras. Along with a number of miscellaneous examples, we give an assortment of
examples from each of several fairly general classes of actions: “gauge type” actions,
shifts and other permutations of the factors in various kinds of tensor products and
free products, and highly nontrivial actions obtained as direct limits of various
much simpler (even inner) actions on smaller C*-algebras. Section 4 contains many
more examples of “gauge type” actions.

The most elementary action is the trivial action.

Example 3.1. Let G be a locally compact group, let A be a C*-algebra, and define
an action a: G — Aut(A) by a4(a) = a for all g € G and all @ € A. This is the
trivial action of G on A.

The crossed products turn out to be

C*"(G, A a) =C"(G) @max A and CHG, A o) = CF(G) @min A.
See Example 10.1.

Before we go farther, the following notation is convenient.
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Notation 3.2. Let A be a unital C*-algebra, and let u € A be unitary. We denote
by Ad(u) the automorphism of A given by a — wau®. We use the same notation
when A is not unital and « is a unitary in its multiplier algebra M (A).

Definition 3.3. Let A be a C*-algebra and let a@ € Aut(A). Then « is inner if
there is u € M(A) such that & = Ad(u). Otherwise, a is outer.

Example 3.4. Let G be a locally compact group, let A be a unital C*-algebra,
and let g — z4 be a norm continuous group homomorphism from G to the unitary
group U(A) of A. Then the formula a, = Ad(z,), for g € G and a € A, defines an
action of G on A. Actions obtained this way are called inner actions.

If A is not unital, let M (A) be its multiplier algebra, and use U(M (A)) with the
strict topology in place of U(A) with the norm topology.

As a special case, let g — uy be a unitary representation of G on a Hilbert
space H, which is continuous in the strong operator topology (the conventional
topology in this situation; the formal definition is in Definition 5.2 below). Then
g — Ad(ug) defines a continuous action of G on the compact operators K (H). (The
map g — Ad(u,) is generally not a continuous action, in the C*-algebra sense, of
G on the bounded operators L(H).)

The crossed product by an inner action is isomorphic to the crossed product
by the trivial action. See Example 10.4 below for the computation of the crossed
product when G is discrete.

An action via inner automorphisms is not necessarily an inner action in the sense
of Example 3.4. There are no counterexamples with G = Z (trivial) or when G
finite cyclic and A is simple (easy; see Exercise 3.7 below). Here is the smallest
counterexample.

Example 3.5. Let A = My, let G = (Z/2Z)? with generators g; and go, and set
o =ida, g =Ad(§%), ag=Ad(9}), and a4, =Ad(%}).

These define an action a: G — Aut(A) such that «, is inner for all g € G, but for
which there is no homomorphism g — z, € U(A) such that o, = Ad(z,) for all
g € G. The point is that the implementing unitaries for oy, and a4, commute up
to a scalar, but can’t be appropriately modified to commute exactly.

See Exercise 10.18 below for the computation of the crossed product.

Exercise 3.6. Prove the statements made in Example 3.5.

Exercise 3.7. Let A be a simple unital C*-algebra, and let o: Z/nZ — Aut(A) be
an action such that each automorphism ay, for g € Z/nZ, is an inner automorphism.
Prove that « is an inner action in the sense of Example 3.4.

The result of Exercise 3.7 fails when A is not assumed simple. The following
example is due to Jae Hyup Lee.

Example 3.8. Let A = C(S*, M,), and define u € A by

1 ¢+1 i(¢—1)
““)‘2<i(<—1) —<<+1>>

for ¢ € S*. Then one can check that u is unitary, and that u? is the function

(31) wor=(§ {).
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which is in the center of A. Therefore Ad(u) € Aut(A) is an automorphism of
order 2, and so gives an action « of Z/27Z on A.

We claim that this action is not inner in the sense of Example 3.4. That is, there
is no unitary z € A such that 22 = 1 and Ad(z) = Ad(u).

Suppose z is such a unitary. Then Ad(z*u) = id4, so z*u is in the center of A.
Thus, there is a continuous function A: S' — S! such that

2(Q)"u(¢) = A(Q) - 1,

for all ¢ € S'. We can rearrange this equation to get

(32) A(€)z(¢) = u(C)
for all ¢ € S. Squaring both sides of (3.2), and using (3.1) and 22 = 1, we get

MO -1, = u(Q)? = (- Lag,

for all ¢ € S*. Thus, A(¢) is a continuous square root of ( on S*, which is well
known not to exist. This contradiction shows that « is not an inner action.

Remark 3.9. There is a generalization of inner actions that should be mentioned.
Actions a and 8 of a locally compact group G on a unital C*-algebra A are called
exterior equivalent if there is a continuous map g — z, from G to the unitary
group of A such that zg, = z404(2p,) and 8y = Ad(z,) oo for g,h € G. If A is not
unital, use a strictly continuous map to the unitary group of the multiplier algebra.
(See 8.11.3 of [198].) An action is inner if and only if it is exterior equivalent to
the trivial action, and it turns out that exterior equivalent actions give isomorphic
crossed products. See Exercise 10.5 below.

Since they play such a prominent role in our examples, we explicitly recall the
rotation algebras.

Example 3.10. Let # € R. The rotation algebra Ay is the universal C*-algebra
generated by two unitaries u and v satisfying the commutation relation vu =
exp(27if)uv. (The convention e2™ instead of e? has become so standard that
it can’t be changed.)

The algebra Ay is often considered to be a noncommutative analog of the torus
St x S! (more accurately, of Ag = C(S! x S')). It turns out to be the crossed
product by the corresponding rotation ¢ — €2™7¢ of the circle, the integer action
version of Example 2.16.

If 0 ¢ Q, then Ay is known to be simple. This follows from Example 10.25
and Theorem 15.10 below. Thus, one may take any C*-algebra generated by two
unitaries satisfying the appropriate commutation relation.

If § € Q, then Ay is the section algebra of a locally trivial bundle over S! x S*
whose fiber is a single matrix algebra. Its structure is determined in [116]. (See
Example 8.46 of [292]. Some further discussion is given in Example 10.16.) In the
special case 0 € Z, one just gets C(S! x S1).

There are also versions with more generators.

Example 3.11. Let d € Z~( with d > 2. Let 6 be a skew symmetric real d x d
matrix. Recall ([243]) that the (higher dimensional) noncommutative torus Ay is the
universal C*-algebra generated by unitaries u1,us,...,uq subject to the relations

up; = exp(2mif; k) uju
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for j,k = 1,2,...,d. Of course, if §;, € Z for j,k = 1,2,...,d, it is not really
noncommutative.

Some authors use 6 ; in the commutation relation instead. See for example
Section 6 of [143].

The algebra Ay is simple if and only if 8 is nondegenerate, which means that
whenever x € Z% satisfies exp(2mi(z, 0y)) = 1 for all y € Z%, then z = 0. That non-
degeneracy implies simplicity is Theorem 3.7 of [259]. (Note the standing assump-
tion of nondegeneracy throughout Section 3 of [259].) The converse is essentially
1.8 of [68]; see Theorem 1.9 of [210] for the explicit statement.

It seems worth pointing out that there is a coordinate free way to obtain a higher
dimensional noncommutative torus. The algebra Ag is the universal C*-algebra
generated by unitaries u,, for x € Z%, subject to the relations

UyUg = eXp(?T?:<$, a(y»)uz-&-y
for z, y € Z¢. (See the beginning of Section 4 of [242] and the introduction to [244].)

It follows that if b € GL4(Z), and if b* denotes the transpose of b, then Aggp = Agp.
That is, Ag is unchanged if  is rewritten in terms of some other basis of Z.

Example 3.12. Let 0 € R, and let Ag be the rotation algebra, as in Example 3.10.
The group SLy(Z) acts on Ay by sending the matrix

_(M1a1 N12
n =
(n2,1 n2,2>
to the automorphism determined by
an(u) = exp(ming 1ng 10)uH1 o1 and an(v) = exp(ming ong 20)u™+20"22.
To see that there is such an automorphism, one checks that the intended values of

o, (u) and o, (v) are unitaries which satisfy the relation
270 oy (1) o (V).
The extra scalar factors in the definition are present in order to get ay,, = a0y
for m,n € SLo(Z).
If we view Ay as a noncommutative analog of the torus S' x S! as in Exam-
ple 3.10, this action is the analog of the action of SL2(Z) on S x St in Example 2.30.
The group SLy(Z) has finite subgroups of orders 2, 3, 4, and 6. They can be
taken to be generated by

(01 _01) (for Z/2Z), <11 01> (for Z/37),
(? _01> (for Z/4Z), ~ and ((1) _11) (for Z/6Z).

Restriction of the action gives actions of these groups on rotation algebras. The
crossed products by these actions have been intensively studied. Recently, it has
been proved [65] that for 8 ¢ Q they are all AF algebras.

In at least some of these cases, the extra scalar factors are equal to 1. Thus, the
action of Z/27Z on Ay is generated by the automorphism determined by

an(V)ag(u) =e

u— u* and v = v,
and the action of Z/47 on Ay is generated by the automorphism determined by

U v and vt
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Although we will not prove it here (see [65]), for 6 ¢ Q these actions have the
tracial Rokhlin property of Definition 14.1.

It seems to be unknown whether the action of GLa(Z) on S* x S! in Exam-
ple 2.30 can be deformed to an action on a rotation algebra. This can be done for
the subgroup consisting of the diagonal matrices in GL2(Z), an order 4 subgroup
isomorphic to Z/27 x Z/2Z.

Example 3.13. Let § € R\ Q, and let Ay be the rotation algebra, as in Ex-
ample 3.10. Let G = {diag(%1, £1)} C GL2(Z). Then there is (Theorem 1.1
of [263]) an action B(9): G — Aut(Ay) such that, for g € G, we have ( 5(70))* =g
on Ki(Ag) =72

The K-theory condition matches the action of this subgroup on K*!(S* x S%).
The construction is an existence proof using a direct limit decomposition, and it is
not clear how close the action of the diagonal subgroup is to the action of Z/27Z
in Example 3.12 (although, by Theorem 1.1 of [263], it does have the right fixed
point algebra). There is no claim that the actions on the different algebras Ay can
be chosen to vary continuously with 6 in a reasonable sense. This is probably not
possible. The results of [264] probably imply (although this has not been checked
in detail) that for 6 € [(0,1) N Q] \ {3}, there is no a € Aut(Ay) whose induced
map on K (Ap) is in GLa(Z) \ SLa(Z).

Unfortunately, there is in general no action of SL4(Z) on the higher dimensional
noncommutative torus of Example 3.11 analogous to the action of SLy(Z) on Ay.
That is, there is no general noncommutative deformation of the action of SL,(Z)
on (S1)4 of Example 2.30.

In Example 3.12, we had a C*-algebra A given in terms of generators and re-
lations, and we defined an action of a discrete group on A by specifying what the
group elements are supposed to do to the generators. We want to define actions
of not necessarily discrete groups in the same way. We will obviously only do this
when the action on the generators is continuous. We need the following lemma to
ensure that this method gives an action which is continuous on the entire algebra.

Lemma 3.14. Let X be a topological space, let A be a C*-algebra, and let x — a,
be a function from X to the endomorphisms of A. Suppose there is a subset S C A
which generates A as a C*-algebra and such that x — «a,(a) is continuous for all
a € S. Then x — ay(a) is continuous for all a € A.

The proof is an § argument. The key point is that sup,¢ y [|a,| is finite. As far
as we know, without explicitly including this condition in the hypotheses, there are
no analogous results for Banach algebras, even in the situation of group actions.

Proof of Lemma 3.14. Let Ag C A be the complex *-subalgebra of A generated
by S. Then x — a;(a) is continuous for all a € Ag. Now let a € A be arbitrary,
let x9 € X, and let ¢ > 0. We have to find an open set U C X with zg € U
such that for all z € U, we have ||az(a) — ay,(a)|| < e. Choose ag € Ag such that
lla —agl| < §. Since & +— a;(ap) is continuous, there is an open set U C X with
ro € U such that for all z € U, we have [Jaz(ag) — oz, (ao)|| < 5. For x € X, since
oz is a homomorphism of C*-algebras, we have ||a,(b)|| < ||b]| for all b € A. For
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x € U, we thus get
llow (@) = aay (a)|| < lJow(a) = ax(ao)ll + [laz(ao) — awg (a0l + [low, (a0) — auy (a)
< = + = + = <e
3 3 3 '
This completes the proof. O

Example 3.15. Let 6 € R, and let Ay be the rotation algebra, as in Example 3.10.
For (1,(, € S!, the unitaries (;u and (yv satisfy the same commutation relation.
Therefore there is an action a: §* x S' — Aut(Ay) determined by ae, ¢,)(u) = Gu
and ¢, ¢,)(v) = (ov. Continuity of the action follows from Lemma 3.14.

If we fix (1,¢ € S, then Q(¢,,¢,) generates an action of Z. The crossed product
by this action turns out to be a three dimensional noncommutative torus as in
Example 3.11, namely the universal C*-algebra generated by unitaries u, v, w such
that

vu = exp(2mif)uv, wu = Guw, and wv = (uww.
Repeating the construction, one realizes an arbitrary higher dimensional noncom-
mutative torus as an iterated crossed product. See Example 4.1 below.

If both {; and (; have finite order, we get an action of a finite cyclic group. For
example, there is an action of Z/nZ generated by the automorphism which sends
u to exp(27i/n)u and v to v.

Problem 3.16. Find examples of actions of finite groups on higher dimensional
noncommutative tori with interesting crossed products. For this purpose, the ac-
tions one gets from the higher dimensional version of Example 3.15 are not very
interesting, because the crossed product is closely related to another higher dimen-
sional noncommutative torus. The only known general example that is interesting in
this sense is the “flip” action of Z/2Z, generated by uy, — uj for 1 < k < d. When-
ever the higher dimensional noncommutative torus is simple, the crossed product
by this action is known to be AF [65].

There is recent work in this direction in [126], and some further work has been
done. Also see [92] for some related work.

The following example gives the one related general family of finite group actions
that we know of. It isn’t on quite the same algebras as in Problem 3.16, but more
examples like this one would also be interesting.

Example 3.17. Fix § € R\ Q, and let A2’4 be the universal unital C*-algebra
generated by unitaries u, v, w,z,y satisfying the following commutation relations
(the relations (CR) at the beginning of Section 2 of [172]):

uw = TVU, uw = wu, ur = TU, wy = 2™ Fyu, VW = Yyww,

VT = TV, vy = Yv, wr = e 7w, wy = yw, Ty = yx.

This algebra is simple, and in fact it is the crossed product of the action of the

discrete Heisenberg group on S x S' in Example 2.35. (See Theorem 1 of [172].

The motivation is that ASA is a simple quotient of a discrete cocompact subgroup

of a particular nilpotent Lie group.) Then there is an automorphism a € Aut (AS’4)
of order 4, given by

a(y) =z, a(w) = u, a(u) = w*, a(z) =y~ and a(v) = v

See Remark 2 on page 312 of [172].
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As far as we know, nothing is known about the crossed products by the actions
of Z/47Z in Example 3.17. We hope, for example, that this action has the tracial
Rokhlin property (Definition 14.1), and that this can be used to help identify the
crossed product, perhaps by methods similar to those of [65].

The following example is a noncommutative version of Example 2.19. The au-
tomorphisms in this example were introduced in Definition 1.1 of [186]. Several
special cases were considered earlier, in [190] and [191].

Example 3.18. Let 0§ € R, and let Ag be the rotation algebra, as in Example 3.10.
Let y € R, let d € Z, and let f: S' — R be a continuous function. The Furstenberg
transformation on Ay determined by (6,~,d, f) is the automorphism ag 4, ¢ of Ag
such that

Qg a,f(u) = ey and .4, (v) = exp(2mif(u))utv.

The parameter 6§ does not appear in the formulas; its only role is to specify the
algebra on which the automorphism acts. When 6 = 0, we get the action determined
by the homeomorphism of Example 2.19.

When 0 ¢ Q, the automorphism oy .4, is the most general automorphism « of
Ap for which a(u) is a scalar multiple of u. (See Proposition 1.6 of [186].)

Exercise 3.19 (Lemma 1.2 of [186]). Prove that the formula for ag ~ 4,5 in Exam-
ple 3.18 does in fact define an automorphism of Ag.

Example 3.20. Let n € Z~( satisfy n > 2. Recall that the Cuntz algebra O,, is
the universal unital C*-algebra on generators sy, so, . . ., S, subject to the relations
sisj=1for 1 <j<mnand Z;;l s;s7 = 1. (It is in fact simple, so any C*-algebra
generated by elements satisfying these relations is isomorphic to O,,.)

There is an action of (S')™ on O, such that o (¢, ¢, c.)(s;) = ¢js; for 1 < j < n.
(Check that the elements (;s; satisfy the required relations.) The restriction to the
diagonal elements of (S1)™ gives an action of S on O,,, sometimes called the gauge
action.

In fact, regarding (S*)" as the diagonal unitary matrices, this action extends to
an action of the unitary group U(M,) on Oy, defined as follows. If u = (ujk)}—; €
M, is unitary, then define an automorphism «, of O,, by the following action on
the generating isometries s1, Sa, ..., Sp:

n
ay(sj) = Z Uk, Sk-
k=1

The assignment u — «, determines a continuous action of the compact group
U(M,) on O,. (This action is described, in a different form, in Section 2 of [79].)

Any individual automorphism from this action gives an action of Z on O,,. More
generally, if G is a topological group, and p: G — U(M,) is a continuous homomor-
phism (equivalently, a unitary representation of G on C™), then the composition
a o pis an action of G on O,,. Such actions are called quasifree actions.

Several specific quasifree actions are used for counterexamples in the discussion
after Theorem 15.26.

The action of U(M,) on O, in Example 3.20 is actually a special case of a
much more general (and natural looking) construction. See Example 4.8 and Ex-
ercise 4.10.
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Exercise 3.21. Verify that the formula given in Example 3.20 does in fact define
a continuous action of U(M,,) on O,,.

The actions of (S1)? in Example 3.15 and of U(M,,) in Example 3.20 are ex-
amples of what we think of as “gauge type” actions. (The actions usually called
gauge actions are the restrictions of these to S!, embedded diagonally. Thus, in
Example 3.20, this is the action B¢(s;) = (s; for ¢ € S* and j =1,2,...,n.) There
are many more actions of this same general type, and we give a collection of such
actions in Section 4. Here we mention only the dual action on a crossed product
by an abelian group.

Example 3.22. Let A be a C*-algebra, and let @ € Aut(A) be an automorphism.
Then the dual action of Z = S is a continuous action of S on the crossed product
C*(Z, A, o). We will describe this action in Remark 9.25 below, after we have given
the construction of crossed products.

Example 3.23. More generally, let G be any locally compact group, let A be a
C*-algebra, and let a: G — Aut(A) be a continuous action of G on A. Then there
is a dual action a: G — Aut (C*(G, A,a)). Again, we will describe this action in
Remark 9.25 below, after we have given the construction of crossed products.

Although we will not give any details here, there are several kinds of more general
dual actions. Crossed products by partial automorphisms, and more generally by
partial actions of groups, are defined in [82]. When the group G which acts partially
is abelian, such a crossed product has an action of G. In a somewhat different
direction, there are coactions of (not necessarily abelian) locally compact groups
on C*-algebras, and (full and reduced) crossed products by coactions are defined.
The full and reduced crossed products by a coaction of a locally compact group G
have a dual action, which is an action of the (not necessarily abelian) group G.

The following result, giving actions on direct limits of equivariant direct systems,
is useful for the next several examples. We state it in general, but in most of its
applications, the directed set [ is Z~ or Z>( with its usual order, and the maps of
the direct system are all injective. Then we can think of ligAn as being made by

arranging to have Ay C Ay C --- and taking |J,—; A,. Equivariance is then the
condition that the restriction to A,, of the action on A,,y; is the action on A4,,. The
action on [ J;2 | A, is then defined in the obvious way, and is extended to | J;~, 4,
by continuity.

Proposition 3.24. Let G be a locally compact group. Let

(G, As, aDier, (054)i<))
be a direct system of G-algebras. Let A = lim A;. Then there exists a unique action
a: G — Aut(A) such that oy = liglaéi) for all g € G.
Proof. Existence of the automorphisms a4 for g € GG, and their algebraic properties,

is easily obtained from the universal property of the direct limit. Continuity of the
action follows from Lemma 3.14. O

Example 3.25. Let k1, ks, ... be integers with k,, > 2 for all n € Z~q. Consider
the UHF algebra A of type [[,—, kn,. We construct it as @/~ My, , or, in more
detail, as @An with A, = My, @ My, ® --- @ My,,. Thus A, = A1 ® M, and
the map ¢, Ap—1 — A, is given by a = a® 1y, -
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Let G be a locally compact group, and for n € Zsg let B : G — Aut(Mj, ) be
an action of G on My, . (The easiest way to get such an action is to use an inner
action as in Example 3.4. That is, choose a unitary representation g — u,(g) on
CFn, and set /J’g") (a) = up(g)au,(g)* for g € G and a € My,.) Then there is a
unique action o™ : G — Aut(A,,) such that

agn) (a1 ®as @ @ay) = Bél)(al) Q 65(72) (a2) R ® 65(7") (an)

for
a1€Mk1, GQEMkQ, RN CLnGMkn, and g €q.
One checks immediately that ¢, o aén_l) = as(,n) o, foralln € Z-y and g € G,

so, by Proposition 3.24, there is a direct limit action g — a4 of G on A = h_H)lAn.

It is written oy = @1, 8™,

We call such actions infinite tensor product actions. If each (™ is inner, the
resulting action was originally called a product type action. The general case of
such actions was first seriously investigated in [103] and [104].

As a specific example, take G' = Z /27, and for every n take k,, = 2 and take 3(")
to be generated by Ad ((1) _01). For another specific example, take G = S', and for
every n take k, = 2 and for ¢ € S! take

(n) _ Lo (n) _ L0
B¢ —Ad(0 C) or B¢ —Ad(0 )

The second choice gives

B = Ad(diag(1,¢, ¢2, ..., ¢ 7))
for n € Z+q and ¢ € S*.

In Example 3.25, even if all the actions (™ (and hence also the actions (™) in
the construction are inner, one does not expect the action « to be inner. It is often
easy to compute the crossed product (see Example 10.22 for an illustration of the
method), and the result is often not the same as the crossed product by an inner
action. Here, though, we prove that the action is not inner in one case for which a
direct proof is easy.

Lemma 3.26. In Example 3.25, assume that k, > 2 for all n € Zs(, take
G = Z/27Z, for n € Zsq choose r,,s, € Zso such that r, + s, = ky, set
2z, = diag(1,,, —1s,) € My, , and let (™) : G — Aut(My, ) be the action generated
by Ad(z,). Let A and a: G — Aut(A) be as in the construction of Example 3.25.
Then « is not an inner action.

Proof. Let v € Aut(A) be the automorphism given by the nontrivial element of
Z/27Z. Assume that there is v € U(A) such that v = Ad(v). Choose n € Zs( and

¢ € A, C A such that ||c — v|| < . Define projections eg,e1 € My, ., by
10 --- 01 1 0 --- 0 -1
o0 -~ 00 o 0 --- 0 O
L .o L1
Co=5: + oo and e = 5]
0 0 0 0 0 0 0 0
1 0 0 1 -1 0 0 1
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Then eg and e; are orthogonal projections which are exchanged by the nontrivial
element of Z/2Z under the action ("1, Therefore

Po = lAn X eo and P11 = 114n X ey,

regarded as elements of A, are orthogonal projections such that vy(pg) = p; and
v(p1) = po. Also ¢ commutes with pg. Therefore, using vpgv* = v(pg) = p1 at the
third step,

L= [lpo=p1ll = [(po = pr)v]| = [Ipov —vpoll < [lpoc—cpoll +2[c—v]| = 2ljc—v] < 1.

This is a contradiction, and we have proved that - is not inner. ([l

The following example is taken from the beginning of Section 4 of [218], and is a
special case of the adaptation to C*-algebras of the construction of Proposition 1.6
of [41], where an analogous example is constructed on the hyperfinite factor of
type II;. We give the formulas for the action and the beginning of the proof that
it is an action, but we refer to the proof of Proposition 1.6 of [41] for details.

Example 3.27. Let D = @,°_, My be the d® UHF algebra. We describe an

action a: Z/d*Z — Aut(D) such that, writing Z/d?Z = {0,1,2,...,d*> — 1}, the

automorphism «y is inner, but every unitary v such that ay(v) = vav* for all

a € D satisfies a(v) = exp(2mi/d)v. Thus the image v of a; in the outer auto-

morphism group Out(A) = Aut(A4)/Inn(A4) (the quotient of Aut(A) by the inner

automorphisms) has order d, but v can’t be lifted to an order d element of Aut(A).
We identify D as the closed linear span of all elements of the form

(3.3) =010 - ®ae,1®1®---

with n € Z> and a1, as,...,a, € My. For n € Z>q, set D,, = @;_; My, and let
Yn: Dy — Dpyq be the unique homomorphism such that ¢, (a) = a ® 1, for all
a€D,. Thus D =1 nD”' For n € Z>q let v,: D, = D be the map obtained
from the direct limit.

For n € Z~¢ let m,: My — D be the embedding of M, as the tensor factor in
position n. Thus, m,(a) = v,(1p,_, ® a). Equivalently,

() =101 010aR1R1® -,

with @ in position n. Let A: D — D be the shift endomorphism of D, that is,
using the notation (3.3), the endomorphism given by A(a) = 1® a for a € D. Then
Aomy, = Tp4q foralln € Zsg. Let (e;1))k=1,2,....a be the standard system of matrix
units for M,. Define unitaries v,u € D by

d d—1

V=T (Z 627Tij/d6j’j> and U =11 (edyl))\(v*) + Z Wl(ej,j+1)~
Jj=1 Jj=1

Then define o, € Aut(D) by ay, = Ad(uA(u)A?(u) -+ - A" 71 (u)).

We claim that there is & € Aut(D) such that a(a) = lim, o o, (a) for alla € D.
Moreover, we claim that a? = Ad(v), that a(v) = e2>™"/%y, and that o! is an outer
automorphism of D for [ =1,2,...,d — 1. Finally, we claim that for every unitary
w € D, there is a unitary z € D such that (Ad(w)oa)? = Ad(z), and that for every
such z we have (Ad(w) o a)?(z) = >/, We prove only the first part of this, and
refer to the calculations in the proof of Proposition 1.6 of [41] for the rest.

We start by proving the existence of a homomorphism «: D — D such that
a(a) = lim, . ap(a) for all @ € D. By a standard § argument, it suffices to prove
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that lim,,_,~ a,(a) exists for every a in a dense subset S C D. Our choice for S is
S =U,_o¥n(Dy). For every m € Zs, every element of ., (D,,) commutes with
every element in the range of \,,, and in particular with A" (u) for every n > m.
If a € T',,,(Dyy), it therefore follows that ay,(a) = au,(a) for all n > m, so that
lim;, -, o0 (@) certainly exists.

Since D is simple, « is injective.

The next step is to prove that a?(a) = Ad(v)(a) for every a € D. It then follows
that « is surjective. Thus o € Aut(D). We omit the rest of the proof.

Example 3.28. Let d € {2,3,...}. Let D = ),._, My be the d> UHF algebra.
We describe an action of Z on K ® D which scales the trace on D, by describing
its generating automorphism a.

We will identify D as the closed linear span of all elements of the form

0=01®a® - Qa0, 1R1RQ---
with m € Z>p and a1, az,...,a, € Mg. To help keep the notation straight, we use
the isomorphism p: My ® D — D given by, for a as above and z € My,
pr®a) =284 Qa1 ® a1l 1le---.
To be explicit, on the right hand side = is in the first tensor factor of My in
D = ®2:=1 My, the factor ay, which previously was in the first tensor factor, is
now in the second, etc.

Set C,, = (®2:7n Md) ® D for n € Z>o. (The indexing is chosen so that we
can think of C,, as ®;°:_n M,.) Let (ejk)jk=12,.4 be the standard system of
matrix units for My. For n € Z>(, there are homomorphisms

U Cp = Chg and a,: C, = C,
such that, for x_,,z_p11,...,20 € My and a € D, we have
Un(T-p @1 @ QTR a) =€1,] T VT_pi1 @ - QTgRa
and
ozn(x_n RT_pt1 Q-+ ® xo ®a) =e11RTpy ®T_py1 @ Q pu(zo ® a).
For all n € Z>q, one checks that the diagram

Q) M;oD — Q) . My;oD

] o

®2=—n—1 Myg®D —— ®g:—n—1 Mg ® D

QApt1
commutes. Indeed, both possible maps from the top left to the bottom right are
given by

Ty @T 1@ RToParre Qe 1 QT @T_py1 @ @ pu(ro ® a)

for v, z_py1,...,20 € Mg and a € D. Set C = li nCT“ using the maps
Yt Cp = Cpy1, and for n € Zxsg let v, : C;, — C be the associated map. Then
there is a homomorphism a: €' — C such that oy, = y,0ay, foralln € Z>o. The
map « is injective because C' is simple. Also, for n € Z>q, a(C) contains v, (C,,),
since 1, (Cp) = ap+1(Cry1). Thus « is an automorphism.

It is easy to see that C' = K ® D. The crossed product C*(Z, K ® D, «) turns
out to be the stabilized Cuntz algebra K ® Oq4. See Section 2.1 of [45].
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We can’t quite use Proposition 3.24 here, because «, : C,, — C, is not surjective.

Many stable Kirchberg algebras A satisfying the Universal Coefficient Theorem
can be realized as crossed products by actions of Z on stable AF algebras of the
same general type as in Example 3.28. The group K;(A4) must be torsion free; then
see Corollary 4.6 of [246]. (The statement there is for unital algebras obtained as
crossed products by “corner endomorphisms”. See Proposition 2.1 of [246] for the
relation to our construction.) For general K;(A), suitable actions on AT algebras
are given in Theorem 3.6 of [246]. It isn’t proved there that the crossed products are
Kirchberg algebras. However, they are certainly nuclear and satisfy the Universal
Coefficient Theorem. It is presumably easy to show that they are purely infinite and
simple, and it would follow from the classification theorem that they are Kirchberg
algebras satisfying the Universal Coefficient Theorem.

We now give several examples of direct limit actions on AH algebras in which
homeomorphisms of the spaces in the construction are used to define the actions.

Example 3.29. In [22], Blackadar gives an action « of Z/2Z on the 2°° UHF
algebra D such that C*(Z/2Z, D, «) is not an AF algebra. We refer to that
paper for the details, which require a fair amount of description. The action is
obtained by realizing D as a direct limit D = hgqn C(SY, My»), with the maps
©n: O(SY, Myn—1) — C(S, Myn) of the system being described as follows. Choose
a unitary path t — s; € My, for t € [0, 1], such that

so=1 and 31:((1) (1))

Define (justification afterwards) v: C(S') — C(S*, Ms) by

w0 =5 (TGl )i

for t € [0,1] and f € C(S'). The only point requiring justification is that the values
at t = 0 and at t = 1 (both corresponding to the point 1 € S') are equal, and this
is easily checked. (This kind of map will implicitly reappear in the computations
in Example 10.9.)

The map pg: C(S') — C(S', My) is then given by

eo(f)(C) = diag(¥(£)(C), v()(CH)

for f € C(S') and ¢ € S!, and ¢,, is obtained by tensoring ¢g with idys,,. Of
course, one must prove that the resulting direct limit is in fact the 2°° UHF algebra.
These days, the isomorphism is an immediate consequence of standard classification
theorems. (At the time this example was constructed, no applicable classification
theorems were known.)

The action of Example 3.29 is also an ingredient in the construction of the action
in Example 12.5.
The following example is adapted from [91].

Example 3.30. Let G be a compact metrizable group. Let (ky,)nez-, be a sequence
in G such that {k,:n > N} is dense in G for all N € Zso. (The only use
of density in the construction is to ensure that the algebra we get at the end is
simple. Everything else works for an arbitrary sequence (kp)nez.,.) For n €
Z>o, define ¢, : C(G, Man-1) = C(G, Man) by ¢n(a)(g) = diag(a(g), a(gkn)) for
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a € C(G,My) and g € G. Define an action o™ : G — Aut(C(G, Msn)) by
o (a)(h) = a(g~1h) for a € C(G,My) and g,h € G. Tt is easy to check that
O O ozé"_l) = oz!(]") o, for all n € Z+( and g € G, so, by Proposition 3.24, there
is a direct limit action g — a4 of G on A = @C(G,Mgn). The direct limit A
is a simple AH algebra. (Use Proposition 2.1 of [50].) The resulting direct limit
action of G (Proposition 3.24) turns out to have the Rokhlin property for actions
of compact groups, as in Definition 3.2 of [113].

When G = S', one gets an action of S' on a simple AT algebra with the Rokhlin
property.

Actions of compact groups with the Rokhlin property seem to be hard to find.
Exercise 3.31. Prove the statements made in Example 3.30.

Several further examples of this general type are found in Exercise 10.23 and
Exercise 10.24.

Example 3.32. Let A be a C*-algebra. The tensor flip is the automorphism
© € Aut(A ®max A) of order 2 determined by the formula p(a ® b) = b ® a for
a,b € A. To prove the existence of such an automorphism in the unital case, use
the universal property of A ®max A. Reduce the nonunital case to the unital case.
This gives an action of Z/2Z on A ®@max A.

The same formula also defines a tensor flip action of Z/2Z on A ®muin A. To
prove the existence of such an automorphism, choose an injective representation
m: A — L(H), and consider m ® m as a representation of A ®pin A on H @ H. Let
u € L(H ® H) be the unitary which exchanges the two tensor factors. Then the
required automorphism is given by conjugation by wu.

In a similar manner, the symmetric group S,, acts on the n-fold maximal and
minimal tensor products of A with itself. This is a noncommutative generalization
of Example 2.31.

Example 3.33. The Jiang-Su algebra Z, introduced in [130], is an infinite dimen-
sional simple separable nuclear C*-algebra with no nontrivial projections whose
K-theory is the same as that of C, and such that Z ® Z = Z. Thus, the tensor
flip action of Z/27Z on Z ® Z, as in Example 3.32, gives an action of Z/2Z on Z.
Similarly, tensor permutation as in Example 3.32 gives an action of the symmetric
group S, on Z.

The Jiang-Su algebra plays a key role in classification theory, but will appear in
only a few places in these notes.

Example 3.34. Let A be a unital C*-algebra. Let B = X),c; A be the infinite
minimal tensor product of copies of A. We define the minimal shift on B as follows.
Set B, = A®(") the (minimal) tensor product of 2n copies of A. (Take By = C.)
For n € Z>o, define ¢,,: B, = Bpt11 by ¢n(a) =14 ® a® 14 for a € B,,. Identify
B with lim B,,, using the maps ¢,, in the direct system. Then take 0: B — B to
be the direct limit of the maps o,,: B,, — B, 11 defined by 0,,(a) = 14 ® 14 ® a for
a € B,.

We define the mazximal shift on the infinite maximal tensor product in the same
manner.

These are called tensor shifts or Bernoulli shifts over Z. There are Bernoulli
shifts over any discrete group G.
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Example 3.34 is the noncommutative analog of Example 2.20. Indeed, using
the notation there, if A = C?, then @), ., A = C(X), and the tensor shift is the
automorphism induced by the shift on X.

Example 3.35. Let A be a C*-algebra. The free flip on the (full) free product AxA
is the automorphism ¢ € Aut(AxA) of order 2 given as follows. Let t1,19: A — AxA
be the inclusions of the two free factors. Then ¢ is determined by the formula
o(t1(a)) = t2(a) and @(12(a)) = t1(a) for a € A. (To see that it exists, use the
universal property of A x A.) This gives an action of Z/2Z on A x A.

The same formula also defines a free flip action of Z/2Z on the reduced free
product A+, A, taken with respect to the same state on both copies of A. One also
gets a flip action of Z/2Z on the amalgamated free product Axp A over a subalgebra
B C A, taking the same inclusion of B into both copies of A. If A is unital, one
important choice is B = C- 14, giving a unital amalgamated free product. One can
also used reduced amalgamated free products.

In a similar manner, the symmetric group S,, acts on the n-fold full and reduced
(amalgamated) free products of A with itself. This is a different noncommutative
generalization of Example 2.31.

There are (reduced or amalgamated) free Bernoulli shifts on free products of
copies of A indexed by Z (the free analog of Example 3.34), free Bernoulli shifts over
other discrete groups, and more general versions of the same kind of construction.

Free Bernoulli shifts are used in Section 2 of [217] to give (initially surprising)
examples of actions of noncompact groups which are equivariantly semiprojective.

Our next example involves graph algebras. We take [235] as our main reference.
However, we warn that there are two conflicting conventions, both in common use,
for the relation between the direction of the arrows in the graph and the definition
of its C*-algebra. (For example, the papers [148] and [262], cited below, use the
opposite convention from [235].) In the definition below, the other convention ex-
changes s, and si. When reading papers about graph algebras, one must therefore
always check which convention is being used. We also warn that the graph ter-
minology commonly used in this subject conflicts with graph terminology used in
some other parts of graph theory.

The following definition is from the beginning of Chapter 5 of [235]. See Propo-
sition 1.21 of [235] for the case of a row-finite graph. We emphasize that graphs are
allowed to have parallel edges and edges which begin and end at the same vertex,
and that the edges are oriented.

Definition 3.36. Let £ = (E(O),E(l),r, s) be a directed graph, with vertex set
E© edge set EM, and range and source maps r,s: BV — E©) . That is, if
e € EW is an edge, then e begins at s(e) and ends at r(e). The graph C*-algebra
C*(E) is the universal C*-algebra on generators p,, for v € E(®) and s, for e € E(),
subject to the following relations:

(1) The elements p, for v € E(®) are mutually orthogonal projections.

(2) The elements s, for e € E() are partial isometries.

(3) stse = py(e) for all e € ED,

(4) Pr(e)Sest = ses for all e € EW).

(5) For every v € E© for which r~(v) = {e € EW: r(e) = v} is finite but

not empty, we have »° . 1, SeS¢ = Po.
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We give brief descriptions of some examples. For n € Z>q, let I, be the graph
with one vertex v and n edges ey, es,...,e,. Here is the picture:

s

The relations guarantee that C*(E,,) is unital, with identity p,. The graph Ej has
no edges, so C*(Ep) has no other generators, and is isomorphic to C. The graph
E; gives one additional generator, namely an element s. such that s}s. = s.s} =
py = 1. Thus C*(E;) = C(S'). For the graph E,, with n > 2, the additional
generators are S, €e,,- - -, Se,, and the relations are s; Se; = 1for j=1,2,...,n
and Z?Zl Se; 8¢, = 1. Under the identification

§1 = Seys 82 = Segs -+ Sn = Seyys

these obviously generate the Cuntz algebra O,, which was used in Example 3.20.
The following well known C*-algebras are also isomorphic to C*-algebras of
suitable graphs: the Toeplitz C*-algebra (Example 1.23 of [235]), Cuntz-Krieger
algebras (Remark 2.8 of [235]), M,, (this is essentially contained in Proposition 1.18
of [235]), and many AF algebras (Proposition 2.12 and Remark 2.13 of [235]).
Automorphisms of graphs give automorphisms of the corresponding graph alge-
bras. This is essentially immediate from Definition 3.36. See the discussion before
Lemma 3.1 and before Example 3.2 in [148]. Here are some specific examples.

Example 3.37. For n € Z-( with n > 2, let FE,, be the graph above (with one
vertex and n edges). Then the permutation group S, acts on E, by permuting
the edges. The corresponding action «: S, — Aut(O,,) is given on the generators
51,82, 8n DY Qo (55) = 5,(;) for j =1,2,... n.

This action is a special case of the quasifree actions in Example 3.20, obtained
by restricting from the unitary group U(M,,) to the permutation matrices.

Example 3.38. Consider the following graph Q:

It is taken from the proof of Theorem 2.2 of [262]. We have reversed the arrows,
because the convention used in [262] is the opposite to that of Definition 3.36. We
have also used different names for the vertices. It is shown in [262] that C*(Q)
(called O(Q) in the notation of [262]) is the nonunital Kirchberg algebra satisfying
the Universal Coeflicient Theorem, Ko(C*(Q)) = 0, and K;(C*(Q)) = Z. (The
algebra is nonunital since the graph has infinitely many vertices.)

We derive the computation of K1 (C*(Q)) from Theorem 6.1 of [15]. (The corre-
sponding formula in [262], in Equation (2.2) there, has a misprint: in the formula
for K1(C*(FE)), the first condition on f(z) there should be required to hold for all
x € EO© not just the vertices 2 which emit a nonzero finite number of edges.)
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Accordingly, K1(C*(Q)) can be identified with the set of functions

fid{wo, o1, 22,.. .} U{yo,y1,92,...} = Z
which have finite support, such that

(3.4) f(@o) + f(yo) =0

and

flag) = [f(zj) + flzjp)] =0 and  f(y;) = [f(y;) + f(y;+1)] =0
for 7 =0,1,2,.... These simplify to

(3.5) flz;) = f(y;) =0 for j=1,2,....
One checks immediately that there is an injective homomorphism A: Z — K;(C*(Q))
defined by A(n)(zo) = n, A(n)(yo) = —n, and A(n)(z;) = A(n)(y;) = 0 for

j=1,2,.... Tt follows easily from (3.4) and (3.5) that A is surjective.

There is a unique automorphism « of @ of order 2 such that a(z;) = y; and
ay;) =z, for j =0,1,2,..., and a(v) = v. It gives rise to an automorphism of
C*(Q) of order 2, which we also call «, such that a,: K;(C*(Q)) = K1(C*(Q)) is
multiplication by —1. This is an example of the conclusion of Corollary 3.41 below.
(The paper [262] is a predecessor of [135]. Tts Corollary 2.3 is Corollary 3.41 below
when n is prime. The method is to construct a suitable automorphism of a suitable
graph.)

Example 3.39. Consider the following graph F:

(This graph appears as an example in [194], in the discussion after Example 4.12
of [194]. Its C*-algebra is a nonsimple purely infinite C*-algebra with a compo-
sition series whose subquotients have finite primitive ideal spaces.) There is an
automorphism h: F' — F of order 2 which acts on the vertices by

h(v,) = wp, h(wy) = Un, h(zn) = Yn, and h(yn) = xn,

for n € Z, and which sends the inner loop at each vertex z to the inner loop at h(z)
and the outer loop at z to the outer loop at h(z). This automorphism induces an
automorphism ¢ of C*(F) of order 2, which was used as an example for a theorem
in [194]. The corresponding action of Zs on F is free. Free actions on graphs are the
subject of a very nice result, Theorem 1.1 of [148], according to which the reduced
crossed product is stably isomorphic to the C*-algebra of the quotient graph.

One can easily write down many other examples of actions of finite or infinite
groups on this graph, or on others.

We also give some theorems on the existence of actions.
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Theorem 3.40 (Theorem 3.5 of [135]). Let G be a finite group such that every Sy-
low subgroup of G is cyclic. Let A be a Kirchberg algebra (separable nuclear purely
infinite simple C*-algebra; Definition 1.1) which satisfies the Universal Coefficient
Theorem. Let o: G — Aut(K.(A)) be an action of G on the K-theory of A. If A is
unital, also assume that o4([14]) = [14] for all g € G. Then there exists an action
a: G — Aut(A) such that (ay). =0, for all g € G.

Corollary 3.41 (Corollary 3.6 of [135]). Let A be a Kirchberg algebra which
satisfies the Universal Coefficient Theorem. Let n € Z~q, and let o € Aut(K,(A4))
be an automorphism such that o" = idg, (4). If A is unital, also assume that
o([1a]) = [14]. Then there exists an automorphism « € Aut(A) such that o, = o
and o™ =idy4.

Theorem 3.42 (Theorem 4.8(3) of [124]). Let 'y and I'; be countable abelian
groups which are uniquely 2-divisible. Then there exists an action a: Z/2Z —
Aut(O3) such that B = C*(Z/2Z, O2, «) satisfies the Universal Coefficient Theo-
rem, Ko(B) 2Ty, and K;(B) 2 T}.

4. ADDITIONAL EXAMPLES OF GENERALIZED GAUGE ACTIONS

In this section, we give further examples of what we think of as “gauge type” ac-
tions. Example 3.15 (on the rotation algebras), Example 3.20 (on Cuntz algebras),
Example 3.22, Example 3.23, and the actions in the discussion after Example 3.23
(dual actions), are all of this type.

In many of the examples, there is an action on the C*-algebra which is con-
ventionally referred to as a gauge action. Usually this is an action of St. (For the
C*-algebras of rank k graphs, discussed in Example 4.7, it is an action of (S*)*.) In
most cases, we give actions of a larger group GG, but which is still usually compact.
(For Oy (Example 4.5) and Cuntz-Pimsner algebras (Example 4.8), our larger
group G is not even locally compact.) There is usually an obvious embedding of
S!in G as a diagonal in some sense, and the action usually called the gauge action
is the restriction to this subgroup.

If a: G — Aut(A) is an action of a compact group G on a C*-algebra A, then the
fixed point algebra A% and the crossed product C*(G, A, @) are, in suitable senses,
not more complicated than A. Often they are in fact less complicated; indeed,
for some of the applications of gauge actions, this is an important feature. Since
the main thrust of the later part of these notes is situations in which the crossed
products are more complicated than the original algebra, these examples are thus
less relevant than some of the others. However, one can often get more relevant
examples by considering actions of other groups which factor through a gauge action
or an action of one of the larger groups in the examples of this section. As a very
elementary example, let a: St — Aut(C(S')) be the rotation action (Example 2.12
with G = S'). This action is the dual action from the identification of C(S!) as
C*(Z,C) using the trivial action of Z on C. It is also the gauge action of S* obtained
from Example 4.6 using the realization of C'(S*) as the C*-algebra of the graph with
one vertex and one edge, as in the discussion after Definition 3.36. The fixed point
algebra is clearly C. The crossed product is K(L?*(S')). (See the discussion at the
beginning of Example 10.8.) However, for § € R\ Q, the irrational rotation action
of Z (see Example 2.16) is the composition of a with the homomorphism Z — S*
given by n +— exp(2min) for n € Z. By Example 10.25, the crossed product is the
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well known irrational rotation algebra of Example 3.10. This algebra is a simple
infinite dimensional C*-algebra not of type I.

The action of Example 3.15 generalizes to an arbitrary higher dimensional non-
commutative torus.

Example 4.1. Let d € Z~o with d > 2. Let 6 be a skew symmetric real d x d
matrix. Let Ay be the (higher dimensional) noncommutative torus of Example 3.11.
By similar reasoning as in Example 3.15, there is an action a: (S1)? — Aut(Ay)
determined by a(¢, ¢,,....co) (%) = Guy for j =1,2,... d.

Also, as in Example 3.15, each individual element (¢, (o, ..., ¢q) € (S1)4 gives
an automorphism of Ay, and hence an action of Z on Ay. As mentioned in Ex-
ample 3.15, using these automorphisms, it is possible to realize an arbitrary higher
dimensional noncommutative torus as an iterated crossed product by Z, starting
with a rotation algebra.

Finite subgroups of (S*)? give actions of finite abelian groups on Ay. Although
we will not prove it in these notes, their crossed products turn out to be strongly
Morita equivalent to other higher dimensional noncommutative tori.

Example 4.2. Recall that the unilateral shift is the operator s on [?(Zx>() which
sends a sequence £ = (&, &1,&2,...) to the sequence s& = (0,&,&1,&2,...). One
checks that

8%(0, €1, &2, -+ ) = (61, 2,83, - - )
(This operator is called the backward shift.) The C*-subalgebra T' C L(H) gener-
ated by s is called the Toeplitz algebra. We recall that there is an exact sequence

0 — K(*(Z>0)) — T — C(S*) — 0,

in which the map T — C(S%) sends s to the function f({) = ¢ for ¢ € S*.

The algebra T can also be obtained as the universal C*-algebra generated by an
isometry (which is s). (See Example 1.3(e)(6) of [20].)

There is a unique action vy: St — Aut(T') such that a¢(s) = (s for all ¢ € S*.

Uniqueness follows from the fact that s generates T

Existence is immediate from the description of T' as a universal C*-algebra, but
we can also give a direct proof using the description as a subalgebra of L(I%(Z>0)).
For ¢ € S, define a unitary u¢c € L(1*(Z>¢)) by

uC(§0;€17£27 . ) = (503 65174‘2527 o )
Then one checks that ucsui = (s. It follows that ucT'ui C T. Moreover, since (s
generates T' just as well as s does, we get ucTuf = T. Since u¢, uc, = u¢,¢, for
(1,¢ € St it follows that the formula a¢(a) = ucau; defines a homomorphism
from St to Aut(T).
Continuity of this action follows from Lemma 3.14.

Example 4.3. Let n € Z~(. Recall that the extended Cuntz algebra FE, is the
universal unital C*-algebra on generators si,ss,...,S,, subject to the relations
stating that sjs; = 1 for 1 < j < n and s;s7, s253, ..., sps,, are orthogonal
projections. (The difference from the relations in Example 3.20 is that we no
longer require that 2?21 sjs; = 1. It follows that Oy, is a quotient of E,. The
kernel is K.)

The same formula as in Example 3.20 defines an action of U(M,,) on E,,. That
is, if u = (Uj,k)?,kzl € M, is unitary, then there is an automorphism g, of E,, such
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that
Buls;) =Y uk ;s
k=1

for j=1,2,...,n.

The restriction to S!, realized as the scalar multiples of the identity in U(M,,),
is the gauge action on F,,.

The case n = 1 makes sense. The algebra is then the Toeplitz algebra of Exam-
ple 4.2, and the action is the same action as in Example 4.2.

Example 4.4. Recall that the Cuntz algebra O is the universal unital C*-algebra
on generators si, Sz, ..., subject to the relations stating that sjs; = 1 for j € Zs¢
and s1s7, s253, ... are orthogonal projections. (Like O,,, it is in fact simple, so any
C*-algebra generated by elements satisfying these relations is isomorphic to Ox.)

Now let u € L(I1*(Z=0)) be unitary. Write u in infinite matrix form, as u =
(k)7 k=1~ Then there is an automorphism a,, of O such that

oo
au(s;) =D ukjsk
k=1

for j € Z~y. By Exercise 4.5 below, u — «a, a continuous action of the unitary
group U(I?(Z=0)) on O. Its restriction to S*, realized as the scalar multiples of
the identity in U(I?(Zs0)), is the gauge action on O.

The restriction of this action to S' is used for a counterexample in the discussion
after Theorem 15.26.

Exercise 4.5. Verify that the formula given in Example 4.4 does in fact define a
continuous action of U(I2(Zs0)) on Ow. (Among other things, one must show that
the series in the definition of a,(s;) actually converges.)

Example 4.6. Recall from Definition 3.36 that the C*-algebra C*(E) of a directed
graph F = (E(O),E(l)) is generated by projections p, for v € E(® and partial
isometries s, for e € E(M. There is a gauge action a of S* on C*(E), defined by
ac(py) = py for v € E© and a¢(s.) = (s, for e € EM). See Proposition 2.1 of [235]
for the case of a row-finite graph. The gauge action plays a fundamental role in the
theory of graph C*-algebras, as can be seen from [235].

This action generalizes the gauge actions in Example 3.20, Example 4.2, and
Example 4.3.

The action extends to an action 8 of G = [[.cpa) S'. For ¢ = (Ce)eepm), we
take B¢ (py) = py for v € B and B¢ (s.) = (es. for e € ED.

Example 4.7. Higher rank graphs and their C*-algebras are a generalization of
graph C*-algebras. They are described in Chapter 10 of [235], the C*-algebra be-
ing defined under the assumption that the graph is row finite and has no sources.
(Weaker conditions are also considered.) We do not repeat the definitions of higher
rank graphs and their C*-algebras here, but we give some of the ideas. A graph
of rank k has edges of k colors, and there are specific conditions relating edges of
different colors. The C*-algebra C*(FE) of a row finite higher rank graph E with no
sources is generated by a family of projections, one for each vertex, and a family of
partial isometries, one for each finite path in the graph. A finite path in a rank k
graph E has a degree n = (nq,n2,...,n;) € (Z>0)*, in which n; is the number
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of edges in the path of color j. There is a gauge action a: (S1)* — Aut(C*(E)),
described after Corollary 10.13 [235]. For ¢ = ((1,C2,...,¢k) € (SH*, the auto-
morphism o fixes the projections corresponding to the vertices, and multiplies the
partial isometry corresponding to a finite path of degree n by ({52 ---(;'*. This
action generalizes the gauge action of S* on a graph C*-algebra in Example 4.6. It
plays a role in the theory of C*-algebras of higher rank graphs similar to the role
of a gauge action of S! in the theory of ordinary directed graphs.

Example 4.8. The algebras now known as Cuntz-Pimsner algebras were intro-
duced in [220]. Also see Chapter 8 of [235]. We don’t give details here, but we
give a brief outline. One starts with a C*-algebra A and a Hilbert bimodule F
over A, that is, a right Hilbert module E over A with a homomorphism from A to
the algebra L(F) of adjointable right A-module homomorphisms of E. (The per-
haps more descriptive term “correspondence” is used instead of “Hilbert bimodule”
in [235]. See the discussion after Example 8.4 of [235].) One constructs a Toeplitz
algebra Tg, which is described in Definition 1.1 of [220] and after Proposition 8.8
of [235]. It is generated by creation and annihilation operators on the Fock space
made from F. There is further a Cuntz-Pimsner algebra Og, given in Definition 1.1
of [220] and after Proposition 8.11 of [235]. It is a suitable quotient of 7.

The gauge action X: S — Aut(7z) is described on page 198 of [220]. (The
algebra Pg which appears there is described at the beginning of Section 3 [220].)
The associated Z-grading is given in Proposition 8.9 of [235]. The automorphism
A¢ multiplies the creation operator coming from an element of E®™ by ¢". This
action descends to a gauge action of S' on Op.

As described in the Examples starting on page 192 of [220], Cuntz-Pimsner
algebras generalize Cuntz algebras, Cuntz-Krieger algebras, crossed products by
actions of 7Z, and crossed products by partial actions of Z. The corresponding
gauge actions of S' turn out to be the usual gauge actions on the Cuntz algebras
(Example 3.20) and Cuntz-Krieger algebras and the dual actions on the crossed
products (Example 3.22 for an action of Z). Graph C*-algebras (Definition 3.36) are
special cases of Cuntz-Pimsner algebras (Example 8.13 of [235]), and this example
generalizes Example 4.6.

Example 4.9. In the situation of Example 4.8, as with various other examples
of gauge actions, there is in fact an action of a much bigger group. Again let A
be a C*-algebra, let E be a Hilbert bimodule (or correspondence) over A, and let
Te and O be the associated Toeplitz and Cuntz-Pimsner algebras. As described
in Remark 4.10(2) of [220], the whole automorphism group Aut(E) of E acts on
Te and Og. In fact, consider the group Aut(A, F) of automorphisms of the pair
(A, E), that is, pairs (a,0) consisting of an automorphism a € Aut(A) and an
automorphism of E as a Banach space which is compatible with « in a suitable
sense. Then Aut(A, E) acts on T and Og.

Exercise 4.10. In Example 4.9, take A = C and E = C". Then 7Tg is the
extended Cuntz algebra FE,, of Example 4.3 and O is the Cuntz algebra O,, as in
Example 3.20.

Prove that the action of Aut(FE) on O, can be identified with the action of
U(M,) on O, given in Example 3.20, and that action of Aut(E) on E, can be
identified with the action of U(M,,) on E,, given in Example 4.3.
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Examples 4.11, 4.12, and 4.14 use full and reduced group C*-algebras of discrete
groups, which are formally introduced in Section 5, and Exercise 4.13 and part of
Example 4.14 use full crossed products (Section 8) and reduced crossed products
(Section 9).

Example 4.11. Let F,, be the free group on n generators. Then C*(F},) is the uni-
versal C*-algebra generated by n unitaries wui,us, ..., u,, with no other relations.
(Use the description of the group C*-algebra in Exercise 5.19.) It follows that for
¢=1(¢1,C2,.--,Cn) € (SY)™, there is a homomorphism a¢: C*(F,) — C*(F,) such
that a¢(ug) = (pug for k =1,2,...,n. Lemma 3.14 implies that these homomor-
phisms define a continuous action a: (S1)" — Aut(C*(F,)).

An analogous procedure works for the full C*-algebra of the free group on count-
ably many generators, or even on an arbitrary set of generators.

Example 4.12. The action « of (S1)" on C*(F),) in Example 4.11 descends to
an action of (S1)" on the reduced group C*-algebra C(F,). (See Definition 5.20.)
That is, letting m: C*(F,) — C}(F,) be the quotient map, there is an action
B: (81" — Aut(C;(F,)) such that for every ¢ € (S*)", we have mo ae = ¢ om.

We prove this by exhibiting unitaries in L(I?(F,)) which implement the action 3.
For g € F),, let §;, denote the corresponding element of the standard Hilbert basis
for 1?(F,). Let g1,92,...,9n denote the standard generators of F,. Then the
unitaries uq, U, . . ., 4y of Example 4.11 are the standard unitaries ug,, ug,, ..., ug,
of the group C*-algebra. Let yx: F,, — Z be the homomorphism determined by
Ye(gr) = 1 and y(g;) = 0 for j # k. For ¢ = (C1,¢2,..-,Cn) € (S')", define a
unitary ve € L(I?(F,)) by

vc0g = C?l(g)C;Z(g) T C;{"(g)ég
for g € F,,. Then one can check that
verm(ug vl = mlac(uk))

for k=1,2,...,n and all ¢ € (S)". This proves the existence of 3.
Continuity follows easily from continuity of «.

Exercise 4.13. Show that the constructions in Examples 4.11 and 4.12 work not
just for the full and reduced C*-algebras of F),, but for full and reduced crossed
products by F,,. For the full crossed product, use the description of the crossed
product in Theorem 8.21. For the reduced crossed product, see Definition 9.4.

There are other groups for which there is a construction similar to that of Ex-
ample 4.11, Example 4.12, and Exercise 4.13. Here is one such example.

Example 4.14. Recall (see the discussion before Corollary 1.27 of [106]) that the
fundamental group I',, of a compact orientable surface of genus n is generated by
2n elements

gl,gg,...,gn,hl,hg,...7hn
subject to the single relation (with [g, h] denoting the group commutator [g, h] =
ghg™*h™?)

(91, hal[g2, ho] - -+ [gn, ha] = 1.
It follows that C*(T',) is the universal C*-algebra generated by unitaries

UL, U2y« oy Up, V1, V2, ..., Up
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(with, following Notation 5.21 below, u; = uy, and v; = uy, for j = 1,2,...,n),
subject to the single additional relation
(urvr1uiv}) (ugvausvs) -« - (upvpulvy) = 1.
If
A=A A2, 0 ) €(SH and (= (¢, ey -e,Ga) € (S
then the elements

AUT, AU, « ..y AUy, U1, (U2, ..., (pU, € C*(Fn)
are also unitaries satisfying the same additional relation. Therefore there is a unique
endomorphism ay ¢: C*(T',,) — C*(T',,) such that
axc(ur) = Au, axc(uz) = Aqua, e ax¢(un) = Antn,

and

O[)\7<(U1) = C1U1, Oé)\,c(’l)g) = <2U27 ey aA,C(Un) = Cn’Un.
Lemma 3.14 implies that these endomorphisms actually form a continuous action
a: (SH?m — Aut(C*(Ty,)).

An argument similar to that in Example 4.12 shows that the action a descends to
an action B: (§1)?" — Aut(Cy(T,)). For g € I',, let §, denote the corresponding
element of the standard Hilbert basis for i?(T,,). For k = 1,2,...,n, there is a
unique group homomorphism ~: I';, — Z such that v (gr) = 1, v (g;) = 0 for j #
k, and 74 (h;) = 0 for j = 1,2,...,n, and there is a unique group homomorphism
pr: I'n — Z such that pg(g;) = 0 for j = 1,2,...,n, pg(hg) = 1, and pi(h;) =0
for j # k. For

A=A Az A) €(SH”  and ¢ = (G, Can-. o, Gn) € (SH,

define a unitary vy ¢ € L(I*(F,)) by
Un By = Xln(g))\;z(g) . )\Zn(g)gfl(g)cgz(g) . Cﬁn(g)(;g
for g € I',,. Then one can check that
onem(up)vy ¢ = mlanc(ur))  and oy em(vg)vy ¢ = (e c(vr))

for k=1,2,...,n and all A\, € (S')™. This proves the existence of /3.
One also checks, in the same way as for Exercise 4.13, that the same thing works
for full and reduced crossed products by I';,. We omit the details.

Example 4.15. The C*-algebra U2¢ is defined to be the universal unital C*-algebra
generated by elements u; j, for 1 < j,k < n, subject to the relation that the matrix

U1 Ur2 o Uln
U2,1 U2 -+ U2n ne
Un,1 Up2 -+ Upn

)

is unitary. This amounts to 2n? relations on the generators u; ;, namely

n n
* 5 * — ).
E :“j,k“z,k =0j, and E Up, jUKL = dj1
k=1 k=1

for 1 < j,k < mn. (This C*-algebra was introduced in (2b) in Section 3 of [33].)
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There is an action « of the unitary group U(M,,) on U2, defined as follows. Let

gi11 912 - Jin
921 G922 - Gg2n

g= . i ) e U(M,).
In,1 Gn2 9In,n

Regard g as an element of M, (U}°) via the unital inclusion of C in U2°. Then the
product gu is defined and is unitary. Thus its entries

n
(gw)ji =Y gtk

k=1
form an n X n unitary matrix. So there exists a unique unital homomorphism
ag: UR® — UPR® such that ag(u;;) = (gu);; for j,I = 1,2,...,n. The proof that
this gives a continuous action is requested in Exercise 4.16.
Any unitary representation of a group G in M,, therefore also gives an action of
G on UR°. Here is a special case, coming from the representation

1 0
(0 9)
of S* on C?. For ¢ € S*, we take o¢ € Aut(UL°) to be the automorphism determined
by

Ug(Ul,l) = Ui, U((Ul,Q) = U1,2, U{(“Q,l) = Cuz,l, and Gc(uz,z) = CU2,2-

There is a second action § of U(M,,) on U}, determined by B4(uj;) = (ug*);.
for g € U(M,,) and j,l =1,2,...,n. These actions are different, as can be checked

with n = 2 and
(10
u={, ¢

U UL, ULe Frure,  ug1 — Qugr, and  ugg = Cugo.

(as above): one now gets

A third action comes from letting U(M,,) act on M, by conjugation. The same
matrix u as above now gives the automorphism determined by

—1
upy UL, U2 Qo urg,  Ugr = Quor, and  ugg > ug .

Exercise 4.16. Prove that the definition of the action of U(M,,) on U}® given in
Example 4.15 actually gives a continuous action.

Example 4.17. Let U;°, its generators u;; for 1 < j,k < n, and the unitary
matrix

Ui Ur2 -0 Ulnp
U1 U2 -+ U2n ne
Unp,1 Un,2 -°° Un,n

be as in Example 4.15. Let h: S' — S' be a continuous map. Then functional
calculus gives an element h(u) € M,(UR°), so that there is an endomorphism
ap: UR® — URC such that ap(uj i) = h(u);x for 1 < j,k < n. This endomorphism
is uniquely determined by the relation (idys, ® ap)(u) = h(u).
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Suppose hi, he: St — St are continuous. We prove that ap,on, = Qn, © ap,,
that is, that h — ayp is an antihomomorphism from the semigroup of continuous
maps S! — S! to the semigroup of endomorphisms of UZ¢. To prove the claim,
first observe that for any C*-algebras A and B, any unital homomorphism ¢: A —
B, and any unitary v € A, we have p(ha(v)) = ha(p(v)). Apply this fact with
v =1idps, ® ap, and v = u at the third step in the following calculation:

(idar, ® Qnyons,)(u) = hi(ha(u)) = ha((idar, © an,)(u))
= (idMn (39 ahz)(hl(u)) = [(idMn ® CkhQ) o (idMn ® Oéhl)] (u)

The claim follows.

The claim implies that, in particular, h — «j,-1 is a well defined action of the
group of homeomorphisms of S! on UZe.

Some special cases: take the rotations by all ¢ € S! to get an action of S!; take a
rotation by a fixed ¢ € S* to get an action of Z which is a noncommutative analog
of a rational or irrational rotation; take a rotation by e?™*/™ to get an action of
Z/mZ. In general, if h: S' — S! is any fixed homeomorphism, then n — ol is an
action of Z on U}°.

There is a reduced version Up€ .4 of the algebra UJ° used in Examples 4.15
and 4.17, and presumably there are reduced versions of some of the actions above.
The algebra is defined in the discussion after Proposition 3.1 of [168]. To describe
it, start with the fact (Proposition 2.2 of [168]) that U}¢ can be identified with
the relative commutant of M,, in the amalgamated free product M,, xc C(S*), the
amalgamation identifying the subalgebras C - 1 in both factors. The isomorphism

0: UM — M! N (M, xc C(S"))

is defined as follows. We let e, € M, be the standard matrix units, and we let
z € C(S') be the function 2(¢) = ¢ for ¢ € S*. Then

n
p(ujr) = erjzen.
=1

for j,k = 1,2,...,n. Now take U;{.q4 to be the relative commutant of M, in
the reduced amalgamated free product M,, xc, C(S') with respect to the unique
tracial state on M,, and Lebesgue measure on S!, the amalgamation identifying the
subalgebras C - 1 in both factors as above. It is thus a quotient of the algebra UJ°.

The actions of Example 4.15 presumably descend to actions on Uy 4. Similarly,
the automorphism «y, of Example 4.17 presumably descends to an automorphism
of U, eq Provided h preserves Lebesgue measure on .S L. In particular, the rotation
action of S, the rational and irrational rotations, and the rotation actions of Z/mZ
presumably all descend to actions on U _.. As far as we know, nobody has checked

n,red"
that any of these presumed actions really exists.

Example 4.18. Example 4.15 can be generalized as follows. Let m,n € Z~o. The
C*-algebra Uj¢, , introduced in Section 2 of [169], is defined to be the universal

m,n’

unital C*-algebra generated by elements u;j, for 1 < j < mand 1 < k < n,
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subject to the relation that the m x n matrix

Uil U2 ot Uln

U2,1 Ug2 -+ Un
u =

Um,1 Um,2 Um,n

is unitary, that is, u*u is the identity matrix in M, (Uy;,) and uu* is the identity
matrix in M, (UyS,,).

The constructions of Example 4.15 now give actions of U(M,,) and U(M,,) on
Uni -

If m = 1, then the relations are exactly those for the Cuntz algebra O,,, and the
action of U(M,) generalizes the action of U(M,) on O, of Example 3.20.

A free product description of U)S, is given in Section 2 of [169], but it is of a
different form from the free product description after Example 4.17 for the case
m = n. As far as we know, no reduced version of U, (analogous to the algebra
U eq discussed after Example 4.17) has been proposed. One does not expect
automorphisms or actions like those of Example 4.17, because the matrix u here,

not being square, isn’t an element of a C*-algebra.

Part 2. Group C*-algebras and Crossed Products
5. C*-ALGEBRAS OF DISCRETE GROUPS

The main focus of these notes is the structure of certain kinds of crossed prod-
ucts. The C*-algebra of a group is a special case of a crossed product—it comes
from the trivial action of the group on C—but not one of the ones we are mainly
concerned with. We devote this section and Section 7 to group C*-algebras anyway,
in order to provide an introduction to crossed products in a simpler case, and be-
cause understanding the group C*-algebra is helpful, at least at a heuristic level, for
understanding more general crossed products. Section 8 treats crossed product C*-
algebras and Section 9 treats reduced crossed product C*-algebras. In Section 10
we give a number of explicit computations of crossed product C*-algebras. The
brief Section 6 contains a proof that the reduced C*-algebra of a finitely generated
nonabelian free group is simple.

We recall that, by convention, all topological groups will be assumed to be
Hausdorft.

We start with discrete groups (groups with the discrete topology), because this
case avoids many technicalities. Moreover, in the later part of these notes, almost
all groups will be discrete. (The term “discrete” could be considered redundant. We
routinely include it anyway for clarity.) C*-algebras of locally compact groups will
be discussed in Section 7, but in less detail and without full proofs. However, some
of the elementary definitions in this section, and some theorems (in particular, the
summary of duality and the Fourier transform for locally compact abelian groups),
are given for general locally compact groups, to avoid later repetition.

The notation we use is chosen to avoid conflicts with later notation for crossed
products and other C*-algebras. The letters most commonly used for unitary repre-
sentations of locally compact groups are m and o (which we use for representations
of C*-algebras) and u (we use u, for the image of the group element g in the group
ring and various C*-algebras made from it). Our notation for group rings is designed
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to be compatible with commonly used notation for crossed product C*-algebras,
and is not the same as the notation usually used in algebra. The common notation
A for the left regular representation of a locally compact group also conflicts with
notation we use elsewhere.

The construction of C*(G) is designed so that the representations of C*(G) are
the “same” as the unitary representations of G.

Notation 5.1. Let H be a Hilbert space We denote by U(H) the unitary group
of H.

We repeat for reference the standard definition of a unitary representation. Our
main reason is to emphasize the topology in which continuity is required.

Definition 5.2. Let G be a topological group and let H be a nonzero Hilbert space.
A wunitary representation of G on H is a group homomorphism w: G — U(H) which
is continuous in the strong operator topology on L(H), that is, such that for every
¢ € H, the function g — w(g)¢ is a continuous function from G to H with the norm
topology on H.

Norm continuity of representations is much too strong a condition to be useful.
For example, it follows from Exercise 7.3 that the left regular representation (Def-
inition 5.3 below) of a locally compact group which is not discrete is never norm
continuous. Of course, if G is discrete, the main subject of this section, there is no
difference.

Since representations of groups are not the main subject of these notes, we won’t
give a list of examples. But we want to mention at least two: the one dimensional
trivial representation, which sends every group element to the identity operator on
a one dimensional Hilbert space, and the left regular representation.

Definition 5.3. Let G be a discrete group. The left reqular representation of G
is the representation v: G — U(I*(Q)) given by (v(g)¢)(h) = &(g71h) for g,h € G
and £ € I?(G).

Exercise 5.4. Prove that the formula of Definition 5.3 gives a unitary representa-
tion v: G — U(I1*(Q)).

The main point of this exercise is to see why g~ appears in the formula.

Here is an alternative description of the left regular representation. For h € G, let
5 € I?(Q) be the standard basis vector corresponding to h. Then v is determined
by v(g)0n = dgn, for g, h € G.

There is also a right regular representation w: G' — U (I*(Q)), given by (w(g)¢)(h)
&(hg) for g,h € G and € € I*(G). Tt is determined by w(g)dy = 6,1 for g, h € G.

Remark 5.5. The elementary theory of unitary representations of topological
groups is very much like the elementary theory of representations of C*-algebras.
Unitary equivalence, invariant subspaces, irreducible representations, subrepresen-
tations, direct sums (not necessarily finite) of representations, and cyclic vectors
and cyclic representations, are all defined just as for representations of C*-algebras.
The same proofs as for C*-algebras show that the orthogonal complement of an
invariant subspace is again invariant, so that every subrepresentation is a direct
summand, and that every representation is a direct sum of cyclic representations.

All of this can be found in Section 3.1 of [87].

1

Exercise 5.6. Supply the definitions and prove the statements in Remark 5.5.



CROSSED PRODUCT C*-ALGEBRAS 49

Remark 5.7. There is one significant construction for unitary representations of
topological groups which does not make sense for representations of general C*-
algebras, namely the tensor product of two representations. Let G be a topological
group, let H; and Hs be Hilbert spaces, and let wy: G — U(H;) and wy: G —
U(Hs) be unitary representations. Then there is a unitary representation

w1®w2:G—>U(Hl®H2)

(using the Hilbert space tensor product) such that (w; ® wa)(g) = wi(g) ® wa(g)
for all g € G.

The construction can be found in Section 7.3 of [87], which starts with the
construction of the Hilbert space tensor product of Hilbert spaces. Our w; ® ws is
what is called the inner tensor product before Theorem 7.20 of [87]. (Section 7.3
of [87] is mainly about the tensor product of representations of two groups as a
representation of the product of the groups, a construction for which there is an
analog for representations of general C*-algebras.)

We make only a little use of tensor products of representations, because there is
no analog in the context of crossed products. However, some parts of the represen-
tation theory of compact groups are primarily concerned with how a tensor product
of two irreducible representations decomposes as a direct sum of other irreducible
representations.

One consequence of the properties of the C*-algebra of a locally compact group
is that the elementary representation theory of locally compact groups is a special
case of the elementary representation theory of C*-algebras.

We start with a purely algebraic construction, the group ring.

Definition 5.8. A *-algebra over the complex numbers is a complex algebra A
with an adjoint operation a — a* satisfying the following properties:

(1) (a+b)* =a*+b* for all a,b € A.

(2) (Aa)* = Xa* foralla € A and \ € C.

(3) (ab)* =b*a* for all a,b € A.

(4) a** =a for all a € A.
If A and B are complex *-algebras, then a *-homomorphism from A to B is an
algebra homomorphism ¢: A — B such that p(a*) = ¢(a)* for all a € A.

That is, a *-algebra has all the structure of a Banach *-algebra or a C*-algebra
except for the norm.

Definition 5.9. Let G be a discrete group. We define its (complex) group ring
C[G] to be the set of formal linear combinations of elements of G with coefficients
in C. We write u, for the element of C[G] corresponding to g € G. Thus, for every
b € C[G] there is a unique family (by)4ee of complex numbers such that b, = 0
for all but finitely many g € G and such that b = > geG bgug. Multiplication is
determined by specifying that usu, = ug for all g,h € G, and extending linearly.
Justified by Exercise 5.12 below, we make C[G] into a *-algebra by

(5.1) (deGbgug)* =3 ey

Remark 5.10. The product in C[G] as defined above can be written in the follow-
ing equivalent ways:

(deGagug) (deGbgug) - Zg,hec;agbhugh
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or

(5.2) (deGagug) (decbgug) - deG (Zhecahbhﬂg) Yy

Remark 5.11. The convention in algebra seems to be that our )
just written > o
as the coeflicients. Indeed, for any field K they routinely construct K[G] in the
same way, except that usually there is nothing quite like the adjoint operation we
defined above. More generally, for any ring R, one can form R[G] in the same way,
and we will do this when we consider crossed products by discrete groups. (See
Remark 8.6.) One needs an adjoint on R in order to get an adjoint on R[G].

e bgug is

bg - g. Also, algebraists have no reason to always choose C

Exercise 5.12. Let G be a discrete group. Prove that the product given in Defi-
nition 5.9 makes C[G] into a unital algebra over C. Further prove that the opera-
tion (5.1) makes C[G] a *-algebra as in Definition 5.8.

Definition 5.13. Let G be a discrete group, let H be a Hilbert space, and let
v: G — U(H) be a unitary representation of G. We define p,: C|G] — L(H) as
follows. For a family (by)gec of complex numbers such that by = 0 for all but
finitely many g € G, we set

(5.3) po (X2, b)) =X, _bav(9)

Proposition 5.14. Let G be a discrete group, and let H be a Hilbert space. For
any unital *-representation 7 of C[G] on H, we define a unitary representation
wr: G — U(H) by we(g) = m(ug). Then m — w, is a bijection from unital
representations of C[G] on H to unitary representations of G on H. The inverse is
given by v — p, as in Definition 5.13.

Exercise 5.15. Prove Proposition 5.14.

To demonstrate that this really is easy, we prove that if 7: C[G] — L(H) is a
unital *-representation, then w, is a group homomorphism. Let g,h € G. Then,
using ugn = ugup at the second step and the fact that 7 is a homomorphism at the
third step, we have

wr(gh) = w(ugn) = m(ugun) = m(ug)m(up) = wx(g)wx(h).
One must also prove that p, is in fact a unital *~homomorphism; this is just algebra.

We recall the universal representation of a discrete group G. The construction
is essentially the same as that of the universal representation of a C*-algebra.
We would like it to be a representation z such that every unitary representation
is unitarily equivalent to a subrepresentation of z, and the obvious way to do
this is to take z to be the direct sum of all possible unitary representations of G.
Unfortunately, there are set theoretic problems with this definition. First, there
are representations on arbitrarily large Hilbert spaces, and there is no set whose
elements include sets with arbitrarily large cardinality. Second, even the collection
of all one dimensional Hilbert spaces is not a set. We therefore proceed as follows.

Definition 5.16. Let G be a discrete group. Choose a fixed Hilbert space M
with dimension (cardinality of an orthonormal basis) equal to card(G). Let z be
the unitary representation obtained as the direct sum of all possible unitary repre-
sentations of G on closed subspaces of M. We call it the universal representation

of G.
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We really need only make sure that dim(M) > card(G). But then the unitary
equivalence class of our choice of universal representation would depend dim(M).
This dependence would not matter in any essential way, but would be annoying.

Remark 5.17. With the construction of Definition 5.16, the universal representa-
tion z is unique up to unitary equivalence. It has the property that every unitary
representation with a cyclic vector is unitarily equivalent to a subrepresentation
of z. Since every representation is a direct sum of cyclic subrepresentations, it fol-
lows that every unitary representation of G is a direct sum of subrepresentations
which are unitarily equivalent to subrepresentations of z.

We can now define two standard C*-algebras associated to a discrete group.

Definition 5.18. Let G be a discrete group. Let z: G — U(M) be the universal
unitary representation of G, as in Definition 5.16. Using the notation of Defi-
nition 5.13, we define the group C*-algebra C*(G) to be the closure p,(C[G]) of
p-(C[G]) C L(M) in the norm topology on L(M).

When z is the universal representation of G, we write p, for both the map
C[G] — L(M) and for the same map with restricted codomain C*(G).

Equivalently, C*(G) = span({z(g): g € G}).
The C*-algebra C*(G) has the following description in terms of generators and
relations.

Exercise 5.19. Let G be a discrete group. Prove that C*(G) is the universal unital
C*-algebra with generators uy for g € G and relations uguy = ugug =1 for g € G
and ugun = ugp for g, h € G.

Definition 5.20. Let G be a discrete group. Let v: G — U(I>(G)) be the left
regular representation (Definition 5.3). Using the notation of Definition 5.13, we
define the reduced group C*-algebra C;(G) to be the closure p, (C[G]) of p,(C[G]) C
L(I*(@)) in the norm topology on L(I*(Q)).

When v is the left regular representation of G, we write p, for both the map
C[G] — L(I1*(@)) and for the same map with restricted codomain C}(G).

Notation 5.21. Let G be a discrete group. For g € G, we also write ug for the
images of u, € C[G] in both C*(G) and C;(G). (No confusion should arise. In
effect, in Exercise 5.19, we already used this notation in C*(G).)

The algebra C*(G) is sometimes called the full C*-algebra of G. Sometimes the
notation C_ (G) is used, and correspondingly C*, (G) for C}(G). The reduced
C*-algebra is also sometimes written C5(G), based on the traditional notation A
for the left regular representation.

Besides the full and reduced group C*-algebras, there are “exotic” group C*-
algebras, completions of C[G] with convolution multiplication in norms which lie
between those giving the full and reduced C*-algebras. The first systematic study
of such algebras seems to be the recent paper [36]. Further work on such algebras
appears in [178] (where uncountably many such algebras are given for nonabelian
free groups), [249], and [291]. We don’t discuss these algebras in these notes.

The next theorem shows that the full C*-algebra of a group plays a role for
unitary representations analogous to the role of the group ring for representations
in the purely algebraic situation.
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Theorem 5.22. Let G be a discrete group, and let H be a Hilbert space. For
any unital representation 7w of C*(G) on H, we define a unitary representation
wr: G — U(H) by wx(g) = m(ug). Then m — w, is a bijection from unital
representations of C*(G) on H to unitary representations of G on H. In addition,
if v: G — U(H) is a unitary representation of G on a Hilbert space H, if p, is as
in Definition 5.13, and if 7: C*(G) — L(H) is the corresponding representation of
C*(@G), then:

(1) Let z be the universal unitary representation of G. Then 7 is uniquely

determined by the relation p,(a) = w(p,(a)) for all a € C*(G).

(2) ©(C*(G)) = C*(v(G)) = span(v(G)) = pu(C[G]).

We have used the same notation 7 +— w, as in Proposition 5.14. We don’t quite
get the formula (5.3) of Definition 5.13 for the inverse correspondence. The sums
in (5.3) are finite, and one might hope that one could simply replace them with
convergent series, and proceed in the obvious way. However, not all elements of
C*(G) can be represented by convergent series which directly generalize the finite
sums in (5.3). See Remark 5.60(3), Remark 5.60(4), and Remark 5.61 for further
discussion. Given a unitary representation v, the best we can do is to extend p, by
continuity, which is what part (1) of the theorem amounts to.

Proof of Theorem 5.22. If m is a unital representation of C*(G) on H, it is easy to
check that w, is a unitary representation of G on H. (The proof is the same as the
proof of the corresponding part of Proposition 5.14.)

Suppose 7 and o are unital representations of C*(G) on H, and that w, = w,.
The definition immediately implies that 7(u,) = o(u,) for all g € G. Since {u,: g €
G} spans a dense subset of C*(G), it follows that m = o.

Now let v be any unitary representation of G on H. Then there are an index
set I and orthogonal invariant subspaces H; C H for i € I such that H = @, ; H,
and such that for ¢ € I the restriction v; of v to H; is a cyclic representation.

Let z: G — U(M) be the universal representation of G, on the Hilbert space M,
as described in Definition 5.16. By construction, for every i € I there is a direct
summand M; C M such that the restriction z; of z to M; is unitarily equivalent
to v;. That is, there is a unitary ¢; € L(M;, H;) such that ¢;z;(g)c; = vi(g) for
all g € G. Now define a unital representation m;: C*(G) — L(H;) by n(a) =
ci(aln,)ci. Define a unital representation 7: C*(G) — L(H) by 7 = @, ., m;. It is
immediate that w, = v.

We prove (1). Let v be given. Since w, = v, we have m(uy) = v(g) for all g € G.
It follows from linearity that p,(a) = 7(p.(a)) for all @ € C[G]. By definition,
p2(C[G]) is dense in C*(@G), so this equation determines m uniquely.

For (2), the equality C*(v(G)) = p,(C[G]) follows from the fact that p,(C[G]) is
a *-subalgebra of L(H). The equality span(v(G)) = p,(C[G]) follows from the fact
that p,(C[G]) = span(v(G)). The relation C*(v(G)) C m(C*(G)) holds because

7(C*(G)) is closed and v(g) = 7(ug) € 7(C*(G)) for all g € G. The relation
m(C*(@)) C m follows from p,(a) = 7(p.(a)) for a € C[G] and density of
p=(C[G]) in C*(G). O

Corollary 5.23. Let G be a discrete group. Then there is a unique surjective
homomorphism k: C*(G) — C}(G) determined (following Notation 5.21) by ug —
ug for g € G.
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Proof. It follows from Theorem 5.22 that ug — u, determines a unique homomor-
phism ko: C*(G) — L(I*(G@)), and from Theorem 5.22(2) and Definition 5.3 that
ro(C(G)) = G (G). O

The map k: C*(G) — C}(G) of Corollary 5.23 need not be injective. In fact,
is injective if and only if G is amenable (Theorem 5.51, for which we do not give a
proof, and Theorem 5.50). Amenability is an important property, which we mostly
do not treat in these notes; we refer to the discussion before Theorem 5.50 for more
information. We do include enough in these notes to see that x is not injective
when G is a countable nonabelian free group. Indeed, we show in Theorem 6.6 that
C} (@) is simple. However, C*(G) is never simple unless G has only one element.
To see this, let H be a one dimensional Hilbert space, and let v: G — U(H) be the
trivial representation, that is, v(g) = 1 for all ¢ € G. Applying Theorem 5.22(2) to
this representation, we obtain a nonzero homomorphism 7: C*(G) — L(H) = C.
It follows from Corollary 5.25 below that 7 is not injective, so Ker(7) is a nontrivial

ideal in C*(G).

Proposition 5.24. Let G be a discrete group. Then the map p,: C[G] — C}(G)
of Definition 5.20 is injective.

Proof. As in Definition 5.20, let v: G — U(I?(G)) be the left regular representation.
Let b € C[G]. Then there is a family (by)gec of complex numbers such that by = 0
for all but finitely many g € G and such that b = EQGG byug. For g € G, let ¢, €
I2(G) be the standard basis vector corresponding to g. Then p,(b)d; = > gec bgdg-
If b # 0, then there is g € G such that by # 0, so (p,(b)d1, 6g) = by # 0. Thus
pu(b) # 0. O

Corollary 5.25. Let G be a discrete group. Then the map p,: C[G] — C*(G) of
Definition 5.18 is injective.

Proof. This follows from Proposition 5.24 and Corollary 5.23. O

We are primarily interested in crossed products, and the sort of functoriality
we are most interested in is what happens for a suitable homomorphism between
algebras on which a fixed group G acts. But functoriality of group C*-algebras is
a sufficiently obvious question that we should at least describe what happens.

Exercise 5.26. Let (G; and G3 be discrete groups, and let ¢: G; — G2 be a
homomorphism. Prove that there is a unique homomorphism C*(p): C*(Gy) —
C*(G2) such that C*(p)(ug) = uy(g) for all g € G. Prove that, with this definition
of the action on morphisms, G — C*(G) is a functor from the category of discrete
group and group homomorphisms to the category of unital C*-algebras and unital
homomorphisms.

The main point is that if w is a unitary representation of Ga, then wo ¢ is a
unitary representation of Gj.

Exercise 5.27. Let G; and G» be discrete groups, and let ¢: G; — G2 be an injec-
tive homomorphism. Prove that there is a unique homomorphism C(¢): C¥(G1) —
C}(G2) such that C} () (uy) = uy(g) for all g € Gy. Prove that, with this definition
of the action on morphisms, G — C*(G) is a functor from the category of discrete
group and injective group homomorphisms to the category of unital C*-algebras
and unital homomorphisms.
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The main point here is that if v is the regular representation of G5, then voy is
a direct sum of copies of the regular representation of Gy. (The number of copies
is the cardinality of the coset space G2/¢(G1).)

Without injectivity of ¢, there might be no nonzero homomorphism from C;(G1)
to C;k (Gg)

As an example, let n € {2,3,...,00}, and let F,, be the free group on n gener-
ators. Theorem 6.6 implies that C}(F,,) is simple. Therefore there is no nonzero
homomorphism from C;(G;) to C to go with the homomorphism from F,, to the
group with one element.

We warn that when the groups are not discrete, there is much less functoriality.
See the discussion after Proposition 7.23.

We so far haven’t given any justification for the use of C}(G). Here is one reason
for its importance.

Recall that a state w on a C*-algebra A is said to be faithful if whenever a € A
satisfies w(a*a) = 0, then a = 0. A state w on a C*-algebra A is tracial if w(ab) =
w(ba) for all a,b € A. (We state this formally as Definition 11.23 below.)

Theorem 5.28. Let GG be a discrete group. Then there is a unique continuous
linear functional 7: C(G) — C such that 7(u;) =1 and 7(uy) = 0 for g € G\ {1}
Moreover, 7 is a faithful tracial state.

The condition on 7 means that if (by)seq is a family of complex numbers such
that by = 0 for all but finitely many g € G, then

(5.4) T (deGbgug) = by

Our main application of Theorem 5.28 will be to the existence of “coefficients” for
elements of C(G). See Proposition 5.58 and Proposition 5.59, and see Remark 5.60
for warnings about the use of these coefficients. Remark 5.61 explains one thing
which goes wrong in C*(G) when C*(G) # C}(G).

Proof of Theorem 5.28. Since C[G] is dense in C}(G), there can be at most one
such continuous linear functional.

We now prove existence. As before, for g € G, let §, € 1*(G) be the standard
basis vector corresponding to g. Define 7: C*(G) — C by 7(a) = {(ady,01). We
immediately check that 7(uq) = (61,61) = 1 and that if g € G\ {1} then 7(uq) =
(8, 61) = 0.

It is obvious that 7 is a state on C}(G). To prove that 7 is tracial, by linearity
and continuity it suffices to prove that 7(ugun) = 7(upug) for all g,h € G. This
reduces immediately to the fact that gh # 1 if and only if hg # 1.

It remains to show that 7 is faithful. Identify C[G] with its image in C}(G).
We first claim that C[G]d; is dense in [2(G). It suffices to show that if (by)sec
is a family of complex numbers such that b, = 0 for all but finitely many g € G,
then }° . by0y € C[G]01. Set b= 3" byug, which is in C[G], and observe that
>_geg bgdg = b61 € C[G]d1. This proves the claim.

Now let a € CF(Q) satisty 7(a*a) = 0. Let b,c¢ € C[G]é;. Using the Cauchy-
Schwarz inequality at the fourth step, we have

[(abdy, cd1)| = |(c*abdy, 61| = |7 (c*ab)| = |7(be*a)| < 7(a*a)?7(be*eb*)/? = 0.

So (abdy,cd1) = 0. Since bd; and ¢d; are arbitrary elements of a dense subset of
I2(G), it follows that a = 0. O
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We now look at two easy classes of examples: finite groups and discrete abelian
groups.

Example 5.29. Let G be a finite group. Then C[G] is finite dimensional, hence
already complete in any norm. Therefore C*(G) = C}(G) = C|G] is a finite di-
mensional C*-algebra, with dimension equal to card(G). So there are m € Zsg
and 7(1) < r(2) < --- < r(m) such that C*(G) = @]~ M,y and 7", r(j)* =
card(G). The numbers (1), 7(2),...,r(m) are the dimensions of the distinct equiv-
alence classes of irreducible representations of C* (&), equivalently, of G. Since the
one dimensional trivial representation of G is irreducible, we must have r(1) = 1.

A standard theorem from algebra (Theorem 7 in Section 2.5 of [254]) asserts
that the number of distinct equivalence classes of irreducible representations of G
is equal to the number of conjugacy classes in G.

The book [254] contains much more information about the representation theory
of finite groups.

We turn to discrete abelian groups. We will need Pontryagin duality and various
related results, which we state without proof. To avoid later repetition, we give
the statements for the case of locally compact abelian groups. A discussion of the
very beginnings of this subject (including the identification of the dual G with the
maximal ideal space of the Banach algebra L!(G), but not including the Pontrya-
gin duality theorem) appears in Section 1.4 of [292]. There is a more extensive
discussion in Chapter 4 of [87], and there are thorough presentations in Chapter 6
of [109] and Chapter 8 of [108].

Definition 5.30 (Definition 1.74 of [292]; beginning of Section 4.1 of [87]; Definition
23.3 of [109]). Let G be a locally compact abelian group. Its Pontryagin dual (or
just dual) G is the set of continuous homomorphisms x: G — S*, with the topology
of uniform convergence on compact sets.

There are two motivations for this definition. One is the duality theorem (The-

orem 5.34), in condensed form
G=0G.

The other is that G is essentially the set of one dimensional representations of G
(see Proposition 5.33 below), and that the irreducible representations are exactly
the one dimensional representations. For this, we recall Schur’s Lemma for unitary
representations of topological groups. The proofs of Schur’s Lemma and the corol-
lary are essentially the same as that of the analogous statements for C*-algebras.
If G is a topological group and v1: G — U(H;) and ve: G — U(H2) are unitary
representations of G on Hilbert spaces Hy and Hs, then we let C(v1,v2) be the set
of intertwining operators, that is,

C(v1,v2) = {a € L(Hy, Hy): avi(g) = va(g)a for all g € G}.

Theorem 5.31 (3.5(b) in [87]). Let G be a topological group and let vy: G —
U(H,) and vy: G — U(Hz) be irreducible unitary representations of G on Hilbert
spaces Hy and H,. If v; and vy are unitarily equivalent, then there is a unitary
u € L(Hy, Hy) such that C(v1,v2) = Cu. Otherwise, C(vy,v2) = 0.

Corollary 5.32 (Corollary 3.6 of [87]). Let G be an abelian topological group.
Then every irreducible unitary representation of G is one dimensional.
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Proof. Let v: G — U(H) be an irreducible unitary representation of G on a Hilbert
space H. It follows from Theorem 5.31 that C(v,v) is one dimensional. Since
1€ C(v,v), we get C(v,v) =C- 1.

Since G is abelian, for every h € G we have v(h) € C(v,v). Therefore v(h) € C-1.
It follows that every closed subspace of H is invariant. Since v is irreducible, this
is only possible if dim(H) = 1. O

The set G exactly parametrizes the one dimensional representations of G:

Proposition 5.33. Let G be a locally compact abelian group. Identify S' with
the unitary group of the one dimensional Hilbert space C in the obvious way. Then:
(1) Every one dimensional representation of G is unitarily equivalent to some
element of G.
(2) If x1,x2 € G are unitarily equivalent, then x; = xa2.

Proof. Both parts are immediate. [

In the following theorem, local compactness is Corollary 1.79 of [292], the discus-
sion after Theorem 4.2 in [87], or Theorem 23.13 of [109]. Duality (the statement
that e¢ is an isomorphism) is Theorem 4.31 of [87], or Theorem 24.8 of [109].
The fact that G — G is a contravariant functor is clear (and is in Theorem 24.38
of [109]), naturality of e¢ is obvious, and that G — G is a category equivalence
follows from duality and naturality of e¢.

Theorem 5.34. Let G be alocally compact abelian group. Then Gisa locally com-
pact abelian group. The assignment G — G is the map on objects of a contravariant
category equivalence from the category of locally compact abelian groups and con-
tinuous group homomorphisms to itself, for which the map on morphisms assigns
to a continuous group homomorphism ¢: G — H the homomorphism x +— x o ¢
from H to G. There is a natural 1somorphlbm of locally compact abelian groups

Eqg: G — G
(Pontryagin duality), given by ec(g)(x) = x(g) for g € G and x € G.
In the following collection of examples, the one we care most about is 7 =St

Example 5.35. We give the examples of dual groups which are most important
for our purposes.
(1) Let G be a finite abelian group. Then there is a (noncanonical) isomorphism
G = G. Sce Corollary 4.7 of [87], or 23.27(d) of [109).
(2) For ¢ € S', define x, € Z by x¢(n) = ¢" for n € Z. Then { — x¢ defines
an isomorphism S — Z. See Theorem 4.5(c) of [87], or 23.27(b) of [109].
(3) For n € Z, define x,, € Z by xn(¢) = ¢" for ¢ € S1. Then n + x,, defines
an isomorphism Z — S1. See Theorem 4.5(b) of [87], or 23.27(a) of [109)].
(4) Fort € R, define y; € R by y(z) = exp(izt) for # € R. Then t — x; defines

an isomorphism R — R. See Theorem 4.5(a) of [87], or 23.27(e) of [109]. (In
Theorem 4.5(a) of [87], the slightly different formula x:(z) = exp(2wizt)
is used, but clearly one formula gives an isomorphism if and only if the
other does. The difference shows up in formulas for Fourier transforms and
related objects.)



CROSSED PRODUCT C*-ALGEBRAS 57

(5) Let G1,Ga, ..., Gy belocally compact abelian groups, and let G = []}_, Gy.
Then G = [];_; Gi. The isomorphism sends (X1, X2,---,Xn) € [y Gk
to the function

(917925 s agn) = Xl(gl)XQ(QZ) e Xn(gn)

for (g1,92,---,9n) € [[h—; Gk. See Proposition 4.6 of [87], or Theorem
23.18 of [109)].
(6) Let I be an index set, and for i € I let G; be a compact abelian group. Let

G =Il,c; Gi- Then G=P Gi. (The direct sum is the algebraic direct sum

o~

of the discrete abelian groups G;.) The map is the obvious generalization
of that of (5); the product is well defined because the factors commute and
all but finitely many of them are equal to 1. See Proposition 4.8 of [87], or
Theorem 23.21 of [109].

For many further results about the relations between G and (A;, we refer to
Chapter 4 of [87] and particularly to Chapter 6 of [109]. Here we point out just a
few facts.

Theorem 5.36. Let G be a locally compact abelian group. Then:

(1) G is discrete if and only if G is compact.
(2) G is compact if and only if G is discrete.

Proof. The forward implication in each of the two parts is in Proposition 4.4 of [87]
or Theorem 23.17 of [109]. The reverse direction in each part follows from the
forward implication in the other part by duality (Theorem 5.34). O

Further statements of this general nature can be found in Theorems 24.23, 24.25,
24.26, and 24.28 of [109]. In the statements of all these results, X = CA;, and
additional related theorems can be obtained by using duality (Theorem 5.34) to
exchange G and G.

The first part of the following result is known as Plancherel’s Theorem. The
element y¢ is a generalized Fourier transform, and is often written E

Theorem 5.37. Let G be a locally compact abelian group. For any choice of Haar
measure on G, there is a choice of Haar measure on G such that there is a unitary
y € L(L*(G), L*(G)) such that

(WE) () = /G X@)E() dulg)

for all x € G and ¢ € LY(G) N L2(G).
Further, let v be the left regular representation of G' on L?(G), and let w be the

~

unitary representation of G on L?(G) defined by (w(g)n)(x) = x(g9)n(x) for g € G,

y € G, and n € L? (CA?) Then y intertwines v and w, that is, yv(g)y* = w(g) for all
geq.

The first part is Theorem 4.25 of [87], or Theorem 31.18 of [108].
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GiAven the first part of the theorem, the second part is easily justified. For g € G,
X € G, and ¢ € LY(G) N L*(G), we have

(yo(9)6)(g) = / X (0(0)E) (k) dya(h) = / XOE(g™h) du(h)

G G

- /G X@ER) du(h) = X@EX) = (w(g)ye)(x).

Since L'(G) N L?(G) is dense in L?(G), the second part follows.

We are now ready to calculate the C*-algebra of a discrete abelian group. The
answer is essentially the same without discreteness: C*(G) = Cj (é) for every
locally compact abelian group G. We also point out that, according to some pre-
sentations of the theory, what we are doing here is backwards: Gis (almost) defined
as the maximal ideal space of C*(G). (The common version of this approach is to
define G to be the maximal ideal space of LY(G).)

Theorem 5.38. Let G be a discrete abelian group. Then there is an isomorphism
v: C*(G) — C(G) determined by the following formula. If (by)sec is a family of
complex numbers such that b, = 0 for all but finitely many g € G, then

(32, baus) (0 =3 X9ty

for all x € G.

Proof. Since C*(G) is a commutative unital C*-algebra, we can let X be its maximal
ideal space Max(C*(G)), which we think of as the set of unital homomorphisms
from C*(G) to C. Then there is a canonical isomorphism ¢: C*(G) — C(X).

Proposition 5.33 identifies G with the set of representations of G on the one
dimensional Hilbert space C, and Theorem 5.22 provides a bijection from such
representations to the unital homomorphisms from C*(G) to C. Combining them,
we obtain a bijection h: G — X such that h(x)(ug) = x(g) for all x € Gandg e G.

We claim that h is continuous. Let (x;)ic; be a net in G which converges
uniformly on compact sets to x € G. Then for all g € G we have

lim h(xi)(ug) = lim xi(9) = x(g9) = h(x)(uy).

It follows that lim;e; h(x;)(a) = h(x)(a) for all a € span({uy: g € G}) C C*(G).
It now follows from an § argument that lim;cr h(x;)(a) = h(x)(a) for all a €
span({uy: g € G}) = C*(G). By the definition of the topology on Max(C*(G)),
this means that lim;er h(x;) = h(x). Continuity of h follows.

We now know that h is a continuous bijection of compact Hausdorff spaces.
Therefore h is a homeomorphism. So h determines an isomorphism Max(C*(G)) —

G. The theorem follows. O

The following theorem holds in much greater generality (for arbitrary amenable
locally compact groups—see Theorem 5.50 and Theorem 9.7 below), but this special
case has an easy proof, which we give here.

Theorem 5.39. Let G be a discrete abelian group. Then the canonical homomor-
phism x: C*(G) — C}(G) is an isomorphism.
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Proof. For any unitary representation w of G on a Hilbert space H, let p,,: C*(G) —
L(H) be the corresponding representation of C*(G) as in Theorem 5.22.
We have to prove that ||x(b)|| = ||b]| for all b € C*(G). As in Theorem 5.37,

let v be the left regular representation of G on L*(G), and let w: G — U(L? (é))
be (w(g)n)(x) = x(g)n(x) for g € G, x € G, and n € L2 (CA?) Also let y €
L(L*(G), L? (@)) be as in Theorem 5.37. By definition, x = p,. Since y intertwines
v and w, it is immediate that y intertwines p, and p,,. Therefore ||k(b)|| = ||pw(b)]].

Let v: C*(GQ) — C’(CA;) be as in Theorem 5.38. For g € G, the operator p,,(ug)
is multiplication by the function x + x(g) = 7(u,)(x~'). Therefore p,(b) is
multiplication by the function y — ~v(b)(x~!). Since Haar measure on G has full
support, we get ||pw(b)]| = ||v(b)||. Combining this with the result of the previous
paragraph, and with [|v(b)|| = ||b]| (from Theorem 5.38), we get ||«(b)|| = ||b||]. O

The following remark and problem are not directly related to the main topic of
these notes, but they seem interesting enough to include.

Remark 5.40. Neither C*(G) nor C}(G) determines G, not even for G discrete
abelian. One example that is easy to get from what has already been done is that
the full and reduced C*-algebras of all second countable infinite compact groups are
the same, namely C(.9) for a countable infinite set S. Any two finite abelian groups
with the same cardinality have isomorphic C*-algebras, since if card(G) = n then
card(G) = n and C*(G) = C*(G) = C". Among nonabelian groups, the simplest
example is that both the nonabelian groups of order 8 have both full and reduced
C*-algebras isomorphic to C* @ M.

However, the following problem, from the introduction to [120], seems to be
open. (We are grateful to Narutaka Ozawa for this reference.)

Problem 5.41. Let G and H be countable torsion free groups such that C*(G) =
Cr(H). Does it follow that G = H?

As discussed in the introduction to [120], the answer is yes if G and H are
abelian.
In much of what we have done, one can use the algebra [!(G) in place of C[G].

Definition 5.42. Let G be a discrete group. We write elements of I*(G) as func-
tions a: G — C (such that > . la(g)] < o0). We make I*(G) into a Banach
*_algebra as follows. The Banach space structure is as usual. Multiplication is
given by convolution: for a,b € I*(G),

(ab)(g) = > a(h)b(h™"g).
hea
The adjoint is
a*(g) = alg™")
for a € IY(G). For g € G, we define u, € I'(G) by uy(g) = 1 and uy(h) = 0 for
h #g.

We give the properties of [*(G) as a series of easy exercises.

Exercise 5.43. Let G be a discrete group. Prove that the operations in Defini-
tion 5.42 make I!(G) into a unital Banach *-algebra whose identity is u;.
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The following result justifies the use of the notation u, for elements of both C[G]
and ['(G). Using it, we normally regard C[G] as a dense subalgebra of [1(G).

Exercise 5.44. Let G be a discrete group. Prove that there is a unique algebra
homomorphism ¢: C[G] — I}(G) such that the image of the element u, € C[G] of
Definition 5.9 is the element u, € I*(G) of Definition 5.42. Prove that ¢ is injective,
preserves the adjoint operation, and has dense range.

Definition 5.45. Let G be a discrete group, let H be a Hilbert space, and let
w: G — U(H) be a unitary representation of G. We define p,,: I'(G) — L(H) by

(5-5) Pu(b) = blg)w(g)

geG
for b € I1(@).

Exercise 5.46. Let G be a discrete group, let H be a Hilbert space, and let w: G —
U(H) be a unitary representation of G. Prove that the map p,, of Definition 5.45
is a well defined unital *-homomorphism from ['(G) — L(H). Prove that the
representation p,, of Definition 5.13 and the map ¢ of Exercise 5.44 satisfy p,, 0t =
Puw-

Exercise 5.47. Let G be a discrete group, let H be a Hilbert space, and let
7: 11(G) — L(H) be a unital *-homomorphism (no continuity is assumed). Prove
that || (b)| < ||b]| for all b € I*(G).

Exercise 5.48. Let G be a discrete group, and let H be a Hilbert space. Prove
that the assignment w +— p,, of Definition 5.45 defines a bijection from unitary
representations w: G — U(H) to unital *-homomorphisms I*(G) — L(H).

Exercise 5.49. Let G be a discrete group. Prove that the map which for g €
G sends u, € I}(G) to u, € C*(G) extends to a contractive *-homomorphism
A: IH(G) — C*(G) with dense range. Further prove that if w: G — U(H) is
a unitary representation of G on a Hilbert space H, p,, is as in Definition 5.45,
and 7: C*(G) — L(H) is the representation of C*(G) corresponding to w (as in
Theorem 5.22), then wo A = p,,.

We state three important theorems about C*(G) and C}(G). In the first and
second, we consider arbitrary locally compact groups; their full and reduced C*-
algebras are discussed in Section 7. We give a proof only for the first. We restrict
here to the case of a discrete group, in which the ideas are exposed with less
distraction, but the proof of the crossed product generalization (Theorem 9.7 below)
includes the case of a general locally compact group in Theorem 5.50.

All three involve amenability of a group. For information on amenable groups,
including many equivalent conditions for amenability, we refer to [100] or to Sec-
tion A.2 of [292]. We will use the Fglner set criterion. A discrete group G is
amenable if and only if for every finite set ¥ C G and every £ > 0 there is a
nonempty finite set S C G such that for all g € F' the symmetric difference ¢S A S
satisfies card(gS A S) < ecard(S). (See Theorem 3.6.1 of [100].) When G is locally
compact, one uses Haar measure instead of cardinality: if u is a left Haar measure
on G, then G is amenable if and only if for every compact set F C G and every
€ > 0 there is a compact set S C G such that u(S) > 0 and u(gS A S) < eu(S)
for all ¢ € F. (See Theorem 3.6.2 of [100].) It is easy to show that the condi-
tion for a discrete group is equivalent if the conclusion is rewritten to require that
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card(F'S A S) < ecard(S). (This will be implicit in the proof below of the discrete
case of Theorem 5.50 below.) It is true, but nontrivial to prove, that the condition
for a locally compact group is equivalent if the conclusion is rewritten to require
that u(FS A S) < eu(S). The equivalence is in neither [100] nor Section A.2
of [292], but it is the main result of [76]. (Also see Theorem 3.1.1 there.)

Locally compact abelian groups are amenable. (Combine Theorems 1.2.1 and
2.2.1 of [100].) From the conditions involving invariant means, it is obvious that
compact groups (in particular, finite groups) are amenable. The class of amenable
locally compact groups is closed under passage to closed subgroups (Theorem 2.3.2
of [100]), quotients by closed normal subgroups (Theorem 2.3.1 of [100]), extensions
(Theorem 2.3.3 of [100]), and increasing unions (Theorem 2.3.4 of [100]). In partic-
ular, all solvable locally compact groups are amenable, and direct limits of discrete
amenable groups are amenable.

Theorem 5.50 (One direction of Theorem A.18 of [292] and Theorem 7.3.9 of [198]).
Let G be a an amenable locally compact group. Then the map x: C*(G) — C}(G)
(in Corollary 5.23 for discrete groups; in Proposition 7.23 for general locally com-
pact groups) is an isomorphism.

We will give a direct proof for discrete groups from the Fglner set criterion
described above. The proof for the locally compact case is very similar. In fact,
essentially the same proof shows that for an amenable group, the map from a full
crossed product to the corresponding reduced crossed product is an isomorphism.
See Theorem 9.7 below, for which we do give a full proof. Our proof does not use
the machinery of positive definite functions. This machinery is very important, but
doing without it has the advantage that one sees the role of amenability very clearly
in the proof. It is instructive to specialize our proof to the case of a finite group,
in which ¢ is not needed and the finite subsets F' and S in the proof can both be
taken to be G.

Proof of Theorem 5.50 for discrete groups. For any unitary representation w of G
on a Hilbert space H, let p,,: C*(G) — L(H) be the corresponding representation
of C*(G) as in Theorem 5.22. We have to prove that, for any unitary representation
w of G on a Hilbert space H, and any b € C*(G), we have ||p, ()| < ||x(b)|. Let
v be the left regular representation of G on [?(G). We can rewrite the relation to
be proved as ||pw (b)]| < [lpv(b)]]-

The main tool is the tensor product representation v ® w as in Remark 5.7. It
acts on the Hilbert space [?(G)) ® H. Throughout the proof, we identify I?(G) @ H
with the space [?(G, H) of [ functions from G to H.

We first claim that v ®w is unitarily equivalent to the tensor product of v and the
trivial representation of G on H. Let 2z € U(I?(G, H)) be the unitary determined
by (26)(g) = wk(&(g)) for € € I?(G,H) and g € G. Now let ¢ € I12(G, H) and let

g
g,h € G. Then

(2(vn @ wp)€) (9) = wy ([(vh @ wa)E](9)) = wy (wr(E(h™1g)))
= wg-1,(§(h7"g)) = (26)(h™"g) = ((vn ® 1)2€) (9),

which is the statement of the claim.
It follows that zp,gw(b)z* = py(b) ® 1, so

[vew (D) = llpv(0) @ 1| = [lpu (B)]]-
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It remains to prove that ||pw(D)]| < ||poew(b)||. It suffices to prove this for b in
the subalgebra C[G]. Thus, there is a finite set S C G and a family (b,)gecs of
complex numbers such that b = des bgug.

Let € > 0. We prove that ||p, ()] — € < ||pvw(b)||. Without loss of generality
pw(b) # 0 and € < ||pw(b)||. Choose & € H such that

lgoll =1 and  lou(®)éoll > low(®)l - 5.

2
S A U]
card(S) llpw @)l = 5
Then 6 > 0. The Fglner set condition for amenability (Theorem 3.6.1 of [100])
provides a nonempty finite subset K C G such that
card(9K A K) < dcard(K)
for all g € S. Define ¢ € I12(G, H) by

_J& g€eK
E(g)—{o 1K

Set

Then [|¢]| = card(K)'/2.
We estimate ||pygw(b)€]]. Set
Ez{gEK:hilgEKforalthS}.
Then
card(K \ E) < > card(K \ hK) < card(S)dcard(K).
hesS

So card(E) > (1 — card(S)d)card(K). Moreover, for g € E we have, using the
definition of F at the third step,

(Posw ()€)(9) = D ba((vn ® wh)E) (9)

hes
= bhwn(§(h'g))
hes
= > bhwnéo = pu(b)éo.
hesS

Therefore
lpusu(®)E] = card(E)/2lpu (B)é | > card(£)/2 (Ilou(®)l - 5) .
from which it follows that
card(E)'/2 ([lpw (b)I| - 5)
card(K)1/2
> (1= card($)8)"* (Ipu®) = 5) = lpu(®)| — <.
as desired. O

Hpv®w<b)H >

Theorem 5.51 (The other direction of Theorem A.18 of [292] and Theorem 7.3.9
of [198]). Let G be a locally compact group. If the standard homomorphism
C*(G) — C*(G) is an isomorphism, then G is amenable.
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Theorem 5.52. Let G be a discrete group. Then the following are equivalent:

(1) G is amenable.
(2) C}(G) is nuclear.
(3) C*(G) is nuclear.

The equivalence of the first two conditions (and many others) is contained in
Theorem 2.6.8 of [37]. (The definition of amenability used there is existence of
an invariant mean. See Definition 2.6.1 of [37].) If G is amenable, then C*(G)
is nuclear because C*(G) = CF(G). If C*(G) is nuclear, then C}(G) is nuclear
because it is a quotient of C*(G).

Theorem 5.52 does not hold without discreteness. Even the full group C*-
algebras of connected semisimple Lie groups are not only type I but even CCR:
the image of every irreducible representation is exactly the compact operators.
This fact follows from Theorem 5 on page 248 of [105]. Not only are most such
groups not amenable; many even have Kazhdan’s Property (T). Example: SL3(R).
Theorem 2 on page 47 of [228] describes exactly when the full group C*-algebra of
a connected simply connected Lie group is CCR, and Theorem 1 on page 39 of [228]
gives some conditions under which the full group C*-algebra of a connected simply
connected Lie group has type I.

Although we say very little about von Neumann algebras in these notes, we want
to at least mention the group von Neumann algebra.

Definition 5.53. Let G be a discrete group. Regard C}(G) as a subalgebra of
L(I*(@)), as in Definition 5.20. We define the group von Neumann algebra W} (G)
to be the closure of C}(G) in the weak operator topology on L(I*(G)).

Equivalently, using the notation of Definition 5.20 and taking v to be the left
regular representation of G, the algebra W*(G) is the closure of p,(C[G]) in the
weak operator topology on L(I*(G)). (This is the definition given in the introduc-
tion to Section VIIL.3 of [277]. Also see Definition V.7.4 of [276].) We can also write
Wi (G) = pu(C[G])".

The notation follows a suggestion of Simon Wassermann. It was previously com-
mon to write W*(G), which unfortunately suggests a relation with C*(G) instead
of with C}(G). These days, the notation L(G) (or £(G)) is much more common.

The group von Neumann algebra carries much less information about the group
than its full or reduced C*-algebra. For example, although we will not prove this
here, it is not difficult to show that if G is discrete abelian, then W*(G) = L>™ (é)
In particular, these algebras are the same for every countable infinite discrete
abelian group. This is much worse than the situation for group C*-algebras, as
described in Remark 5.40.

We can give some description of the elements of the reduced C*-algebra and
von Neumann algebra of a discrete group. The term in the following definition is
motivated by the case G = Z, and the ideas are based on a lecture of Nate Brown.
We think of elements of L(I%(Z)) as being given by infinite matrices a = (a; x)j kez-
The main diagonal consists of the elements a; ; for j € Z, and the other diagonals
are gotten by fixing m € Z and taking the elements a;, j4+n, for j € Z. That is, they
are the elements a;; with j — k constant.

We begin with notation for matrix elements of an operator a € L(I(S)).
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Definition 5.54. Let S be a set. For s € S let §; € [2(S) be the standard basis
vector associated with s. For a € L(I?(9)) and s,t € S, we define the matriz
coefficient as ¢ of a by as ¢ = (ady, ds).

Remark 5.55. The indexing in Definition 5.54 is consistent with the usual conven-
tions for entries of finite matrices. For example, let sq,to € S, and let v € L(I%(S))
be the partial isometry determined by vd;, = ds, and vd; = 0 for t € S\ {to}. Then
Usoto = 1 and vs; = 0 for all other pairs (s,t) € S x S. Moreover, for general
a € L(1%(S)) and t € S, the element ¢ = ad; € I2(S) is determined by the relations
£(s) = (§,0s) = as, for all s € S. In particular, ad; = ), g as,:0s with convergence
in norm in [?(S). Finally, we note that (a*)s+ = @5 for all s,t € S.

Definition 5.56. Let G be a discrete group. Let a € L(I?(G)), and write a =
(ag.n)g,nec. We say that a is constant on diagonals if agp = as; whenever
g,h,s,t € G satisfy gh™! = st™1.

Theorem 5.57. Let G be a discrete group. Then
W} (G) = {a € L(I*(G)): a is constant on diagonals}.

Proof. Let M C L(I?(G)) be the set of all a € L(I?(G)) which are constant on
diagonals. Let N C L(I*(GQ)) be the set of all b € L(I*(G)) such that by, = bs+
whenever g, h,s,t € G satisfy g7'h = s71t. (Note the different placement of the
inverses.) Let v: G — U(I?(G)) be the left regular representation (Definition 5.3),
and let w: G — U(I?(G)) be the right regular representation, given by (w(g)¢)(h) =
£(hg) for g,h € G and € € I*(G).

We first claim that if @ € M and b € N, then ab = ba. Fix s,t € G; we prove
that (abds,d¢) = (bads, d;). Using several parts of Remark 5.55 at the second step,
we get

(abs, 5) = (bSs, a*8) = <ZgEGbg785g, ZQEG@5Q> =3 abos

Similarly, we get the first step of the following calculation. The second step follows
from the definitions of a € M and b € N, and the third step is a change of variables:

(bads,0r) = agbrg =Y apsg-1ibsg-1es = > a1 gbg.s = (abls, br).
geG geG geG

This proves the claim.

We next claim that w(G) = M. Let a € L(I*(G)). We have to show that
aw(g) = w(g)a for all g € G if and only if a is constant on diagonals. For g, h, k € G,
we compute

(aw(g))nk = (aw(g)dk, On) = (@drg-1, On) = ap g1

and similarly

(w(g)a)nk = (w(g)adk, o0n) = (adk, w(g)"6n) = ang,k-
It is easy to check that aj, y4-1 = ang,i, for all g,h, k € G if and only if a is constant
on diagonals. The claim follows.
Similarly, one proves that v(G)" = N.
Since w(G) and v(G) are both closed under adjoints, it follows that M and N
are von Neumann algebras. It is immediate from the definitions that v(g)w(h) =
w(h)v(g) for all g, h € G. Therefore, using the first claim at the second step,

v(G) =N c M.



CROSSED PRODUCT C*-ALGEBRAS 65

Take commutants throughout to get
v(@)" =N >M" =M.

Since also v(G) C w(G@)" = M, we use the definition at the first step to get W*(G) =
v(G)" = M, as was to be proved. O

The following proposition gives “coefficients” of elements of C;(G). It actually
works not just for CJ(G) but for W*(G), once one has extended the tracial state
on C}(G) to Wr(G).

Proposition 5.58. Let G be a discrete group, let b € C*(G) C L(13(GQ)), and let
g € G. For g € G, let §, € [?(G) be the standard basis vector corresponding to g.
Let 7: Cf(G) — C be the tracial state of Theorem 5.28. Then the following three
numbers are equal:

(1) 7(buy).

(2) <b§1>59>'

(3) The constant value A\, that the matrix of b € L(I*(G)) has on the diagonal

consisting of those elements b, ; for s,t € G such that st =g.

Proof. The equation Ay = (b1, d4) comes from the formula for the coefficients bs ¢,
namely bs ; = (bdy, d5) for s,t € G.

We prove that 7(buy) = (bd1,dy). By linearity and continuity, we may assume
that b € C[G]. Thus, we may assume that b = ), _ bpup, with by = 0 for all but
finitely many h € G. Then 7(bu}) = by. Also, letting v: G — U(I*(G)) be the
left regular representation (Definition 5.3), the operator p,(b) € L(I?(G)) acts as
> heq bnv(h), so

(b61,6,) = <Zhethv(h)51, 59> =S bn(6n. 5) = by

heG
This completes the proof. [l

The last part of the proof above is simpler if we remember the proof of Theo-
rem 5.28. We defined 7 by the formula 7(b) = (bd1,d1). So, using the trace property
at the first step, we have

7(buy) = T(uyb) = (v(g)*bé1,d1) = (bd1,v(g)d1) = (bd1,y)-

We can now think of an element b € C;(G) as a formal sum “b = > 5 bguy”.
We emphasize that, in general, this sum is only formal. It does have one good
feature.

Proposition 5.59. Let G be a discrete group, let 7: C(G) — C be the tracial
state of Theorem 5.28, and let b € C}(G). Suppose 7(bug) =0 for all g € G. Then
b=0.

Proof. Recall from Theorem 5.28 that if a € C}(G) and 7(a*a) = 0, then a = 0. It
therefore suffices to show that for all a € C¥(G) and all g € G, we have T(a*a) >
|T(auy)|*. By continuity of 7 and density of C[G] in C;(G), it suffices to prove this
inequality for a € C[G]. So assume that a =), .5 apup with ap, € C for all h € G
and ap, = 0 for all but finitely many h € G. Then, using 7(ujux) # 0 only if h =k
at the second step,

T(a*a) =T (Zh kEGmku;;uk) = lakl? > lag—1* = | (auy)[*.

keG
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This completes the proof. ([

Proposition 5.59 is useful, but it is quite weak. There are, in fact, many difficul-
ties in understanding group C*-algebras.

Remark 5.60. Consider the special case G = Z. Then C*(G) is isomorphic to
C(S1), and the map \: [}(Z) — C(S') of Exercise 5.49 is the Fourier series map:
for a = (an)nez., € I*(Z), its image A(a) is the function

Ma)(¢) = anC”
nez
for ¢ € S'. This looks more familiar when we identify C(S') with the set of
2m-periodic continuous functions on R: it is

Aa)(t) = ane™
neZ
for t € R.
Every f € C(S') has a Fourier series. Letting y be normalized arc length
measure on S!, its coefficients are given by

i = / FOC™ dp(C).
Sl

It is well known that lim, o ¢, = lim,,_ a, = 0, whence a = (an)nez., €
Co(Z). However:

(1) We know of no good description of which sequences a € Cy(Z) are the
Fourier coefficients of some f € C(S'). Since the Fourier series map is
a bijection from [2(Z) to L%(S'), we do know that any such a must be
in [2(Z). But in fact the Fourier coefficients of every element of L>(S!),
which is the group von Neumann algebra of Z, are also in [?(Z), for the
same reason. We get essentially no useful information out of a criterion for
membership in a group C*-algebra which is satisfied by all elements in the
group von Neumann algebra.

(2) For a € I*(Z), or even in C[Z], we know of no general way to compute the
norm ||[A(a)|| in terms of a, except by directly carrying out the computation

of
sup |y and”

cest

There are of course a few specific cases in which computations can be
done. For example, let §,, € C[Z] C [*(Z) be the element which takes the
value 1 at n and is zero elsewhere. Then §,, is unitary in I'(Z) and therefore
also in C*(Z). So ||\(6,)] = 1.

Computations of norms of some special elements of reduced group C*-
algebras can be found in [1].

(3) Let 6, be as in (2), and set z, = A(d,,), which is the function z,(¢) = ("
for ¢ € St. For f € C(SY), its sequence a of Fourier coefficients gives
a formal series ), anz, for f. However, this series need not converge
to f (or, indeed, to anything) in C'(S'). In more familiar terms, this is the
statement that the Fourier series of a continuous function need not converge
uniformly.
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(4) In fact, the series in (3) need not even converge in the weak operator topol-
ogy on the von Neumann algebra, which here is isomorphic to L>(S1). See
Proposition 1 and the following remark in [171]. We warn the reader that
erroneous claims for the convergence of this series have been made in some
well known textbooks, such as in 7.11.2 of [198] and before Proposition
V.7.6 of [276], as well as in some papers. (See [171] for details.) There is
a topology, described in [171], in which one does have convergence. (We
are grateful to Stuart White for pointing out this issue and providing the
reference to [171].) Note, though, that the Cesaro means of the Fourier
series of a continuous function f do converge uniformly to f. See 2.5 and
Theorem 2.11 in Chapter 1 of [136]. This idea can be generalized substan-
tially, to countable amenable groups and somewhat beyond, and to reduced
crossed products rather than just reduced group C*-algebras. In [17], see
Sections 5, and for example Theorem 5.6, which considers reduced crossed
products by general countable amenable groups.

When G is abelian, the description of C*(G) as Cy (é’) is a concrete description
of a different sort which is extremely useful. There are other groups, particularly
various semisimple Lie groups, for which there are descriptions of C*(G) or C}(G)
which might be considered similar in spirit (although they are much more compli-
cated). However, for many groups, including many countable amenable groups, no
concrete description of C*(G) or C}(G) is known.

Remark 5.61. The situation for C*(G) when G is not amenable is even worse than
is suggested by Remark 5.60. For a € C*(G), we can still use the homomorphism
k: C*(G) — C}(G) to define “coefficients” a, for g € G, by a; = 7(k(a)uy).
However, since there are nonzero elements a € C*(G) such that x(a) = 0, these

coeflicients no longer even determine a uniquely.

When we get to them, we will see that the situation can be worse for crossed
products. See Remark 9.19.

It seems appropriate to point out that, despite the issues presented in Re-
mark 5.60 and Remark 5.61, in some ways C*(G) (in which we don’t know the
elements as functions on G, and where the natural convergence can fail) is better
behaved that I*(G). For example, again take G = Z. We can certainly write down
an explicit description of all the elements of {'(Z). However, the (closed) ideal
structure of [1(Z) is very complicated, and not completely known, while the ideal
structure of C*(Z) is very simple: the closed ideals are in bijective order reversing
correspondence with the closed subsets of S!. According to Theorem 42.21 of [108]
(see Definition 39.9 of [108] for the terminology), and the additional statements in
42.26 of [108], the phenomenon of intractable ideal structure occurs in L*(G) for
every locally compact but noncompact abelian group G. Another example is the
computation of the K-theory for crossed products. It turns out that the computa-
tion of the K-theory of crossed products by Z, and even by nonabelian free groups,
is easier than the computation of the K-theory of crossed products by Z/27Z.

6. SIMPLICITY OF THE REDUCED C*-ALGEBRA OF A FREE GROUP

In this short section, we prove that C(F,,) is simple and has a unique tracial
state for n € {2,3,...,00}. We follow the original proof of Powers [227], with a
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slight simplification. A differently organized proof can be found in Section VII.7
of [52].

This result is not in the main direction of these notes, which are mainly concerned
with the structure of crossed products by much smaller (in particular, amenable)
groups in situations in which the action is free in some sense. It is included to
provide a contrast to Theorem 15.10, a simplicity theorem which requires that the
action be essentially free, and the observation that if G has more than one element,
then C*(@G) is never simple (since the one dimensional trivial representation gives
a nontrivial homomorphism C*(G) — C).

This result is the original one of its type. Simplicity of C(G) is now known for
many (nonamenable) countable groups G. For recent definitive results, see [32].

Notation 6.1. Let n € {2,3,...,00}. We let F, denote the free group on n
generators, and we call the generators v1,7a,..., v, (or v1,72,... when n = c0).
We let 7: C¥(F,) — C be the tracial state of Theorem 5.28. For g € F,,, we let
8, € I?(F,) be the corresponding standard basis vector. We take a reduced word in
the generators to be an expression of the form

o R

with

(6.2) meZso,  j)#4(2), J2)#i3), ..., Jm—1)F#jm),
and

(6.3) (1), 12),...,l1(m)eZ\{0}.

When m = 0, we get the empty word, representing 1 € F,,. We recall that every
element of F,, is represented by a unique reduced word. For m # 0, we say that

the reduced word (6.1) begins with 'yj((ll)) and ends with yjl((:z))

Lemma 6.2 (Lemma 4 of [227]). Let n € {2,3,...,00}. Let s € Zso and let
91,92, --,9s € F, \ {1}. Then there exists k € Z such that, for r = 1,2,... s, the
reduced word representing ¥ g,v; k begins and ends with nonzero powers of 7.

Proof. We renumber the elements g1, gs,...,gs so that there is sg < s such that
91,92, .-, 9s, are not powers of y; and gs,+1,9so+2; - - -, 9gs are powers of ;. For
r=1,2,...,580, the element g, is then given by a reduced word of the form

_ r lT(l) l (2) l(mr) Vp
9r =N500) V@) Vi ™

with ’ylr(l) ~71r(2) . -’yl(mr) asin (6.1), (6.2), and (6.3), with m,. > 1, with j,.(1) # 1

T
™

Jr(1)  13r(2) Jr(my) -
and j,, (1) # 1, and with p,., v, € Z. If p, = 0 or v, = 0, the corresponding term
in g, is absent. For r = sg+ 1, so + 2, ..., s, there is v, € Z such that g, = 7],

and v, # 0 since g, # 1.
It is immediate that any k € Z such that

kg{_,ulu —H2, ..., _/'1‘5071/17V27"'7V80}

will satisfy the conclusion of the lemma. O

The following lemma generalizes Lemma 3 of [227].
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Lemma 6.3. Let H be a Hilbert space, let E C H be a closed subspace, let
p € L(H) be the orthogonal projection onto E, and let a € L(H) satisfy a(E+) C E.
Then for all £,1 € H we have

(€ am)| < llall(Ip€ll - lpnll + llp€ll - 11 = p)nll + (X = p)E] - llpnll)-
Proof. We expand
(€, am)| < [(p€, apm)| + [{p€, a(1 = p))| + [(1 = p)&; apn)| + [((1 = p)&, a(1 — p)n)l-
By hypothesis, the last term is zero. Estimate
[(0&; apm)| < Il - llpmll - llall, €, a1 —p)m| < [Ip] - (L = p)nll - lall,

and

(A =p)&, apn)| < [|(1 = p)E - lpnll - [lal
to complete the proof. O

Lemma 6.4. Let M € Z~( and let

ALy Ay oo s AN, s 2y -y s € R
be positive numbers such that Z 1 A2, <1and Zm L 12, < 1. Then

ZAmgx/M, Zumgm, and Z/\m,umgl.
m=1 m=1

m=1

Proof. Define \, i, & € CM by

)\Z(/\1,>\2,...,)\M), ,uz(ul,uQ,...,,uM), and 52(1,1,...,1).

Using the Cauchy-Schwarz inequality at the second step, we have

1/2
ZA N8 < Al ||s||2—<zx2> VM < VL.

m=1

This proves the first inequality. The proof of the second is the same, and the third
follows by applying the Cauchy-Schwarz inequality to (X, u). O

The following result is our substitute for Lemma 5 of [227], and the proof is
essentially the same. However, we need not restrict to selfadjoint elements. Our
statement includes that of Theorem 1 of [227], without using the iteration step in
Lemma 6 of [227].

The proof obviously implies that the result holds simultaneously for all elements
of any finite set in CJ(F),).

Lemma 6.5. Let n € {2,3,...,00}. Let a € Cy(F,) and let € > 0. Then there exist
M € Z~o and hy, ha, ..., hy € F, such that the linear map T': C}(F,,) — C;(F),),
defined by

M
1 E *
= M 'Lbhmbuhm,
m=1

satisfies ||T'(a) — 7(a) - 1| < e.
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Proof. We first suppose that a € span({ug: g € F, \ {1}}). That is, there are
$ € Zso0,91,92,---,9s € Fn\{l}, and A1, Ag, ..., As € Csuch that a = Zf‘:l )\jugr.
Then 7(a) = 0, and we must find T of the form described in the conclusion such
that ||T'(a)|| < e.

We may clearly assume a # 0. Choose M € Z~ such that

62

7 9l

Choose k € Z as in Lemma 6.2, with g1, g2, ...,9s as given. Form =1,2,..., M, de-
fine h,, = 75*yF. Then, for r = 1,2, ..., s, the reduced word representing h,,g,h "
begins with v5* and ends with v5 ™. Let S,, C F,, be the set of all ¢ € F,, for
which the reduced word representing g begins with 73*. Let E,, C I*(F,) be
E,, = span({6y: g € Sp}). For any g € F,, \ Sy, in the product h.,g.h;,'g the
factor 75, ™ at the end of h,,g.h,,} does not completely cancel, so the immediately
preceding nonzero power of 7y is still present in the reduced word representing
himgrh,,tg. One can check that this word must then still begin with v5*. We have
shown that h,g,-hy,' (Fo \ Spm) C Sy It follows that up,, ug, uj, (Ey,) C Ep,. Since
this is true for r = 1,2,..., s, it follows that uy,,auj, (ELX) C B,

Let T: C¥(F,) — C*( n) be defined as in the statement of the lemma, with
this choice of M and hy,ha,...,hy. Let &n € [2(F,) satisfy ||€]],||n]] < 1. Let
Pm € L(H) be the orthogonal projection onto E,,. The spaces E1, Fs, ..., Ey are
orthogonal, so

M M
(6.4) Dolpmél> <[P =1 and > flpwnll® < |Inll* =
m=1 m=1

Using Lemma 6.3 at the second step, and (6.4) and Lemma 6.4 at the fifth step,
we then have

(&, T(a)n)| = M Z &, umauy,n

74,

< M Z lall (lpméll - [lpmnll + [Pm&ll - 111 = pm)nll + (1 = P )€ - [Pmnll)
"

< M > llall (lpm&ll - lpmnll + Ipmél + lpmnll)

| " M M M
= ﬁ D Aol pwnl + Y lpméll + Y Ipmnll>
m=1 m=1 m=1

< lall 3all
< (VM + VM) < NiTe

Since &, € [2(F,) are arbitrary elements of norm 1, it follows that
3lall _
\/M
The special case a € span({ug: geF,\ {1}}) has been proved.
Next, suppose that a € span({ug: g € F,}). Then b = a — 7(a) - 1 is in
span({ug: g € F, \ {1}), so there is T of the form in the conclusion such that

1T (a)|l <
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IT(b)|| < e. One easily checks that T'(1) = 1. Therefore
IT(a) = 7(a) - 1| = [T(a = 7(a) - V]| <e.

Finally, we consider an arbitrary element a € C}(F,,). Choose b € Span({ug: g€
Fn) such that ||b — al| < §. The previous paragraph provides 7' of the form in the
conclusion such that [ T'(b) — 7(b) - 1|| < §. It is easy to check that ||T| < 1.
Therefore

€ € €
1T (a—7(a)-1)|| < |T(a=b)[|+[|T((r(a) =7 (b)) D)||+|T(b)~7(b)-1]| < T3tz =«
This completes the proof of the lemma. O

Theorem 6.6 (Theorem 2 of [227]). Let n € {2,3,...,00}. Then C*(F,,) is simple.

Proof. Let I C C}(F,) be a nonzero ideal. Choose a € I such that a # 0. Then
7(a*a) # 0 by Theorem 5.28. Lemma 6.5 provides M € Z~¢ and hy, ho,... by €
F,, such that the element

M
c—i E up, a*au}
M " hm
m=1

satisfies |[c — 7(a%a) - 1|| < 37(a*a). Clearly ¢ € I. Then b = 7(a*a) 'cis also in I,
and ||b— 1| < 3, so b is invertible. Therefore I = C}(F,). O

The following result (for n = 2) is proved at the end of [227].

Theorem 6.7 ([227]). Let n € {2,3,...,00}. Then CJ(F),) has a unique tracial
state.

Proof. Let o be any tracial state on C}(F,,). We prove that o = 7. Let a € C}(F},)
and let € > 0. Use Lemma 6.5 to find M € Z~( and hq, ho, ..., hy,, € F, such that
the element

1M
c= 7 mzz:l Up,, AU},
satisfies ||c — 7(a) - 1|| < e. We clearly have o(c) = o(a) and o(7(a) - 1) = 7(a). So
lo(a) —7(a)] = lo(c—T(a)-1)| <e.

Since £ > 0 is arbitrary, we conclude that o(a) = 7(a). O

7. C*-ALGEBRAS OF LocALLy CoMPACT GROUPS

In this section, we consider the C*-algebras of general locally compact groups.
Since our later focus will be mostly on discrete groups, we omit a number of proofs.

In the discrete case, in Section 5, we constructed the group C*-algebra as the
closed linear span of the group elements in a suitable norm, and we constructed
the group von Neumann algebra as the closed linear span of the group elements in
a suitable (much weaker) topology. For the von Neumann algebra, this definition
turns out to still work, but it does not give a reasonable outcome for the C*-algebra.
For example, if the group G is second countable, one wants the group C*-algebra to
be separable. However, if g, h € G with g # h, then |Juy—up|| = 2. See Exercise 7.3.

Throughout this section, we let u be a fixed left Haar measure on G.

The following definition is the generalization of Definition 5.3.
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Definition 7.1. The left reqular representation of G is the representation v: G —
U(L*(G, p)) given by (v(g)€)(h) = &£(g~'h) for g,h € G and € € L*(G, ).

Exercise 7.2. Let G be a locally compact group. Prove that v as in Definition 7.1
is a unitary representation of G on L*(G).

The main point beyond Exercise 5.4 (the case of a discrete group) is to prove
continuity. Left invariance of the measure will be needed to show that v(g) is
unitary.

As for discrete groups, there is also a right regular representation. There is
one new feature: one must use right Haar measure, or else correct the formula
by including suitable Radon-Nikodym derivatives (here, a suitable power of the
modular function of Theorem 7.5 below).

Exercise 7.3. Let G be a locally compact group, let v: G — U(L?(G)) be the left
regular representation, and let g,h € G with g # h. Prove that ||v(g) — v(h)| = 2.
Use this fact to prove that if G is not discrete, then span({v(g): g € G}) is not
separable.

When we have constructed C*(G) and C}(G), it will turn out that the group
elements u, are in the multiplier algebras M (C*(G)) and M (C}(G)). (We will not
prove this.) In particular, the naive analog of Exercise 5.19 certainly does not hold,
and we know of no general method of describing either C*(G) or C}(G) in terms
of generators and relations.

Instead of C[G], we will use the space C.(G) of compactly supported continuous
functions on G, with the convolution defined by the analog of (5.2) in Remark 5.9.

Notation 7.4. Let X be a locally compact Hausdorff space. We denote by C.(X)
the complex vector space of all continuous functions from X to C which have com-
pact support, with pointwise addition and scalar multiplication. Unless otherwise
specified, we make this space a complex *-algebra using pointwise complex conju-
gation and pointwise multiplication, but we will frequently use other operations; in
particular, if G is a group, the operations will usually be as in Definition 7.6 below.
If F is any Banach space, we further denote by C.(X, F) the vector space of all
continuous functions from X to E which have compact support.

Another complication which appears for general locally compact groups is the
possible failure of unimodularity. We recall for reference the basic properties of the
modular function.

Theorem 7.5. Let G be a locally compact group. Make (0,00) into a locally
compact abelian group by taking the group operation to be multiplication. Then
there is a unique continuous homomorphism A: G — (0,00), called the modular
function of G, such that, for every choice of Haar measure p on G, for every g € G,
and every measurable set E C G, we have pu(Eg) = A(g)u(E). Moreover, for g € G
and every a € C.(G), we have

(7.1) /G a(gh) du(g) = A(R)™! /G alg) du(g).

and for every a € C.(G) we have

(7.2) /G Ag)talg™) dpu(g) = / a(g) du(g).

G
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For the proof, see Lemma 1.61 and Lemma 1.67 of [292].

Definition 7.6. Let G be a locally compact group. Using left Haar measure p
on G, for a,b € C.(G) we define

(7.3) (ab)(g)Z/Ga(h)b(hflg) du(h)  and  a*(g) = A(g)"lalg™").

We will need Fubini’s Theorem several times, and the following lemma will be
used to verify its hypotheses.

Lemma 7.7. Let G be a locally compact group, and let a,b € C.(G). Define
Jar: Gx G — Cby fap(g,h) =a(h)b(h~1g) for g,h € G. Then f,p € Cc(G x G),
and supp(fes) is contained in the compact set (supp(a) - supp(b)) x supp(a).

Proof. It is immediate that f, ; is continuous. To see that f, ; has compact support,
define K C G by

K = supp(a) - supp(b) = {gh: g € supp(a) and h € supp(b)}.

Then K is compact because K is the image of the compact set supp(a) x supp(b) C
G x G under the multiplication map. We show that supp(f,,) C K X supp(a).
So suppose f,5(g,h) # 0. Obviously h € supp(a) and h=1g € supp(b). Therefore
g=h-h"lge K. O

Proposition 7.8. Let GG be a locally compact group. Equipped with the operations
in Definition 7.6, the space C.(G) is a complex *-algebra.

Proof. Let p be left Haar measure on G. For a,b € C.(G), let f,, € C.(G x G) be
as in Lemma 7.7. We then have

(M@:LAMMWW~

Therefore (ab)(g) can be nonzero only for g € supp(a) - supp(b).

We next prove that ab is continuous. This is a standard argument, which we give
for completeness. We need only consider the case a # 0. Set M = p(supp(a)) > 0.
Let € > 0 and let g9 € G. For h € G choose open sets U(h),V(h) C G such that
go € U(h), h € V(h), and for all g € U(h) and k € V(h), we have

| fap(9:k) = fap(90,h)| < ﬁ.

Choose n € Z~q and hy, ha, ..., h, € G such that the sets V(hy), V(hz), ..., V(hy)
cover supp(a). Set U = ﬂ?:l U(h;), which is an open set containing go.
Let g € U. For h € supp(a), we claim that

€
a 7h —Ja ah oAr”
| fap(g:h) = fan(g0,h)| < Y
Choose j € {1,2,...,n} such that h € V(h;). Then g € U(h;), so

| fap(g:h) = fan(90,B)| < |fan(g:h) = fa(90, hj)| + | fap(90, hs) = fap(g0, )|
£ 5

g
<o T aM T ar

as desired.
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It now follows that

[(@)(9) = (@) < [ |faslosh) = fus(go. ] du(h

supp(a)
< (ﬁ) p(supp(a)) = % <e.

This completes the proof that ab is continuous.

We have now shown that (a,b) — ab is a well defined map C.(G) x C.(G) —
C.(G). Tt is obviously bilinear. It remains only to prove associativity and the
properties of the adjoint.

Let a,b,c € C.(G). We compute as follows, with the second step being an
application of Fubini’s Theorem which is justified afterwards. The third step is a
change of variables in the inner integral, replacing h with kh. For g € G, we have

(@) = | ( RIS du(k)> (h~"g) du(h)
= [t ([ o0 et 9) )
= [ ([ smet e gy aun) ) dut

G G
- /G a(k) (be) (k1 g) dp(k) = [a(bo))(g).

To justify the application of Fubini’s Theorem at the second step, we observe that
the integrand as a function of both variables is (h, k) — fq.5(h, k)c(h™tg), which is a
continuous function on G x G with support in the compact set (supp(a)-supp(b)) x
supp(a). Therefore it is integrable with respect to p X f.

It is obvious that a — a* is conjugate linear, and easy to check that a** = a for
all a € C.(G). Tt remains only to check that (ab)* = b*a* for a,b € C.(G). For
g € G, using the change of variables from h to gh at the third step, we have

(b*a”)(g) = /G AR BT A ) a((1g)=T) dpu(h)
- /G Alg)~talg=Th) - BF=T) dpu(h)

N /G alh) - B Tg 1) du(h) = (ab)*(g).

This completes the proof. O

Exercise 7.9. Let G be a discrete group. Prove that there is a complex *-algebra
isomorphism of C[G] as in Definition 5.9 with C.(G) as in Definition 7.6 and Propo-
sition 7.8.

The main point is to make sure that the definitions of the product and adjoint
match.

We will need a topology on C.(G). To follow what we did for discrete G as
closely as possible, we would use the direct limit topology. Continuity of linear
functionals in this topology is determined by testing on nets (b;);cr in C¢(G) and
elements b € C.(G) such that b; — b uniformly and there is some common compact
set K C G with supp(b;) C K for all i € I. See Remark 1.86 of [292] for more on
this topology. (It can have other convergent nets.)
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Here, it seems simpler to just use the L' norm, and to complete C.(G) in this
norm, getting the convolution algebra L!'(G). When G is discrete, this definition
specializes to the algebra [*(G) of Definition 5.42.

Definition 7.10. Let G be a locally compact group. Using Haar measure in the
integral, we define a norm on Ce(G) by ||blly = [, [b(g)| du(g). We define L' (G) to
be the completion of C.(G) in this norm. Justified by Proposition 7.11 below, we
make L'(G) into a Banach *-algebra by extending the operations of Definition 7.6
by continuity.

There is never any problem with the integral, because we need only integrate
continuous functions on compact sets. When G is second countable, so that Haar
measure is o-finite and all Borel sets are Baire sets, the resulting space is just the
usual space L!(G) of integrable Borel functions on G. In our presentation, we avoid
technicalities of measure theory (including but not limited to dealing with measures
which are not o-finite) by defining L'(G) to be the completion of C..(G).

Proposition 7.11. Let G be a locally compact group. Then for a,b € C.(G), we
have ||abl|y < [la[|1[|b]l1 and [la* 1 = ||a]1.

Proof. For the first part, let a,b € C.(G). Let fo € Co(GxG) be as in Lemma 7.7,
that is, fo5(g,h) = a(h)b(h™'g). Since f,; is integrable with respect to u x u, we
can apply Fubini’s Theorem at the third step in the following calculation:

fabll = [ | [ Justn dﬂ(h)‘dﬂ < [ ([ 1asta 1 auinn) anto)
-/ ( [ ool duta)) dtn)
= [ tate ( /| b(h‘lg)ldu(g)) ) = | Ja(m)]- 1o ) =l -

For the second part, we apply (7.2) in Theorem 7.5 at the second step to get

la*lly = /A ) [alg=D)| dug) /G|@|du<g>:nan1.

This completes the proof. ([l

Exercise 7.12. Let G be a discrete group, and take Haar measure on G to be
counting measure. Prove that there is a Banach *-algebra isomorphism of L!(G)
as in Definition 7.10 and ['(G) as in Definition 5.42.

Given Exercise 7.9, this exercise is essentially trivial.

We now give the analog of the construction of Definition 5.13. At this point, we
want to integrate continuous functions with compact support which have values in
a Banach space. In principle, the “right” approach to Banach space valued integra-
tion is to define measurable Banach space valued functions and their integrals. This
has been done; one reference is Appendix B of [292]. (Note the systematic misprint
there: “separately-valued” should be “separably-valued”.) Things simplify consid-
erably if G is second countable and F is separable, but neither of these conditions
is necessary for the constructions we carry out, either here or in Section 8. For
continuous functions with compact support, it is easy to avoid this theory, and this
is the route we take. An integration theory sufficient for this purpose is developed
in Section 1.5 of [292]. We summarize the properties.
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We could avoid such integrals here by always working in terms of scalar products
below. This seems pointless since we won’t be able to do something similar when
defining multiplication in crossed products in Definition 8.2.

In the following theorem, the relation in (2) is (1.23) in [292], existence is in
Lemma 1.91 of [292], and uniqueness is in the discussion at the beginning of Section
1.5 of [292].

Theorem 7.13. Let G be a locally compact group with left Haar measure p, and
let F be a Banach space. Then there is a unique linear map Ig: C.(G,E) — E
with the following properties:

() ITe@) < [ 1€(9)]ldulg) for all £ € Ce(G, E).

(2) For n € E and f € C.(G), the function £(g) = f(g)n for g € G satisfies

&) = ([, f(g) du(g)) n.

Definition 7.14. Let G be a locally compact group with left Haar measure u, and
let FE be a Banach space. With Ig as in Theorem 7.13, we define fG Ydu(g) =
Ig(¢) for £ € C.(G, E).

The next lemma is part of Lemma 1.91 of [292], but we give a direct proof directly
from the properties of the integral given in Theorem 7.13.

Lemma 7.15. Let G be a locally compact group with left Haar measure u, let F
and F be Banach spaces, and let a € L(E, F). Then for all £ € C.(G, E), we have

(/é ) du(g ) /(ﬁ(y))du(g)

Proof. Let Ig: C.(G,E) — E and Ir: C.(G,F) — F be as in Theorem 7.13.
Define T: C.(G, E) — C (G,F) by T(&)(g9) = a(&(g)) for £ € C.(G,FE) and g € G.
We must prove that a o Iy = Ir o T. Using Theorem 7.13(2) twice, it is easy to
check that if §y € E, f € C.(G), and we define £ € C.(G, E) by £(g) = f(g)&o for
g € G, then

@ots)©) =a(| [ u ) = ([ rau)aso=teoric)

Now let & € C.(G, E) be arbitrary. Let € > 0. We use a partition of unity
argument to prove that ||(aoIg)(£) — (Ir o T)(£)|| < &. Choose an open set U C G
such that supp(¢) C U and the set L = U is compact. Set

5= €
3(llall + 1) (p(L) + 1)
Use compactness of L and continuity of £ to find n € Z~(, open sets V1, Vo, ..., V,, C
G which cover L, and g; € V; for j = 1,2,...,n such that [|{(g) — &(g;)|| < ¢ for
j=1,2,...,nand g € V;. Choose continuous functions f;: L — [0, 1] which form a
partition of unity on L and such that supp(f;) C V;NL for j = 1,2,...,n. We may
extend the functions fi, fa, ..., fn so that they are continuous functions defined on
all of G, take values on [0, 1], satisfy supp(f;) C V; for j = 1,2,...,n, and satisfy
22;1 fi(g) <1 for all g € G. Further choose a continuous function f: G — [0,1]
such that f(g) =1 for all g € supp(§) and supp(f) C U.
Define n € C,(G, E) by

(9)) fi(9)é(g5)
j=1
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for g € G. Then

In(g) — ij )IE(g) = €(gi)ll-

We have [|£(g9) — £(g;)|| < & whenever fj(g) # 0, and 0 < f(9) >0, fi(g) <1
so |n(g) — &(g)]] < 6. Moreover n(g) = £(g) for all g € G\ L. Theorem 7.13(1)
therefore implies that ||[Ig(§) — Ig(n)| < u(L)d. So

(a0 Ig)(€) = (aolr)(n)| < |allu(L)é.
Also
1T(€)(g) = T()(g)ll = lla(n(g)) — a(€(g)l < [[allé

for all g € G, so Theorem 7.13(1) implies
[(Ir 0 T)() = (Ir o T)(m)|| < llaf|u(L)6.
The first paragraph of the proof implies that (a o Ig)(n) = (Ir o T)(n), so
(@ o Ix)(€) — (Ir o T)(E)| < lalln(L)6 + alla(L)s < e,
as desired. 0

The formula in the following definition should be compared with (5.5) in Defi-
nition 5.45.

Definition 7.16. Let G be a locally compact group with left Haar measure pu, let
H be a Hilbert space, and let v: G — U(H) be a unitary representation. Then the
integrated form of v is the representation p,: C.(G) — L(H) given by

(b)e = /b 9)€ du(g)

for b € C.(G). Justified by Proposition 7.17 below, we extend this representation
by continuity to a representation L*(G) — L(H), which we also denote by p, and
call the integrated form of v.

We want to think of p,(b) as [ b(g)v(g) du(g). Defining p, directly by this
formula causes technical problems, because g — b(g)v(g) is only a strong operator
continuous function to L(H ), not a norm continuous function. The definition given
is the easiest solution to these difficulties.

Proposition 7.17 (Part of Theorem 3.9 of [87]; part of Proposition 13.3.4 of [60]).
Let G be a locally compact group, let H be a Hilbert space, and let w: G — U(H)
be a unitary representation. Then p,,: C.(G) — L(H) is a *-homomorphism and
19w ()| < [b]l1 for all b € Ce(G).

We want to make one point explicitly. Even though the function g — w(g) is
not required to be norm continuous, the representation p,, is norm continuous. In
particular, if a € C.(G) and we define a, € C.(G) by az(h) = a(g~'h) for g,h € G,
then g — a, is a continuous function from G to L'(G), and g — py,(a,) is a norm
continuous function from G to L(H).

Proof of Proposition 7.17. The expression for p,,(b)£ is defined, by Definition 7.14
and Theorem 7.13. Moreover, p,(b)¢ is obviously linear in both b € C.(G) and
€ H.
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Now let b € C.(G) and £ € H. Using Theorem 7.13(1) at the first step, and
lw(g)|| = 1 at the second step, we get

1w (b £||</\b Nw(g)€ll du(g) < [[ollllE]l-

Thus p,(b) € L(H) for all b € C.(G).
It remains to prove that p,, preserves products and adjoints. Let a,b € C.(G),
and let £,n € H. We prove that

(pw(ab)é, ) = (puw(@)pu(®)€, n)  and  (pw(b*)E, n) = (€, puw(b)n).

For the first, we use Lemma 7.15 at the first, third, and fifth steps, Fubini’s
Theorem (justified by Lemma 7.7 and continuity of (g,h) — fa5(g,h)(w(9)&,n))
at the second step, Lemma 7.15 and left translation invariance of p at the fourth
step, getting

(pulab)e, 1) = / ( / a(h)b(h™ g)du(h)) (w(g)&,m) diu(g)

= [ ([ atmnna) ) duta) ) dncr
< ( b(h’lg)w(h’lg)f du(g)> , n> dp(h)
= [ (amumpu ®)g, m) duth) = (pule)pn 6.

For the second, we use Lemma 7.15 at the first step, w(g)* = w(g~!) at the
second step, (7.2) (in Theorem 7.5) at the third step, and Lemma 7.15 at the
fourth step, getting

(pu(b)E, 1 /A blg~Hw(9)¢, m) dulg)
:/GA(g)_ (€ blg™ (g™ )m) dulg)
- /G (&, blg)w(g)n) dulg) = (€, pu(b)n).

This completes the proof. O

The following theorem is the analog for locally compact groups of Theorem 5.22
(for discrete groups).

Theorem 7.18 (Theorems 3.9 and 3.11 of [87]; Proposition 7.1.4 of [198]; Proposi-
tion 13.3.4 of [60]). Let G be a locally compact group, and let H be a Hilbert space.
Then the integrated form construction defines a bijection from the set of unitary
representations of G on H to the set of nondegenerate continuous *-representations

of LY(G) on H.

Since our main subject is discrete groups, we will not give a proof here. We do
mention one key technical point. The proof can’t be done the same way as the
proof of Proposition 5.14, because there is no analog in C..(G), or even in L!(G), of
the images ug of the group elements in C[G]. The analogs of the elements ug can
only be found in the multiplier algebra of L!(G).
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Since integrated form representations of L!(G) are necessarily contractive, all
continuous representations of L!(G) are necessarily contractive.
We now give the analog of Definition 5.16.

Definition 7.19. Let G be a locally compact group. Choose a fixed Hilbert space
H, with dimension card(G), and define a unitary representation w of G to be the
direct sum of all possible unitary representations of G on subspaces of Hy. We call
w the universal representation of G.

Definition 7.20. Let G be a locally compact group, and let w: G — U(H) be
its universal unitary representation, as in Definition 7.19. Using the notation of
Definition 7.16, we define C*(G) to be the norm closure in L(H) of p,,(C.(G)).

Equivalently, one can take C*(G) = p,, (L' (G)).

Theorem 7.21 (13.9.3 of [60]). Let G be a locally compact group, and let H be a
Hilbert space. Then the integrated form construction defines a bijection from the

set of unitary representations of G on H to the set of nondegenerate representations
of C*(G) on H.

Given Theorem 7.18, the proof is similar to the first part of the proof of Theo-
rem 5.22.

If we were able to take the universal representation of G to be the direct sum of
all possible representations of G, the proof would be clear. Given any representa-
tion of G, it would be the restriction of the universal representation of G to some
invariant subspace, and we would simply restrict the corresponding representation
of C*(G) to the same subspace.

Definition 7.22. Let G be a locally compact group, and let v: G — U(L?(G)) be
its left regular representation (Definition 7.1). Using the notation of Definition 7.16,
we define the reduced group C*-algebra C(G) to be the closure p,(C.(G)) in the
norm topology on L(L*(G)).

Proposition 7.23. Let G be a locally compact group. Then there is a surjective
homomorphism x: C*(G) — CJ(G) obtained from Theorem 7.21 by taking the
nondegenerate representation used there to be the left regular representation of G.
It is uniquely determined by the property that if f € C.(G) and a € C*(G) and
b € C}(G) are the images of f in those two algebras, then k(a) = b.

Proof. The result is immediate from Theorem 7.21 as soon as one knows that the
left regular representation of G is continuous. This fact is Exercise 7.2. O

Recall (Theorem 5.50 and Theorem 5.51; both stated for the general case) that
k: C*(G) — C}(G) is an isomorphism if and only if G is amenable. The proof given
after Theorem 5.50 covers only the discrete case. However, the proof of the general
case is contained in the proof of the corresponding result for crossed products,
Theorem 9.7 below. We give that proof in full below.

Evaluation at 1 € G gives a tracial linear functional from C.(G) to C. However,
this functional is not continuous with respect to ||-||;. Thus, unlike in Theorem 5.28,
we do not get a tracial state on CJ(G).

Functoriality as in Exercise 5.26 and Exercise 5.27 does not generalize very well.
In particular, the the full group C*-algebra is not a functor from locally compact
group and group homomorphisms to C*-algebras and homomorphisms. If G5 is dis-
crete and ¢: G1 — G4 is the inclusion of a subgroup, then the map in Exercise 5.26
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is given at the level of C.(G1) — C.(G2) by extending a function on G; to all of
G2 by having it take the value zero on G5 \ G;. However, suppose ¢: G1 — Go is
the inclusion of the subgroup G; = {1} in G2, and assume that G5 is not discrete.
There is no related homomorphism C,(G1) = C.(G2). If we try an analogous def-
inition of a map L'(G1) — L'(G3), since {1} has measure zero in Gg, we get the
zero map. The same kind of thing goes wrong for the inclusion of, for example, the
subgroup R x {0} in R2.

Things still work if the range of ¢ is open in Go. We omit the proof. There are
other things that can be done instead, but we do not discuss them here.

There is an approach to the theory of locally compact abelian groups which
starts out by defining G to be the maximal ideal space Max(C*(G)). Chapter 4
of [87] comes close to following this approach.

Remark 5.60 describes some of the difficulties with understanding and working
with C*(Z). When the group is not discrete, everything that can go wrong before
can still go wrong, although, since the canonical unitaries associated to the group
elements are no longer in the group C*-algebra (only in its multiplier algebra), the
situation is harder to describe. The obvious analogous case to consider is G = R.
We make explicit just one issue. The analog of Remark 5.60(1) is to ask exactly
which functions on R have Fourier transforms (in the distributional sense) which are
in Cyp(R) = C*(R). This is certainly at least as hard as, and probably harder than,
asking which functions on Z are the sequence of Fourier coefficients of functions in
C(SY) = C*(2).

If G is not amenable, the situation for C*(G) is of course also at least as bad as
described in Remark 5.61, and it is harder to even formulate the problem.

There is also a group von Neumann algebra. The following definition is the
analog for locally compact groups of Definition 5.53 for discrete groups.

Definition 7.24. Let G be a locally compact group. Regard C(G) as a subalgebra
of L(L%*(G)), as in Definition 7.22. We define the group von Neumann algebra
Wr(G) to be the closure of C(G) in the weak operator topology on L(L?(G)).

See Section VIL.3 of [277], and Definition V.7.4 of [276] for the discrete case.
The notation used in [276] and [277] (R(G) and R.(G)) is not common. The most
frequently used notation seems to be L(G), L(G), and W*(G).

Although we will not prove this here, the unitaries u, corresponding to the
group elements g € G are in W} (G). In fact, taking v: G — U(L?(G)) to be the
left regular representation (as in Definition 7.22), one has

WHG) = {v(g): gE G}N.

8. CROSSED PRrRODUCTS

In this section, we define (full) crossed products, and prove a few results closely
related to the construction. We omit some of the details, especially in the case that
the group is not discrete. See Sections 7.4 and 7.6 of [198], and, for considerably
more detail, Sections 2.4 and 2.5 of [292].

Definition 8.1. Let a: G — Aut(A) be an action of a locally compact group G on
a C*-algebra A. A covariant representation of (G, A, «) on a Hilbert space H is a
pair (v, ) consisting of a unitary representation v: G — U(H) (the unitary group
of H) and a representation 7: A — L(H) (the algebra of all bounded operators on
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H), satistying the covariance condition

v(g)m(a)v(g)” = 7(ag(a))
for all g € G and a € A. It is called nondegenerate if 7 is nondegenerate.

Recall that, by convention, unitary representations are strong operator con-
tinuous. By convention, representations of C*-algebras, and of other *-algebras
(such as the algebras L'(G,A,a) and C.(G, A,«a) introduced below) will be *-
representations (and, similarly, homomorphisms are *-homomorphisms).

The crossed product C*-algebra C*(G, A, a) is the universal C*-algebra for co-
variant representations of (G, 4, «), in essentially the same way that the (full) group
C*-algebra C*(@G) is the universal C*-algebra for unitary representations of G, as
in Theorem 7.18 (Theorem 5.22 when G is discrete). We construct it in a similar
way to the group C*-algebra. We start with the analogs of C.(G) (Definition 7.6)
and of L'(G) (Definition 7.10).

To define the crossed product by a general locally compact group, one needs an
integration theory for Banach space valued functions. This theory was not needed
to define the convolution multiplication in C¢(G), but it was needed for later work
involving C*(@), such as the integrated form of a representation (Definition 7.16).
Here, we already need it for the definition of the product in Definition 8.2. A
sufficient theory for our purposes is discussed before Theorem 7.13, and the main
facts we need are in Theorem 7.13, Definition 7.14, and Lemma 7.15.

As in Section 7, we let p be a fixed left Haar measure on G.

Definition 8.2. Let a: G — Aut(A) be an action of a locally compact group G on
a C*-algebra A. We let C.(G, A, a) be the *-algebra of compactly supported contin-
uous functions a: G — A, with pointwise addition and scalar multiplication. Using
Haar measure in the integral, we define multiplication by the following “twisted
convolution”:

(@)(9) = | alt)on (o™ 9) duh).
Let A be the modular function of G. We define the adjoint by

a*(g) = Alg) " aglalg™)").
This does in fact make C.(G, A, ) a *-algebra; see Exercise 8.3 below. We define
anorm || - |y on Ce(G, A, a) by |lally = [ lla(g)] du(g). One checks (Exercise 8.3)
that ||ab||; < |lal|1||b]1 and ||a*||1 = ||la]|1. Then L!(G, A, «) is the Banach *-algebra
obtained by completing C.(G, A, a) in || - ||1-

The next exercise is the analog of Proposition 7.8. It needs Fubini’s Theorem
for Banach space valued integrals of continuous functions with compact support.
See Proposition 1.105 of [292]. Since such functions are automatically integrable,
the required result can be gotten from the usual scalar valued Fubini’s Theorem by
applying continuous linear functionals and using the Hahn-Banach Theorem.

Exercise 8.3. In the situation of Definition 8.2, and assuming a suitable version of
Fubini’s Theorem for Banach space valued integrals, prove that that multiplication
in C.(G, A,a) is associative. Further prove for a,b € C.(G, A, ) that ||abl|; <
llall1][b]|]1, that (ab)* = b*a*, and that ||a*||1 = ||a||;. Finally, prove that L'(G, A, o)
is a Banach *-algebra.
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Remark 8.4. Suppose A = Cy(X), and « comes from an action of G on X. Since
we complete in a suitable norm later on, it suffices to use only the dense subalgebra
C.(X) in place of Cy(X). There is an obvious identification of C.(G, C.(X)) with
C.(G x X). On C.(G x X), the formulas for multiplication and adjoint become

Lﬁféﬂng)=:]20ﬁ(h,mlﬁ(h‘lg,h‘lx)du(h)

and
(g, x) = Ag) ' flg~t, g~ 1o).
Exercise 8.5. Prove the formulas in Remark 8.4.

Remark 8.6. If G is discrete, we choose Haar measure to be counting measure.
In this case, C.(G, A, «) is, as a vector space, the group ring A[G], consisting of
all finite formal linear combinations of elements in G with coefficients in A. The
multiplication and adjoint are given by

(a-g)(b-h) = (algbg™"]) - (gh) = (acy (b)) - (gh) ~ and  (a-g)" =ag'(a") g~

for a,b € A and g,h € G, extended linearly. This definition makes sense in the
purely algebraic situation, where it is called the skew group ring.
When G is discrete, we also often write I1(G, A, «) instead of L' (G, A, a).

Notation 8.7. Let a: G — Aut(A) be an action of a discrete group G on a
C*-algebra A. In these notes, we will adopt the following fairly commonly used
notation. First, suppose A is unital. For g € G, we let u, be the element of
C.(G, A, o) which takes the value 14 at g and 0 at the other elements of G. We
use the same notation for its image in [}(G, A, ) (Definition 8.2 above) and in
C*(G, A, o) and C} (G, A, o) (Definitions 8.15 and 9.4 below). It is unitary, and we
call it the canonical unitary associated with g.

If A is not unital, extend the action to an action a™: G — Aut(A*") on the
unitization A* of A by af(a+ A-1) = ay(a) + X - 1. Then write u, as above.
Products au,, with a € A, are still in C.(G, A, a), I(G,4,a), C*(G, A, a), or
C* (G, A, «), as appropriate.

Remark 8.8. In particular, [}(G, A, ) is the set of all sums dec aguy with
ag € A and ) ¢ llagll < oco. These sums converge in I1(G, A, a), and hence
also in C*(G, A,a) and C}(G, A,a). A general element of C}(G, A, o) has such
an expansion, but unfortunately the series one writes down generally does not
converge. See Remark 9.19; as in Remark 5.60, there is usually no convergence

even when A = C and G is amenable.

Definition 8.9. Let a: G — Aut(A) be an action of a locally compact group G
on a C*-algebra A, and let (v,7) be a covariant representation of (G, A, «) on a
Hilbert space H. (We do not assume that 7 is nondegenerate.) Then the integrated
form of (v, m) is the representation o: C.(G, A, o) — L(H) given by

a@ﬁzlfW@wwmwwy

(This representation is sometimes called v x 7 or m x v. We will sometimes use the
notation v X .)
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One needs to be more careful with the integral here, just as in Definition 7.16
and the remark afterwards, because v is generally only strong operator continuous,
not norm continuous. Nevertheless, one gets ||o(a)|| < |lal|1, so o extends to a
representation of L!(G, A, a). We use the same notation o for this extension.

Of course, one also needs to check that o is a representation. When G is discrete,
and using Notation 8.7, the formula for ¢ comes down to o(auy) = m(a)v(g) for
a € Aand g € G. Then

o(aug)o(bup) = m(a)v(g)m(b)v(g) v(g)v(h) = m(a)m (g (b))v(g)v(h)
= m(acy(b))v(gh) = 0([aag(b)]ugh) = U((a“g)(buh))-

Exercise 8.10. Let a: G — Aut(A) be an action of a discrete group G on a C*-
algebra A, and let (v, ) be a nondegenerate covariant representation of (G, A, «)
on a Hilbert space H. Starting from the computation above, fill in the details of
the proof that the integrated form representation o of Definition 8.9 really is a
nondegenerate representation of C.(G, A, ).

Theorem 8.11 (Proposition 7.6.4 of [198]). Let a: G — Aut(A) be an action of
a locally compact group G on a C*-algebra A. Then the integrated form construc-
tion defines a bijection from the set of nondegenerate covariant representations of
(G, A, ) on a Hilbert space H to the set of nondegenerate continuous representa-
tions of L1(G, A, @) on the same Hilbert space.

(There is a misprint in the statement of Proposition 7.6.4 of [198]: it omits the
nondegeneracy condition on the covariant representation, but includes nondegen-
eracy for the integrated form.)

Also see Propositions 2.39 and 2.40 of [292]. These are stated in terms of
C*(G, A, ), but, by Definition 8.15 below, that is the same thing. (The C*-algebra
result is stated as Theorem 8.17 below.)

Remark 8.12. Since integrated form representations of L!(G, A, o) are necessarily
contractive, all continuous representations of L!(G, A, a) are necessarily contrac-
tive.

If G is discrete and A is unital, then there are homomorphic images of both G
and A inside C.(G, A, @), given (following Notation 8.7) by g — u4 and a — au1, so
it is clear how to get a covariant representation of (G, A, «) from a nondegenerate
representation of C.(G, A, «). In general, one must use the multiplier algebra of
LY(G, A, a), which contains copies of M(A) and M(L'(G)). The point is that
M(L*(Q)) is the measure algebra of G, and therefore contains the group elements
as point masses.

Exercise 8.13. Prove Theorem &8.11 when G is discrete and A is unital.

For a small taste of the general case, use approximate identities in A to do the
following exercise.

Exercise 8.14. Prove Theorem 8.11 when G is discrete but A is not necessarily
unital.

In the following definition, we ignore the set theoretic problem, that the collec-
tion of all nondegenerate representations of L'(G, A, a) is not a set. Exercise 8.16
afterwards asks for a set theoretically correct definition, and a proof from this def-
inition that one still has the correct universal property. The case of C*(G) for a
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discrete group G was done carefully in Definition 5.18 and the first part of the proof
of Theorem 5.22. For locally compact G, see Definition 7.20 and Theorem 7.21 (for
which we did not give a proof). It suffices to use a fixed Hilbert space whose
dimension is at least card(G)card(A).

Definition 8.15. Let a: G — Aut(A) be an action of a locally compact group
G on a C*-algebra A. We define the universal representation o of L*(G, A, ) to
be the direct sum of all nondegenerate representations of L'(G, A, «) on Hilbert
spaces. Then we define the crossed product C*(G, A, ) to be the norm closure of

a(LYG, A, )).
One could of course equally well use the norm closure of o(C.(G, 4, «)).

Exercise 8.16. Give a set theoretically correct definition of the crossed product.
The important point is to preserve the universal property in Theorem 8.17; prove
that your definition does this.

It follows that every nondegenerate covariant representation of (G, A, ) gives a
representation of C*(G, A, «). (Take the integrated form, and restrict elements of
C*(G, A, ) to the appropriate summand in the direct sum in Definition 8.15.) The
crossed product is, essentially by construction, the universal C*-algebra for covari-
ant representations of (G, A, @), in the same sense that if G is a locally compact
group, then C*(G) is the universal C*-algebra for unitary representations of G.
Theorem 8.11 then becomes the following result, which is the analog for crossed
products of Theorem 7.21 (for group C*-algebras).

Theorem 8.17 (Propositions 2.39 and 2.40 of [292]; Theorem 7.6.6 of [198]). Let
a: G — Aut(A) be an action of a locally compact group G on a C*-algebra A, and
let H be a Hilbert space. Then the integrated form construction defines a bijection
from the set of nondegenerate covariant representations of (G, A,«) on H to the
set of nondegenerate representations of C*(G, A, «) on H.

Exercise 8.18. Prove Theorem 8.17 when G is discrete and A is unital.

Remark 8.19. There are many notations in use for crossed products, and for
related objects called reduced crossed products (to be constructed in Section 9
below). Here are most of the most common ones, listed in pairs (notation for the
full crossed product first):

C*(G,A,a) and C} (G, A, a).

C*(A,G,a) and CF (A4, G, a).

A X, G and A %, G (used in the book [292]).

A xo G and A o, G (used in the book [52]).

G Xo A and G X4 A (used in the book [198]).

In all of them, we may omit « if it is understood. In the notation for the re-
duced crossed products (especially the first two versions), the letter “r” (“re-
duced”) is sometimes replaced by “A” (the conventional name for the left regu-
lar representation of a group). The symbol in the third comes from the relation
C*(N x H) &2 C*(H, C*(N)), and is meant to suggest a generalized semidirect
product. The first two make it easy to distinguish C*-algebra crossed products
from other sorts, such as von Neumann algebra crossed products, smooth crossed
products, L' crossed products, L? operator crossed products, and purely algebraic
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crossed products (all of which will receive short shrift in these notes, but are impor-
tant in their own right, sometimes in the same paper). I use the order C*(G, A4, «)
because it matches the natural order in C.(G, A, a) and L'(G, A, o).

Definition 8.20. Let G be a locally compact group, let X be a locally compact
Hausdorff space, and let (g, ) — gz be an action of G on X. The transformation
group C*-algebra of (G, X), written C*(G, X), is the crossed product C*-algebra
C*(G, Co(X)).

Theorem 8.21. Let a: G — Aut(A) be an action of a discrete group G on a unital
C*-algebra A. Then C*(G, A, «) is the universal C*-algebra generated by a unital
copy of A (that is, the identity of A is supposed to be the identity of the generated
C*-algebra) and unitaries u,, for g € G, subject to the relations uyup = ugyp for

g,h € G and ugauy = ay(a) for a € A and g € G.

Exercise 8.22. Based on the discussion above, write down a careful proof of The-
orem 8.21.

Corollary 8.23. Let A be a unital C*-algebra, and let o € Aut(A4). Then the
crossed product C*(Z, A, «) is the universal C*-algebra generated by a copy of A
and a unitary u, subject to the relations uvau® = a(a) for a € A.

We now discuss functoriality of crossed products. The locally compact group G
will be treated as fixed. Since we have not included full proofs earlier in this section
when G is not discrete, we are not giving self contained proofs of the functoriality
results. However, given the results stated earlier, the functoriality proofs are the
same even when G is not discrete.

Definition 8.24. Let G be a locally compact group. A C*-algebra A equipped
with an action G — Aut(A) will be called a G-algebra, or a G-C*-algebra. We
sometimes refer to (G, 4, a) as a G-algebra or G-C*-algebra.

Recall from Definition 1.3 that if (G, A,«) and (G, B, 3) are G-algebras, then
a homomorphism ¢: A — B is said to be equivariant if for every g € G, we have
poog = f40p. Wesay that ¢ is G-equivariant if the group must be specified.

Proposition 8.25. For a fixed locally compact group G, the G-algebras and equi-
variant homomorphisms form a category.

Proof. This is obvious. (]

We will need to use degenerate covariant representations when considering func-
toriality for homomorphisms whose ranges are “too small” (such as being contained
in proper ideals). We recall the following standard lemma on degenerate represen-
tations of C*-algebras. We omit the easy proof.

Lemma 8.26. Let A be a C*-algebra, let Hy be a Hilbert space, and let mg: A —
L(Hy) be a representation. Let H be the closed linear span of mo(A4)Hy. Then:

(1) The subspace H is invariant for .

(2) The representation m = my(—)|x is nondegenerate.
(3) We have

H* ={¢ € Hy: m(a) =0 for all a € A}.

(4) The representation g is the direct sum of 7 and the zero representation on
HL.
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(5) For all a € A, we have ||7(a)|| = ||mo(a)]|-
(6) We have Ker(m) = Ker(mg).
(7) If mo is given as the direct sum of a nondegenerate representation on a

Hilbert space H; and the zero representation on a Hilbert space Hs, then
H:Hl and f[l :HQ.

Lemma 8.27. Let a: G — Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let I be a set, and for i € I let (v;, 7;) be a covariant representation of
(G, A, ) on a Hilbert space H;, with integrated form ;. Then (@iel Vi, Dier 7ri)
is a covariant representation of (G, A,«) on @, ; H;, and its integrated form is

@ie[ Oi-

Proof. The proof is routine. O

iel

Lemma 8.28. Let a: G — Aut(A) be an action of a locally compact group G on
a C*-algebra A. Let (v, m) be a covariant representation of (G, A, a) on a Hilbert
space H. If 7 is the zero representation, then the integrated form o of (v, ) is the
Zero representation.

Proof. Tt is immediate that o(a)¢ =0 for all a € C.(G, A4,a) and £ € H. O

Lemma 8.29. Let a: G — Aut(A) be an action of a locally compact group G on
a C*-algebra A. Let (vg, o) be a covariant representation of (G, A, &) on a Hilbert
space Hy. (We do not assume that my is nondegenerate.) Let og: C.(G, 4, a) —
L(Hp) be the integrated form of (vg, ), as in Definition 8.9. Then my(A)Hy and
00(C*(G, A, «))Hp have the same closed linear spans.

Proof. Let H be the closed linear span of mo(A)Hy. Then H is invariant under mg
by Lemma 8.26(1).

We claim that H is invariant under vg. It is enough to prove invariance of
mo(A)Hy. Let g € G, let a € A, and let £ € Hy. Then

vo(g)mo(a)§ = mo(ag(a))vo(9)§ € mo(A)Ho.
The claim is proved.

Set m = mo(—)|g. Then myp = 7 & 0 by Lemma 8.26(4), and the claim implies
the existence of a representation w of G on H' such that vg = v @ w. Let o
be the integrated form of (v, 7). Use Lemma 8.27 and then Lemma 8.28 to get
0o = 0 @ 0, the zero representation being on H+. It follows from Theorem 8.11

and Definition 8.15 that o is nondegenerate. Therefore the conclusion follows from
Lemma 8.26(7). O

Corollary 8.30. Let a: G — Aut(A) be an action of a locally compact group G
on a C*-algebra A. Let a € C*(G, A, «). Then

la]] = sup ({ lo(a)||: o is the integrated form of a possibly

degenerate covariant representation of (G, A, a)}).

Proof. It follows from Lemma 8.29, Lemma 8.26(2), and Lemma 8.26(5) that the
supremum on the right is unchanged if we restrict to nondegenerate covariant rep-
resentations of (G, A, «). O

Theorem 8.31. Let G be a locally compact group. If (G, A, «) and (G, B, 3) are
G-algebras and ¢: A — B is an equivariant homomorphism, then there is a homo-
morphism ¢: C.(G, A,a) — C.(G, B, ) given by the formula ¥ (b)(g) = ¢(b(g))
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for b € C.(G,A,a) and g € G, and this homomorphism extends by continuity
to a homomorphism L'(G,A,a) — LY(G,B, ), and then to a homomorphism
C*(G,A,a) — C*(G,B, ). This construction makes the crossed product con-
struction a functor from the category of G-algebras to the category of C*-algebras.

Proof. One checks directly that i preserves multiplication and adjoint, and that
lv(a)|li < |lalli for all @ € C.(G, A, ). The extension to the L!-algebras is now
immediate.

To prove that ¢ extends by continuity to a homomorphism C*(G, A, «a) —
C*(G, B, ), we let || - | denote restrictions to C.(G, A, «) and C.(G, B, 8) of the
norms on C*(G, A,«a) and C*(G, B, ). We have to prove that ||)(b)|| < ||b]| for
all b € C.(G,A, ). So let (w,p) be a nondegenerate covariant representation
of (G, B, ) on a Hilbert space H, and let v: C.(G,B,3) — L(H) be the inte-
grated form of (w, p), as in Definition 8.9. We have to prove that ||v(¢(b))] < ||b]l-
Clearly (w, p o @) is a covariant representation of (G, A, «) on H, with integrated
form ¢ = v o4. There is no reason to suppose that (w, p o ¢) is nondegener-
ate, but, even without nondegeneracy, Corollary 8.30 gives ||o(b)|| < ||b]]. Thus
(b ®) | = lo®)l] < [b]], as desired. O

Theorem 8.32 (Lemma 2.8.2 of [200]; Theorem 2.6 of [255]; Proposition 3.9
of [292]). Let G be a locally compact group. Let

0—J -5 A4 B_—50

be an exact sequence of G-algebras, with actions v on J, @ on A, and 8 on B. Then
the sequence

0 — C*(G,J,7) = C*(G, A,a) = C*(G,B, ) — 0
of crossed products and induced maps is exact.

Theorem 8.32 implies in particular that if (G, J,v) and (G, A, «) are G-algebras,
and ¢: J — A is an injective equivariant homomorphism whose image is an ideal,
then the corresponding homomorphism C*(G, J,v) — C*(G, A, «) is injective. If
the image is merely a subalgebra, the proof fails. The difficulty occurs when we ex-
tend a covariant representation of (G, J,y) to a covariant representation of (G, A, «).
If J is not an ideal, to extend a representation of J to one of A one usually needs
a bigger Hilbert space, and one has trouble with how to extend the representation
of G to a representation on the larger space.

The (full) crossed product should be thought of as somehow analogous to the
maximal tensor product of C*-algebras. Similarly, the reduced crossed product
(discussed in Section 9 below) should be thought of as somehow analogous to the
minimal tensor product of C*-algebras. Compare with Example 10.1, where it is
observed that if the action of G on A is trivial, then

C*(G,A) 2 C*(Q) Bmax A and  C7 (G, A) 2 C*(G) Omin A.

Theorem 8.32 should then be compared with Proposition 3.7.1 of [37], according to
which A ®max — 1s an exact functor.

The proof of Theorem 8.32 requires at least the first part of the following exercise.
For this part, one can use a partition of unity argument similar to that in the proof
of Lemma 7.15. For part (2), one can then apply part (1) to the error %(a) — b,
with a smaller error, repeat, and sum the results. One can also reduce to the case
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in which X is compact, where one can apply C*-algebraic tensor products and the
isomorphism C'(X, 4) 2 C(X) ® A.

Exercise 8.33. Let X be a locally compact Hausdorff space, let A and B be C*-
algebras, and let k: A — B be a surjective homomorphism. Let ®: C.(X, A) —
C.(X, B) be the linear map given by &(a)(z) = k(a(z)) for a € C.(X,A) and
x € X. Let b € C.(X, B).
(1) Prove that there is a compact set K C X such that for every ¢ > 0 there is
a € C.(X, A) satisfying

lallo < lbllc +& supp(a) C K,  and  [[F(a) - bl <e.
(2) Prove that there is a € C(X, A) such that &(a) = b and supp(a) = supp(b).

Proof of Theorem 8.32. We prove that k is surjective. Since k is a homomorphism,
it suffices to prove that x has dense range. It follows from Exercise 8.33(2) that
the range of k contains the image of C.(G, B, ), and we know that the image
of C.(G, B, ) is dense. (Actually, Exercise 8.33(1) is good enough here, since it
implies that the closure of the range of k contains the image of C.(G, B, 8).) This
proves surjectivity of k.

It is immediate that kot = 0.

We prove that ¢ is injective. For this, it is convenient to identify J with the ideal
to(J) € A. Let y € C*(G,J,v) be nonzero. Choose a nondegenerate covariant
representation (v,mg) of (G, J,7y) on a Hilbert space H such that the integrated
form 7: C*(G,J,v) — L(H) satisfies w(y) # 0. Since my is nondegenerate and
J C A is an ideal, a standard result in the representation theory of C*-algebras
shows that there is a unique representation pg: A — L(H) such that pg|; = mp.

We claim that (v, pg) is covariant. Let g € G. Since (v, mg) is covariant, a —
v(g)p(ay ' (a))v(g)* is a representation whose restriction to .J is mo. By uniqueness
of po, we have v(g)po(a,*(a))v(g)* = po(a) for all a € A, which is covariance.

Let p: C*(G, A,a) — L(H) be the integrated form of (v, pg). Then por =, so
p(t(y)) = m(y) # 0. Therefore ¢(y) # 0.

It remains to prove that if y € C*(G, A, @) and s(y) = 0, then y is in the range
of .. We again identify J with the ideal ¢o(J) C A. Since ¢ is injective, we may use
¢ to identify C*(G, J,~) with a subalgebra of C*(G, A, «). Since C.(G, J,7) is an
ideal in C.(G, A, &) and since C.(G, J,v) and C.(G, A, o) are dense in C*(G, J,~)
and C*(G, A, a), it follows that C*(G, J,v) is an ideal in C*(G, A, ).

Let y € C*(G, A, ) and suppose that y € C*(G, J,v). We show that x(y) # 0.
Use a nondegenerate representation of C*(G, A, «)/C*(G, J,~) which does not van-
ish on y to find a Hilbert space H and a nondegenerate representation o: C*(G, A, o) —
L(H) such that o(y) # 0 but o|c-(g,7,y) = 0. Then o is the integrated form of a
nondegenerate covariant representation (w, o) of (G, A, a). Since o|c(qa,7,) = 0,
Lemma 8.29 implies that og|; = 0. So o¢ induces a representation my: B — L(H).
Clearly (w,mg) is a nondegenerate covariant representation of (G, B, ) whose in-
tegrated form 7 satisfies m ok = 0. So w(k(y)) # 0. Thus k(y) # 0. O

Theorem 8.34. Let G be alocally compact group. Let ((G, A;, a(i))iel, (¢j.)i<i)
be a direct system of G-algebras. Let A = @Ai, with action a: G — Aut(A) given

by a, = ligag) for all g € G. (See Proposition 3.24.) Let
Vi C* (G, Ai,a(i)) - C* (G,Aj,a(j))
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be the map obtained from ¢;;. Using these maps in the direct system of crossed
products, there is a natural isomorphism C*(G, A, o) & ligC’* (G, A, a(i)).

Proof. We show that C*(G, A, «) satisfies the universal property which defines
liglC* (G, Ai,a(i)). First, for i € I let ¢;: A; — A be the canonical map for
the direct limit of the system ((A4;)icr, (¢),i)i<;j). We have maps

P CF(G, Ay, aD) — C*(GL A, )

obtained from the maps ¢; by forming crossed products. Clearly ©; o ¥;; = ;
whenever 4, j € I satisfy ¢ < j.

Now suppose we have a C*-algebra B and homomorphisms v;: C* (G, A, a(i)) —
B such that vj o9, ; = v; whenever 4,j € I satisfy ¢ < j. We need to prove that
there is a unique homomorphism v: C*(G, A,a) — B such that v o ¢); = v; for
all ¢ € I. Without loss of generality, B is a nondegenerate subalgebra of L(H) for
some Hilbert space H.

For each ¢ € I, set

Hi =V; (C* (G, Ai, Oé(l)))H
Keeping Lemma 8.26 in mind for the next several paragraphs, observe that there is
a nondegenerate covariant representation (v;, ;) of (G, A, oz(i)) on H; whose inte-
grated form is v;(—)|g,. Extend 7; to a representation on H by forming the direct
sum with the zero representation on Hf‘ Let 4,7 € I satisfy ¢ < j. Then H; C Hj.
Moreover, H; is an invariant subspace for v; and, by uniqueness of the nondegener-
ate covariant representation determined by a nondegenerate representation of the
crossed product (Theorem 8.17), we have
vj () =wvi(=)  and (w50 953)(—)|m, = m(=).

Moreover, both (m; o ¢;;)(—) and m;(—) are zero on H; N H;- and on HJJ-7 SO
Tj O Qj4 = Ty.

Since B is nondegenerate, we have |J,.; H; = H. It is then easy to see that
there is a unique unitary representation v of G on H such that v(—)|g, = v; for all
1€l

By the universal property of ligAi, there is a unique representation 7: A —
L(H) such that mo ¢; = m; for all ¢ € I, and moreover (using uniqueness) (v, ) is
a covariant representation. Let v: C*(G, A, «) — L(H) be the integrated form of
(v, 7). Then one gets vo; = v; for all i € I. Since A is generated by the images of
the algebras A4;, it follows that v(C*(G, A, «a)) C B. Uniqueness of v follows from
uniqueness of the integrated form of a covariant representation. O

9. REDUCED CROSSED PRODUCTS

So far, it is not clear that a G-algebra (G, A, «) has any covariant representations
at all. In this section, we exhibit a large easily constructed class of them, called reg-
ular covariant representations. We then study the reduced crossed product, which
is defined by using the universal regular representation in place of the universal
representation. We will concentrate on the case of discrete groups.

As in Sections 7 and 8, we let p be a fixed left Haar measure on G.

We will need Hilbert spaces of the form L?(G, Hy). The easy way to construct
L?(G, Hy) is to take it to be the completion of C.(G, Hp) in the norm coming from
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the scalar product
(€.m) = / (€(9),1(9)) du(g).
G

Definition 9.1 (7.7.1 of [198]). Let a: G — Aut(A) be an action of a locally
compact group G on a C*-algebra A. Let mg: A — L(Hy) be a representation. We
define the regular covariant representation (v, ) of (G, A, «) on the Hilbert space
H = L?(G, Hy) of L? functions from G to Hy as follows. For g,h € G, set

(v(9)€)(h) = £(g™ h).
For a € A and g € G, set

(m(a)8)(h) = mo(an-1(a))(§(h))-

(Exercise 9.2 asks you to prove that (v,w) really is covariant.) The integrated
form of o, as in Definition 8.9, will be called a regular representation of any of
C.(G,A,a), LYG,A,a), C*(G, A, ), and (when we have defined it; see Defini-
tion 9.4) C¥ (G, A, «). Justified by Lemma 9.3 below, we will refer to (v, 7) as a
nondegenerate covariant representation when 7y is nondegenerate.

Exercise 9.2. In Definition 9.1, prove that (v, 7) really is a covariant representa-
tion.

If A=C, H) = C, and m is the obvious representation of A on Hpy, then
the representation of Definition 9.1 is the usual left regular representation of G
(Definition 7.1; Definition 5.3 in the discrete case).

Lemma 9.3. In Definition 9.1, the representation 7 is nondegenerate if and only
if my is nondegenerate.

Proof. Suppose 7 is degenerate. Choose a nonzero element & € (mo(A)Hp)> .
Lemma 8.26(3) implies that mo(a){ = 0 for all a € A. Choose a nonzero function
f € C.(G). Define &(g) = f(g)& for g € G. Then ¢ is a nonzero element of
L?(G, Hy), and m(a)é =0 for all a € A. So 7 is degenerate.

Now assume that 7o is nondegenerate. It suffices to show that 7(A4)L?(G, Hy)
contains all elements £ € C.(G, Hy) which are elementary tensors, that is, for which
there exist f € C.(G) and & € Hy such that {(h) = f(h)& for all h € G.

Let &, f, and & be as above, and let € > 0. Recall that u is a left Haar measure

on GG. Set
M = (u(supp(f)) + 1) (IF] + 1).

Since 7 is nondegenerate, there are a € A and 1y € Hy such that
€

2M°

Since {ah(a): he supp(f)} is compact, there is b € A such that

170 (a)m0 — &oll <

[ban(a) — an(a)l] < (ol + 1)

for all h € supp(f). Then

—1 e
(67 bla —a|l| < ——+——
e (B)a = al 2M ([noll + 1)
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for all h € supp(f). Define n € C.(GQ) by n(h) = f(h)mo(a)ne for h € G. For all
h € supp(f), we then have

[ (®)n)(h) — &Rl = |F(R)] - ||mo (e, (B)) (mo(a)o) — f(R)Eol|

< I£1- oz ®)a - all - Inoll + 11 - lImo(a)mo — &l
lFl- linoll ellfl
S aM(mol +1) " 2M
< 13 4 13
2u(supp() + 1772 2u(supp(f)) + 1)1/
g

p(supp(f)) + 1)1/
Therefore

9

I €1 < nsuwp() (oS ) <
so () — €l < . 3

In the following definition, we ignore a set theoretic problem analogous to those
encountered previously, for example in Definition 8.15.

Definition 9.4. Let a: G — Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let A\: L'(G, A, ) — L(H) be the direct sum of all regular represen-
tations of L'(G, A, a) coming from nondegenerate representations of A. We define
the reduced crossed product C¥(G, A, ) to be the norm closure of A(L}(G, A, ).

Exercise 9.5. Give a set theoretically correct definition of the reduced crossed
product.

We use notation analogous to that of Definition 8.20 in the case of an action on
a locally compact space.

Definition 9.6. Let G be a locally compact group, let X be a locally compact
Hausdorff space, and let (g, ) — gz be an action of G on X. The reduced trans-
formation group C*-algebra of (G, X), written C*(G, X), is the reduced crossed
product C*-algebra C} (G, Co(X)).

Implicit in the definition of C}(G, A, ) is a representation of L!(G, A, @), hence
of C*(G, A,«). Thus, there is a homomorphism C*(G, A4, «a) — C*(G, A,a). By
construction, it has dense range, and is therefore surjective. Moreover, by con-
struction, any regular representation of L'(G, A, a) extends to a representation of
CHG, A, ).

In the context of the next theorem, see the comments before Theorem 5.50 for
a discussion of amenability.

Theorem 9.7 (Theorem 7.13 of [292]; Theorem 7.7.7 of [198]). Let a: G — Aut(A)
be an action of a locally compact group G on a C*-algebra A. If G is amenable,
then C*(G, A, o) —» C}(G, A, @) is an isomorphism.

The converse is true for A = C: if C*(G) — C*(G) is an isomorphism, then
G is amenable. See Theorem 7.3.9 of [198]. But it is not true in general. For
example, if G acts on itself by translation, then C*(G, Co(G)) — Cr (G, Co(Q)) is
an isomorphism for every G. See Example 10.8 for the case of a discrete group.
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The proof of Theorem 9.7 is similar to that of Theorem 5.50, with the algebra A
just carried along.

Proof of Theorem 9.7. Let ¢: C.(G,A,a) — C*(G,A,a) and k: C*(G,A,a) —
CH(G, A, o) be the standard maps. We have to prove that [|x(c(D))]] > [¢(b)]]
for all b € C.(G,A,a). Tt suffices to prove the following. Let b € C.(G, A, a),
let H be a Hilbert space, let (w, o) be a nondegenerate covariant representation of
(G, A,a) on H, and let € > 0. Then there is a Hilbert space F and a nondegenerate
representation mg: A — L(E) such that, if we let (y,7) be the associated regular
covariant representation of Definition 9.1, then

[(w < o)D)l =& < [I(y x m)(O)]-

We will in fact take mg = o.

As usual, let p be a left Haar measure on G. Let v be the left regular repre-
sentation of G on L?(G). Let (y, ) be the regular covariant representation asso-
ciated to o, which acts on L*(G,H) = L*(G,pu) @ H. Thus y, = vy ® 1 for all
g € G. Tt is easy to check that there is a unique unitary z € L(L?(G, H)) such that
(26)(g9) = wy *(&(g)) for £ € L*(G, H) and g € G.

We claim that z(v,®@wy, )z~ ! = v,®1 for all h € G and that 2(1®0(a))z~! = m(a)
for all @ € A. To check these, let £ € L?>(G,H) and let g € G. Then

(2(vn @ wn)€) (9) = wg " ([(vn @ wr)€](g)) = wg ' (wn(§(h™"9)))
= wy-1,(E(h71g)) = (2)(h™"g) = ((n ® 1)2€) (9)

and, using covariance of (w, o) at the third step and the definition of 7 at the fifth
step,

(21 ® o (a))(9) = wy ' ({1 @ o(a))é](9)) = wy ' o(a)(&(9))
o (@)wg'(€(9) = o(ag"(a)) ((26)(9)) = (7(a)2€) (9)-
This proves the claim.
Writing 1 ® o for the representation a — 1 ® o(a) on L?*(G) ® H = L*(G, H),
and recalling the notation in Definition 8.9 for integrated forms of covariant rep-

resentations, the claim implies that (v ® w, 1 ® o) is a covariant representation
and

[(vew)x 1®a0))®)| =y x)®).
We finish the proof by showing that
[(v@w) x (1@a0))®)| > [[(wx a)(b)

We may assume that (w x 0)(b) # 0 and € < ||(w x o)(b)||. Choose & € H such
that

| —e.

ol =1 and [[(w x a)(B)éol| > [[(w x )(b)]| — g

wxa)®l-5\
5‘<||<wm><b>||—s) .

Then 6§ > 0. Set S = supp(b) U {1}. Then S and S~! are compact subsets of G.
Since G is amenable, the main result of [76] (also see Theorem 3.1.1 there) provides
a compact subset K C G such that

0<pu(K)<oo and p(STIK A K) < op(K).

Set
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Since 1 € S7!, the second condition implies that p(S™'K \ K) < §u(K). In
particular, u(S™1K) < (1 + 0)u(K). Define £ € L*(G, H) by

. fo g c STIK
89) = {0 g¢ SK.
Then
(9.1) €]l = n(ST K)ol < (14 6)2u(K)' 2.

We estimate || ((v @ w) x (1 ® o)) (b)¢||. For g € K we have, at the fourth step
using £(h™1g) = & whenever b(h) # 0,

([vew) x (1®a0)|( /

G

(1@ o) (b(h))] (v @ wh)€)(g) du(h)
/Qo<baw>wh@<h*un>duao

= [ ouno du(h = (w 2)0)o.
Therefore
|(wew)x (180)) )] = u(K) 2w o)) ] > ) (I x )B)] - 2).

from which it follows using (9. 1) that

| > K)'72 (|| (w x o) (b)| - 5)
(1+6)1/2pu(K)1/2

= (1472 (Jw x )B)| - 5 ) = ll(w x )B)] —e,
as desired. d

l(ew) x 1)

Theorem 9.8. Let a: G — Aut(A4) be an action of a locally compact group G on
a C*-algebra A. Then C.(G, A, a) — C}(G, A, o) is injective.

We will prove this below in the case of a discrete group. The proof of the general
case can be found in Lemma 2.26 of [292]. It is, I believe, true that L'(G, A, ) —
C (G, A, «) is injective, and this can probably be proved by working a little harder
in the proof of Lemma 2.26 of [292], but I have not carried out the details and I do
not know a reference.

Theorem 9.9 (Theorem 7.7.5 of [198]). Let ao: G — Aut(A) be an action of a lo-
cally compact group G on a C*-algebra A. Let mg: A — L(Hy) be any nondegener-
ate injective representation. Then the integrated form of the regular representation
associated to mp is injective on CF (G, 4, a).

We will not prove this in general, but we will obtain the result when G is discrete,
as a special case of Proposition 9.16(2) below.

We now further analyze the reduced crossed product C¥(G, A,«) when G is
discrete. One of the consequences will be the discrete group case of Theorem 9.9,
but some of what we do does not have a good analog for groups which are not
discrete. The main tool is the structure of regular representations of C}(G, A, «).
When G is discrete, we can write L?(G, Hp) as a Hilbert space direct sum € Hy,
and elements of it can be thought of as families (£;)gecq-

geG
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The main result is Proposition 9.16, which in particular contains the faithfulness
of the conditional expectation from the reduced crossed product to the original
algebra. Faithfulness is proved in Theorem 4.12 of [295]; also see some of the
preceding results there. The development there differs somewhat from ours. We
have not found a reference for the following development, although we presume that
there is one. The closest we have come is Section 1.2 of [177], especially Lemma
1.2.3 and Lemma 1.2.5 there, where it is specifically assumed that G = Z. The
proofs in [177] are more complicated than what we give here. Since [177] treats the
full rather than the reduced crossed product, the proofs there must also implicitly
prove that the map C*(Z, A, o) — C*(Z, A, ) is an isomorphism. (We are grateful
to Sriwulan Adji for calling our attention to this reference.)

Lemma 9.10. Let a: G — Aut(A) be an action of a discrete group G on a C*-
algebra A. Let mp: A — L(Hy) be a representation, and let o: Cf(G, A, o) = H =
L?(G, Hyp) be the integrated form of the associated regular representation. Let

a= Z agug € CY (G, A, ),
geG
with ay, = 0 for all but finitely many g. For { € H, we then have
(0(@)§)(h) = > molay, (ag)) (E(g"h))
geG

for all h € G.

Proof. This is a calculation. (I

In particular, picking off coordinates in L?(G, Hy) gives the following result.

Corollary 9.11. Let the hypotheses be as in Lemma 9.10, and let

a= Zagug € Cr G, A )

geG

as there. For g € G, let s, € L(Hy, H) be the isometry which sends n € Hy to the
function ¢ € L?(G, Hy) given by

_Jn h=g
s<h>—{0 e

Then
spo(a)s, = mo (a;l(ahk—l))
for all h,k € G.

Proof. This is an easy calculation from Lemma 9.10. O

Lemma 9.12. Let a: G — Aut(A) be an action of a discrete group G on a C*-
algebra A. Let ||-|| be the C*-algebra norm on C*(G, A, «) restricted to C.(G, 4, a),
let || - |lr be the C*-algebra norm on C} (G, A, a) restricted to C.(G, A, @), and let
Il - loo be the supremum norm. Then for every a € C.(G, A, a), we have ||a|ls <
lalle < llall < llal
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Proof. The middle of this inequality follows from the definitions.

The last part follows from the observation in Remark 8.12 that all continuous
representations of L'(G, A, a) are norm reducing. Here is a direct proof: for a =
deG agug € Cc(G, A, o), with all but finitely many of the a4 equal to zero, we

have
132, qaatsl| < 3, llaall-Tugll = 3, _llagll = [[3, _jaaus|.

We prove the first part of the inequality. Let a = geG Qglig, with all but finitely
many of the ay4 equal to zero, and let g € G. Let my: A — L(Hy) be an injective
nondegenerate representation. With the notation of Corollary 9.11, we have

lagll = llmo(ag)l = [Isio(a)sg-1 ]| < llo(a)[| < lall.-
This completes the proof. ([

Remark 9.13. Lemma 9.12 implies that the map a — auy, from A to C; (G, A, a),
is injective. We routinely identify A with its image in C}(G, A, &) under this map,
thus treating it as a subalgebra of C}(G, A, a).

Of course, we can do the same with the full crossed product C*(G, A, «).

Corollary 9.14. Let a: G — Aut(A) be an action of a finite group G on a C*-
algebra A. Then the maps C.(G, 4, a) — C*(G, A, a) — C (G, A, «) are bijective.

Proof. When G is finite, || - |1 is equivalent to || - ||oo as defined in Lemma 9.12,
and C.(G, A, «) is complete in both. Lemma 9.12 implies that both C* norms are
equivalent to these norms, so C.(G, A, «) is complete in both C* norms. O

When G is discrete but not finite, things are much more complicated. We can
get started.

Proposition 9.15. Let a: G — Aut(A) be an action of a discrete group G on a
C*-algebra A. Then for each g € G, there is a linear map E,: C} (G, A,a) = A
with ||E,|| <1 such that if

a= Z agug € C(G, A, o),

geG

then Eg4(a) = ag. Moreover, for every representation my of A, and with s, as in
Corollary 9.11, we have

spo(a)sy = mo(ay,  (Epg-1(a)))
for all h, k € G.

Proof. The first part is immediate from the first inequality in Lemma 9.12. The
last statement follows from Corollary 9.11 by continuity. g

Thus, for any a € C(G, A, «), and therefore also for a € C*(G, A, ), it makes
sense to talk about its coefficients a4,. As we have already seen in Remark 5.60,
even when A = C the obvious series made with these coefficients need not converge
to a (or to anything). See Remark 9.19 for more information. If C*(G, A4, a) #
Cr (G, A,«) (which can happen if G is not amenable, but not if G is amenable;
see Theorem 9.7), the coefficients (a4)gec do not even uniquely determine the
element a. (See further discussion of the case A = C in Remark 5.61.) This is why
we only consider reduced crossed products here.
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Proposition 9.16. Let a: G — Aut(A) be an action of a discrete group G on a
C*-algebra A. Let the maps E;: C(G, A, a) — A be as in Proposition 9.15. Then:
(1) If a € C¥(G, A, ) and Ey(a) =0 for all g € G, then a = 0.
(2) Ifmo: A — L(Ho) is a nondegenerate representation such that @, mooay
is injective, then the regular representation o of CJ (G, A, ) associated to
T is injective.
(3) Ifa € C} (G, A,a) and g € G, then ||Ey(a)||* < ||Er(a*a).
(4) If a € C¥(G, A, @) and Ei(a*a) =0, then a = 0.

Proposition 9.16(2) implies the discrete group case of Theorem 9.9.

Proof of Proposition 9.16. We prove (1). Let mo: A — L(Hy) be a representation,
and let the notation be as in Corollary 9.11. If a € C} (G, A, a) satisfies E4(a) =0
for all g € G, then s}o(a)sy = 0 for all h,k € G, whence o(a) = 0. Since mg is
arbitrary, it follows that @ = 0. This proves (1).

For (2), suppose a € C¥(G,A,a) and o(a) = 0. Fix [ € G. Taking h = g~}
and k = 1"'g~! in Proposition 9.15, we get (mo o ay)(Ej(a)) = 0 for all g € G. So
Ei(a) = 0. This is true for all [ € G, so a = 0.

We now prove (3). As before, let

a= Z agug € C(G, A, ).

geG
Then
a*a = Z ugagapup = Z ag_l(aga,*l)ug—lh,
9,h€G 9,h€G
S0
= Z ag_l(Eg(a)*Eg(a)).
geG

In particular, for each fixed g, we have E)(a*a) > o' (Ey(a)*Ey(a)). By continu-
ity, this inequality holds for all a € C*(G, A, a). So

1E1(a*a)l| > [Jag™ (Eq(a)* Ey(a)) || = || Eg(a)* Eg(a)]| = [ Ey(a)],

as desired.
Part (4) now follows easily. If E1(a*a) = 0, then by (3) we have E,4(a)*E4(a) =0
for all g. Therefore a = 0 by Part (1). d

The map E; used in Proposition 9.16(4) is an example of what is called a con-
ditional expectation (from C¥(G, A, a) to A) that is, it has the properties given in
the following exercise. (Some of them are redundant.) Proposition 9.16(4) asserts
that this conditional expectation is faithful.

Exercise 9.17. Let a: G — Aut(A) be an action of a discrete group G on a C*-
algebra A. Let E = F1: C¥(G, A,a) — A be as in Proposition 9.15. Prove that F
has the following properties:

(1) E(a) =a for all a € A.

E(E(b)) = E() for all b € C¥ (G, A, a).
If b > 0 then E(b) > 0.
|E®)] < ||b]] for all b € C¥ (G, A, «).

(2)
:
(5) If a € Aand b € C(G, A, ), then E(ab) = aFE(b) and E(ba) = E(b)a.
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Definition 9.18. Let a: G — Aut(A) be an action of a discrete group G on a
C*-algebra A. The map E = F;: C}(G, A, ) — A of Proposition 9.15, determined

by
E (deGagug) =ai

when deG agug € Cc(G, A, o), is called the standard conditional expectation from
CH (G, A, a) to A. Tt is usually written E. When A = C (and the action is trivial),
we obtain a tracial state on C(G), which we call the standard tracial state.

The standard tracial state already appeared in Theorem 5.28.

Remark 9.19. Unfortunately, in general the series > geG Ogllg does not converge
in C¥(G, A, o). Indeed, we saw in Remark 5.60(3) that this already fails for the
trivial action of Z on C.

As suggested by Remark 5.60(1), it can be very difficult to determine exactly
which families (ag)4ec correspond to elements of C}(G, A, ). If G is discrete
abelian, then there is a good alternate description of C*(G). Since C*(G) is com-
mutative and unital, it must be isomorphic to C(X) for some compact Hausdorff
space X, and the right choice is the Pontryagin dual G. This was already proved
in Theorem 5.38. In general, the computation of C*(G) and C}(G) is a difficult
problem, as is suggested by Remark 5.60. Answers are known for some groups,
particularly semisimple Lie groups (which of course are not discrete).

Even if one understands completely what all the elements of C*(G) are, and even
if the action a: G — Aut(A) is trivial, understanding the elements of the reduced
crossed product requires that one understand all the elements of the completed
tensor product C;(G) @min A. If G is abelian, one gets C(@, A). However, as far
as I know, this problem is also in general intractable.

When the group is not amenable, for full crossed products instead of reduced
crossed products, one of course has the generalization of the difficulty described in
Remark 5.61 with the full group C*-algebra.

There is just one bright spot, although we will not prove it here. The Cesaro
means of the Fourier series of a continuous function always converge uniformly to the
function, and, as already mentioned in Remark 5.60(4), this fact has generalizations
to crossed products by discrete amenable groups and even some cases beyond that.
See Section 5 of [17]. The case G = Z is Theorem VIII.2.2 of [52].

Remark 5.60 is meant to point out the difficulties in dealing with crossed prod-
ucts by infinite groups. Despite all this, for some problems, finite groups are harder.
As suggested after Remark 5.61, we have excellent information about the K-theory
of crossed products by Z [221] and by R [42], and even for both reduced crossed
products by free groups F,, [222] and the corresponding full crossed products (in [49]
see Theorem 2.1(c), Definition 2.2, and Theorem 2.4(c)). See [219] for a general-
ization of the result on reduced crossed products by F,,. The result for full crossed
products by F,, holds despite the fact that the the conditional expectation of Defi-
nition 9.18 is usually not faithful on full crossed products, so that an element is not
even uniquely determined by its “coefficients”. All these formulas imply, in partic-
ular, that if the K-theory of the original algebra is zero, then so is the K-theory of
the crossed product. There is no such formula for the K-theory of crossed products
by the two element group Z/2Z, in which not even any completion is needed. There
even exists a C*-algebra A which is contractible (a much stronger condition than
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K,(A) = 0) and an action a: Z/2Z — Aut(A) such that K, (C*(Z/2Z, A, a)) # 0.
(Examples can be constructed using some of the examples in Section 3 of [201]. We
omit the details.)

We now discuss functoriality of reduced crossed products. Again, given the
results above, the the proofs are no harder for general locally compact groups G
than in the discrete case, but we can’t claim that the presentation of the general
case is self contained.

Lemma 9.20. Let a: G — Aut(A) be an action of a locally compact group G on
a C*-algebra A. Let I be a set, and for 7 € I let p; be a representation of A on a
Hilbert space H;. Let (v;, 7;) be the associated regular representation, and let o;
be its integrated form. Then the regular representation associated with €, ; p; is

(D;c; vir Picy ™). Its integrated form is @, oi.

Proof. The proof of the first statement is routine. The second statement follows
from Lemma 8.27. ]

Lemma 8.29 has the following analog for regular covariant representations.

Lemma 9.21. Let a: G — Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let po: A — L(Hy) be a representation of A on a Hilbert space Hy.
(We do not assume that pg is nondegenerate.) Let o: C*(G, A, o) — L(L?*(G, Hy))
be the integrated form (as in Definition 8.9) of the regular covariant representation
associated to py (as in Definition 9.1). Let H be the closed linear span of m(A)Hp.
Then the closed linear span of oo(C*(G, A, a))L?(G, Hy) is L*(G, H).

Proof. The subspace H is invariant under pg by Lemma 8.26(1). Set p = po(—)|m-
Then py = p @ 0 by Lemma 8.26(4).

Let (vg, o), (v, 7), and (w, ¢) be the regular covariant representations of (G, A, «)
on L(L?(G, Hy)), L(L*(G, H)), and L(L?(G, H)!) associated to pg, p, and the zero
representation on H+. Let o and v be the integrated forms of (v, 7) and (w, ().
Lemma 9.20 gives vg = v @ w, mg = 7 B (, and 09 = 0 @ v. Clearly ( is the zero
representation of A, so v is the zero representation of C*(G, A, «), while 7 is non-
degenerate by Lemma 9.3. Apply Lemma 8.26(7) to the direct sum decomposition
0o = 0 @ v, and then apply Lemma 8.26(4). O

Corollary 9.22. Let a: G — Aut(A) be an action of a locally compact group G
on a C*-algebra A. Let k: C*(G, A, o) — CF(G, A, a) be the quotient map. Let
a € C*(G,A,a). Then

|k(a)|| = sup ({||lo(a)|: o is the integrated form of a possibly

degenerate regular covariant representation of (G, A, a)}).

Proof. Tt follows from Lemma 9.21, Lemma 8.26(2), and Lemma 8.26(5) that the
supremum on the right is unchanged if we restrict to covariant representations of
(G, A, &) coming from nondegenerate representations of A. O

Theorem 9.23. Let G be a locally compact group. If (G, A,«) and (G, B, )
are G-algebras and ¢: A — B is an equivariant homomorphism, then the homo-
morphism C*(G, A,a) — C*(G, B, 3) of Theorem 8.31 induces a homomorphism
C*(G,A, o) — C(G,B,5). This construction makes the reduced crossed prod-
uct construction a functor from the category of G-algebras to the category of C*-
algebras.
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Proof. One observes that if mo: B — L(Hj) is a representation, and if
o: C.(G,B,B) — L(L*(G, Hy))

is the associated regular representation, then o o 1) is the regular representation
associated with the representation mp o ¢: A — L(Hp). In view of Corollary 9.22
it follows that C*(G, A,a) — C*(G, B, 8) induces a well defined homomorphism
CH(G, A a) = C(G, B, B). The properties of a functor are easy to check. O

The analog of Theorem 8.32 for reduced crossed products is in general false.
Counterexamples are hard to find, and the history is confusing; we refer to the
(brief) discussion in the introduction to [16]. Since the reduced crossed product is
functorial, the maps in the sequence are defined. In fact, exactness can only fail in
the middle. Indeed, we have the following result.

Theorem 9.24. Let G be a locally compact group, let (G, A, «) and (G, B, ) be
G-algebras, and let ¢: A — B be an equivariant homomorphism. Let

¥: CY(G, A, a) = CF(G, B, B)
be the corresponding homomorphism of the reduced crossed products.
(1) If o is injective then so is 9.
(2) If p(A) is an ideal in B, then (C; (G, A, a)) is an ideal in C} (G, B, ).
(3) If p is surjective then so is 9.
(4)

If p(A) is a nonzero proper ideal in B, then @D(Cr*(G,A,oz)) is a nonzero
proper ideal in C}(G, B, ).

Proof. For (1), choose a nondegenerate injective representation 7y of B on a Hilbert
space H, let (v, ) be the associated regular covariant representation of (G, B, 8)
(Definition 9.1), and let o: C*(G,B,3) — L(L?*(G,H)) be its integrated form
(Definition 8.9). Then mgop is an injective representation of A on H (not necessarily
nondegenerate).

Use Lemma 8.26(4) to find a closed subspace M C H and a nondegenerate rep-
resentation p: A — L(M) such that m o ¢ is the direct sum of p and the zero rep-
resentation on M~+. Then p is injective by Lemma 8.26(6). Let u: C*(G, A, a) —
L(L?(G, M)) be the integrated form of the regular covariant representation associ-
ated to p. Theorem 9.9 implies that p is injective, and Lemma 9.21 implies that u
is a direct summand in the representation o o 1. Therefore ¥ must be injective.

In the next two parts, we let

ta: Co(G, A a) = CY (G, A, a) and tg: C.(G, B, 8) — CI (G, B, 8)

be the standard maps.

We prove (2). Since 14 and ¢p have dense ranges, to show that 1 (C; (G, 4, a))
is an ideal, it suffices to prove that that for a € C.(G, A, a) and b € C.(G, B, 3), we
have ¥(ta(a))p(b) € CX(G, B, ) and tp(b)Y(ta(a)) € CF (G, B, B). In fact, both
are obviously in ¢5(C.(G, B, 3)).

We prove (3). One checks that ¢ induces a surjective map C.(G,A,a) —
C.(G, B, ). Therefore the range of ¢ contains ¢p(C.(G, B, 8)). So 1 has dense
range, and is therefore surjective.

Finally, we prove (4). The subalgebra 1 (C; (G, A,a)) is an ideal by (2), and is
nonzero by (1). Let m: B — B/@(A) be the quotient map, and let

o: C¥(G,B,a) = C} (G, B/o(A), B)
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be the corresponding homomorphism of the reduced crossed products. Clearly
oot =0,s0¢(Cr(G, A,a)) C Ker(o). Since o is surjective by (3), it follows that
$(C(G. A a)) # CH(G, B, B). U

Remark 9.25. We describe dual actions without proof; see [274] for details.
Let A be any C*-algebra, let G be a locally compact abelian group, and let
a: G — Aut(A) be an action. Let G be the Pontryagin dual of G (Definition 5.30).
For o € 67 there is an automorphism a, of C*(G, A,a) given on C.(G, A, a)
by @s(a)(g) = o(g)alg) for a € C.(G,A,a), 0 € G, and g € G. Moreover,
a: G — Aut(C* (G,Aa)) is a continuous action of G on C*(G, A, ), called the
dual action.

One can also use o(g) in place of o(g). The choice o(g) seems to be more
common. It agrees with the conventions in [274] (see the beginning of Section 3
there) and [292] (see the beginning of Section 7.1 there), but disagrees with the
choice in [198] (see Proposition 7.8.3 there). To see the reason for the choice o(g),
consider the case G = S! and A = C. For f € C.(G), we have a,,(f)(¢) = (™" for
n € Z and ¢ € S*. The n-th Fourier coefficient of f is then f(n) = [oan(f)(C)dg,

~

giving the corresponding Fourier series f(¢) = ), o f(n)¢". If one uses o(g) in the
definition of the dual action, then some extra signs are required in these formulas.
If G is discrete then G is compact, and the conditional expectation E: C*(G, A, a) —
A of Definition 9.18 is given by E(a) = [5 @s(a)do, using normalized Haar mea-
sure in the integral. Whether or not G is discrete, the crossed product by the dual
action is K(L?(G)) ® A. This result is Takai duality ([274]; Theorem 7.1 of [292];
Theorem 7.9.3 of [198]). It is a generalization of the abelian case of Example 10.8
below: if A = C, then C*(G, A,a) = C*(G) = Cy (@), and the dual action is just
translation on G.

Exercise 9.26. Adopt the notation of Remark 9.25. Prove that the formula
ay(a)(g) = o(g)alg), for a € C.(G, A,a), o0 € G, and g € G, extends to a continu-
ous action of G on C*(G, A, ).

Exercise 9.26 is easiest when G is discrete and A is unital, in which case one
can use the description in Theorem 8.21 of C*(G, A, &) in terms of generators and
relations.

Exercise 9.27. Adopt the notation of Remark 9.25, and assume that G is discrete.
Let v be normalized Haar measure on G. Prove that for all a € C*(G, 4, «), the
the conditional expectation E: C*(G, A,a) — A of Definition 9.18 satisfies

E(a):/éac,(a) dv(o)

for all a € C*(G, A, «), as claimed in Remark 9.25. Hint: Prove this for a €
C.(G, A, a) first.

10. COMPUTATION OF SOME EXAMPLES OF CROSSED PRODUCTS

We give some explicit elementary computations of crossed products, mostly in-
volving finite groups. These examples serve several purposes. First, they give,
in a comparatively elementary context, an explicit sense of what crossed products
look like. In particular, our calculations motivate the statements of various general
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theorems, some of which we give without proof. Second, a number of interesting
examples of actions and their crossed products have been constructed by taking
direct limits of some of the kinds of examples we consider. The computation of
some of these crossed products depends on knowing enough detail in examples of
some of the types discussed here that one can calculate direct limits of them. We
include in this section several examples of computations of crossed products by
actions constructed using direct limits.

Some of our examples can be found in Section 2.5 of [292]. For the most part,
however, we have not found calculations in the literature in the explicit form which
we give here.

Throughout this section, we will use the *-algebra C.(G, A, «) of compactly
supported continuous functions a: G — A, with pointwise addition and scalar
multiplication, with multiplication given by convolution as in Definition 8.2, and
with the adjoint defined there. By construction (Definition 8.15, together with
density of C.(G, A, a) in L*(G, A, @), as in Definition 8.2), the image of this algebra
in C*(G, A, @) is dense, and by Theorem 9.8 the map C.(G, A,a) — C(G, A, a)
is injective. It follows that the map C.(G,A,a) — C*(G, A, ) is injective. We
therefore routinely identify C.(G, A, ) with a dense subalgebra of C*(G, A, o) and
also, depending on context, with a dense subalgebra of C}(G, A, ).

Our group G will almost always be discrete. In this case and if A is unital,
for g € G we let uy € C.(G, A, a) be the canonical unitary corresponding to g,
as in Notation 8.7. Also following Notation 8.7, we use the same notation for the
corresponding unitaries in C*(G, A, «) and Cf(G,A,a). When A is not unital,
we follow the conventions for the nonunital case in Notation 8.7. (In particular,
ug denotes corresponding elements in the multiplier algebras of C*(G, A, «) and
CrHG, A ).)

When G is discrete, C.(G, A, «) is the set of functions from G to A which have
finite support. Following the notation of Lemma 9.10 and later results in Section 9,
and as suggested by Remark 8.8, in both the unital and nonunital cases we regularly
identify Cc(G, A, ) with the set of sums a =} aguy in which ay € A for all
g € G and a4 = 0 for all but finitely many g € G. When G is finite, as is the case in
many of our examples, Cc(G, A, @) is then just the set of all sums a =7, agug
in which a; € A for all ¢ € G, and the map from C.(G, A4, ) to C*(G, A,a) is
bijective (Corollary 9.14).

Example 10.1. If G acts trivially on the C*-algebra A, then
C* (G, A) 2 C*(G) Qmax A and CHG,A) = C(G) Qmin A.

The case of the full crossed product, in fact, the generalization to the case of an
inner action, is Example 2.53 of [292].

For the full crossed product, first assume G is discrete and A is unital. Then
Theorem 8.21 implies that C*(G, A) is the universal unital C*-algebra generated
by a unital copy of A and a commuting unitary representation of G in the algebra.
Since C*(@) is the universal unital C*-algebra generated by a unitary representation
of G in the algebra, this is exactly the universal property of the maximal tensor
product.

The proof for the general case is essentially the same. The basic point (omit-
ting the technicalities) is that a covariant representation consists of commuting
representations of A and G, and hence of A and C*(G).
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For the reduced crossed product, the point is that a regular nondegenerate co-
variant representation of (G, A) has the form (A®1p,, 172(q) ®@mo) for an arbitrary
nondegenerate representation mo: A — L(Hy) and with A\: G — U(L?*(G)) being
the left regular representation. By Proposition 9.16(2), it suffices to take 7y to be a
single injective representation. Now we are looking at C*(G) on one Hilbert space
and A on another, and taking the tensor product of the Hilbert spaces. This is
exactly how one gets the minimal tensor product of two C*-algebras.

Note how full and reduced crossed products parallel maximal and minimal tensor
products.

Remark 10.2. More generally, let A and B be C*-algebras, let a: G — Aut(A)
be any action, and let 5: G — Aut(B) be the trivial action. Even if 8 is not trivial,
one gets actions @ Qmuax 8 of G on A Quax B and a @iy S of G on A Quin B
which, interpreting tensor products of elements of A and B as being in A ®uax B
or A ®min B as appropriate, are uniquely determined by

(0 Omax Dy (4 @) = ag(@) ® By(B)  and (@ Buuin B)g(a @ b) = ay(a) @ By (b)
fora€ A, b€ B, and g € G. If 8 is trivial, these formulas become
(00 @max B)g(a ®b) = agla) @b and (0 @min B)g(a @ b) = ay(a) ®b,
and one has
C*(G, A@max B, @ @max ) = C*(G, A, &) Qmax B

and
Cr (G, A ®min B, @ ®min B) =2 C} (G, A, @) ®min B.

Exercise 10.3. Prove Remark 10.2 when G is discrete and A and B are both
unital.

Exercise 10.26, Exercise 10.27, and Exercise 10.28 contain a generalization.

Example 10.4. Let a: G — Aut(A) be an inner action of a discrete group G on
a unital C*-algebra A. Thus, there is a homomorphism g + z, from G to U(A)
such that ay(a) = zgaz; for all g € G and a € A. (See Example 3.4.) We claim
that C*(G, A, ) = C*(G) ®max A. (This is true even if G is not discrete. See
Exercise 10.5, or Example 2.53 of [292].)

It is also true that C(G, A, ) = C(G) @min A.

We prove the claim. Let t: G — Aut(A) be the trivial action of G on A. As
in Notation 8.7, for g € G let u, € C.(G, A, ) be the standard unitary, but let
vg € C¢(G, A, 1) be the standard unitary in the crossed product by the trivial action.
Define ¢g: Co(G, A,a) — C.(G, A, 1) by po(auy) = azgv, for a € A and g € G, and
extend linearly. This map is obviously bijective (the inverse sends av, to azjuy)
and isometric for || - ;. For multiplicativity, it suffices to check the following, for
a,b e Aand g,h € H, using the fact that v, commutes with all elements of A:

wo(aug)po(bup) = azgvgbzpvy = azgbzy2gnvgun
= aay(b)zghvgh = o (aag(b)ugh) = @0((aug)(buh))-
Also,

= ag-1(a*)zg-10,-1 = o (ag-1(a")ug-1) = po((aug)*).
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So g is an isometric isomorphism of *-algebras, and therefore extends to an iso-
morphism of the universal C*-algebras as in Theorem 8.21. Now use Example 10.1.

For use in Example 10.21, we write out explicitly what happens when G = Z/27Z.

Let vg € C*(Z/2Z) be the image of the nontrivial element of the group. Then
A+ pvg = (A4 g, A—p) is an isomorphism from C*(Z/2Z) to C® C. (The algebra
C*(Z/27Z) is the universal C*-algebra generated by a unitary with square 1, and
the corresponding unitary in C@® C is (1, —1). But one can check directly that the
map above is an isomorphism.)

For the crossed product of a unital C*-algebra A by the trivial action ¢ of Z/27Z,
let v € C*(Z/2Z, A, t) be the standard unitary associated to the nontrivial element
of the group. Then a+bv — (a+b, a—b) is an isomorphism from C*(Z/2Z, A, ) to
A@® A. This map is a homomorphism because the copy {(a,a): a € A} C A® A of
A and the unitary (1, —1) € A ® A satisfy the appropriate commutation relations.
One proves that this map is an isomorphism from C.(Z/2Z, A, 1) to A @ A by
explicitly writing down an inverse. Corollary 9.14 now shows it is an isomorphism
from C*(Z/2Z, A, 1) to A® A. (For a faster proof, just tensor the isomorphism of
the previous paragraph with id4.)

Now suppose that z € A is a unitary of order 2. Let gy € Z/2Z be the nontrivial
group element, and let a: Z/2Z — Aut(A) be the action such that oy, = Ad(z).
Let u =ug, € C*(Z/2Z, A, ). Then a + bu — (a + bz, a — bz) is an isomorphism
from I1(Z/2Z, A, ) to A® A. (Of course, once one has the formula, one can prove
this directly.)

Exercise 10.5. Prove the following generalization of Example 10.4. Let o, : G —
Aut(A) be two actions of a locally compact group G on a C*-algebra A which are
exterior equivalent in the sense of Remark 3.9. Prove that

CHG,A,0)=C" (G, A,B)  and  CF(G, A a) =C/(G, A, ).

The case of the full crossed product is done in the proof of Theorem 2.8.3(5)
of [200]. (The compactness hypothesis in the theorem is not needed for the relevant
part of the proof.)

Exercise 10.6. Let a: (Z/27Z)% — Aut(Ms) be as in Example 3.5. Prove that the
crossed product C*((Z/2Z)?, Mz, «) is isomorphic to My.

Since the group is finite and the algebra is finite dimensional, this exercise can
be done with linear algebra. It shows that the hypothesis in Example 10.4 can’t be
weakened from “inner” to “pointwise inner”.

For the next example, we need notation for standard matrix units. (We have
already used the usual version of this notation, when S = {1,2,...,n}, a number
of times.)

Notation 10.7. For any index set S, let d, € [2(S) be the standard basis vector,

determined by
1 t=s
ds (t) =
0 t#s.
For j, k € S, we let the “matrix unit” e; ; be the rank one operator on (?(S) given by

ek = (€, 0x)d;. This gives the product formula e; ye; ,m = Ok 1€;m. Conventional
matrix units for M,, are obtained by taking S = {1,2,...,n}, but we will sometimes
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want to take S to be a discrete (even finite) group. For S = {1, 2}, with the obvious
choice of matrix representation, we get

(1 0 (0 1 (0 0 d (0 0
61,1700,61,2700,62,1f10,an 62,2f01-

Example 10.8. We prove that if G is discrete and acts on itself by translation,
then the crossed product is K(I?(G)). When G is finite, this result is proved in
Lemma 2.50 of [292]. (The conclusion is true for general locally compact groups.
See Theorem 4.24 of [292].) More generally (compare with Remark 10.2, but we
will not give a proof), if G acts on G x X by translation on the first factor and
trivially on the second factor, then

C*(G, G x X) 2 K(I%(G)) ® Co(X) = Co(X, K(I2(G))).

In fact, the action on X need not be trivial. The map (h,z) ~ (h, h~1z) is
an isomorphism from G x X with a general action of G on X to G x X with the
trivial action of G on X. (For those familiar with the appropriate part of the
representation theory of locally compact groups, this fact is related to the fact
that the tensor product of the regular representation of a group and any other
representation is a direct sum of copies of the regular representation.)

Let a: G — Aut(Cy(G)) denote the action. For g € G, we let ug4 be the standard
unitary as in Notation 8.7, and we let §, € Co(G) be the function x(4. Then
ag(6n) = dgi, for g,h € G. Also, span({d,: g € G}) is dense in Cy(G). For
g,h € G, the element
(10.1) Vg,h = Ogligp—1

is in C*(G, Co(G), o). Moreover, for g1, hi, ga, ha € G, we have

Ug1,h1Vga,ha = 591 gllL;1592uggh;1
= 5glag1h;1(592)%111;1%2}1;1 = 5915glhflgzug1hflgzh51'

Thus, if g2 # h1, the answer is zero, while if go = hq, the answer is vg, 4,. Similarly,
vy, = Un,g- That is, the elements vg ), satisfy the relations for a system of matrix

units indexed by G. Also, span({v%h: g,h € G}) is dense in I (G, Cy(G), a), and
hence in C*(G, Co(G), a).
For any finite set F' C G, we thus get a homomorphism
Yp: L(I*(F)) — Ce(G, Co(@), a)
sending the matrix unit ey 5 € L(I?(F)) (Notation 10.7) to v, . Let
pr: L(P(F)) = C*(G, Co(G), )

be the result of composing with the map from C.(G, Co(G), a) to C*(G, Co(G), «).
Set

Ko = U L(I%(F)).
F C G finite
Putting our homomorphisms together gives a homomorphism

0 Koy — C*(G, Co(G), ).

Since for each F the restriction to L(I?(F)) is a homomorphism of C*-algebras, it
follows that Hcp(o) ()|| < ||z for all € K. Therefore ¢ extends by continuity
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to a homomorphism
o1 K(12(@)) — C*(G, Co(G), a).

The homomorphism ¢ is surjective because it has dense range, and it is injective
because K (I?(G)) is simple.

It follows that C*(G, Cy(G), ) is simple. The natural map C* (G, Cy(G), ) —
C*(G, Cy(G), «) is then necessarily an isomorphism.

We point out that in Example 10.8, the full and reduced crossed products are
the same even if the group is not amenable.

Example 10.9. Fix n € Z, and consider the action of G = Z/nZ on S! generated
by rotation by 27 /n, that is, the homeomorphism h(¢) = e2™/"( for ¢ € S*. (This
action is from Example 2.16.)

We describe what to expect. Every point in S! has a closed invariant neighbor-
hood which is equivariantly homeomorphic to G x I for some closed interval I C R,
with the translation action on G and the trivial action on I. This leads to quo-
tients of C*(G, S, h) isomorphic to M,, ® C(I). (See Theorem 8.32 and the general
version of Example 10.8.) Since S* itself is not such a product, one does not imme-
diately get an isomorphism C*(G, S*, h) = M,, @ C(Y) for any Y. Instead, one gets
the section algebra of a locally trivial bundle over Y with fiber M,,. However, the
appropriate space Y is the orbit space S1/G = S, and all locally trivial bundles
over S with fiber M,, are in fact trivial. Thus, one gets C*(G, S*, h) = C(S1, M,,)
after all.

We carry out the details. Let o € Aut(C(S')) be the order n automorphism
given by a(f) = foh~! for f € C(S"). Thus, a(f)(C) = f(e=2™/7¢) for ¢ € S*.
Let s € M,, be the shift unitary

0 0 - 001

10 - - 0 0 O

01 --- --- 0 0 0
S =

00 --- --- 100

00 --- --- 010

The key computation, which we leave to the reader, is
(10.2) sdiag(A1, Ao, Az, ..oy Ap) 8* = diag(An, A1, A2y ooy A1)
for A, Ao, ..., A, € C. Set

B={feC(0,1], My,): f(0) =sf(1)s*}.

Define @q: C(S') — B by sending f € C(S') to the continuously varying diagonal
matrix

SOO(f)(t) — diag(f(627rit/n)’ f(€271'i(t+1)/n)7 e f(627ri(t+n71)/n)).

(For fixed t, the diagonal entries are obtained by evaluating f at the points in the
orbit of €?7/™) The diagonal entries of f(0) are gotten from those of f(1) by a



106 N. CHRISTOPHER PHILLIPS

forwards cyclic shift, so ¢o(f) really is in B. For the same reason, we get

wo(a(f))(t) = diag(f (e2m(t 1) /n) F(eEmmy L f(e27ri(t+n—2)/n))
= spo(f)(t)s”

Now let v € C([0,1], M,,) be the constant function with value s. Then v € B.
The calculation just done implies that

©o (Ofk(f)) = vFo(f)v*

for 0 < k <n—1. Also clearly v = 1. We write the group elements as 0, 1, ..., n—
1, by abuse of notation treating them as integers when convenient. The universal
property of the crossed product therefore implies that there is a homomorphism
¢: C*(G,S*,h) — B such that ¢|c(s1) = @o and (with u, as in Notation 8.7)
ap(uk):vl~C for0<k<n-1.

We prove directly that ¢ is bijective. By Corollary 9.14, we can rewrite ¢ as the
map C(Z/nZ x S') — B given by

n—1

H =Y eolf(k,—
k=0

Injectivity now reduces to the fact that if ag,aq,...,a,-1 € M, are diagonal ma-
trices, and ZZ;& aps® =0, then ag = a3 = - = ap—1 = 0. To see this explicitly,
suppose that for k =0,1,...,n — 1, we have

ay, = diag(A", A A®)

with A A% AF) € €. Then

>\§O) )\gn—l) )\gn—Q) o )\gl)
T BN T
)\gn.—l) /\’Sln.—Q) )\%n.—?)) o )\5740)

For surjectivity, let a € B, and write

ara(t) aia(t) -+ aya(t)
aza(t) asa(t) - azn(t)
a(t) = i . ) .
an,l(t) an,Z(t) e a”ﬂ”ﬂ(t)
with a; € C([0,1]) for 1 < j,k < n. The condition a € B implies that, taking
the indices mod n in {1,2,...,n}, we have a; (1) = a;y1,,+1(0) for all j and k.

Therefore the formula
f(l’ e2m’(t+j)/n) = aj+1,j+17l(t)

fort € [0,1],j =1,2,...,n,and I = 0,1,...,n — 1, with j + 1 — [ taken mod n
in {1,2,...,n}, gives a well defined element of C(Z/nZ x S'). One checks that
p(f) = a
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It remains to prove that B = C(S', M,,). Since U(M,,) is connected, there is a
unitary path ¢ — s;, defined for ¢ € [0, 1], such that s = 1 and s; = s. Define
P¥: C(SY, M,) — B by ¥(f)(t) = s;f(e2™)s,. For f € C(S, M,,), we have

V(f)A) =s"f(1)s = s™p(f)(0)s,
so (f) really is in B. It is easily checked that ¢ is bijective.

Example 10.10. Let X = S" = {z € R"™!: |lz|2 = 1}, and let Z/2Z act by
sending the nontrivial group element to the order 2 homeomorphism = — —z.
(This is Example 2.28.) The “local structure” of the crossed product C*(Z/2Z, X)
is the same as in Example 10.9. However, for n > 2 the resulting bundle is no
longer trivial. The crossed product is isomorphic to the section algebra of a locally
trivial but nontrivial bundle over the real projective space RP™ = S™/(Z/2Z) with
fiber Ms. See Proposition 4.15 of [292].

The bundles one gets from free proper actions are, however, often stably trivial.
Theorem 14 of [98] implies that the bundle always comes from a bundle of Hilbert
spaces, and, if the algebra is separable, Theorem 10.7.15 of [60] implies that the
Dixmier-Douady invariant is zero. If the fibers are infinite dimensional, and if the
quotient space has finite covering dimension or if the map X — X/G is locally
trivial, then the crossed product is K ® Co(X/G). See Theorems 10.8.4 and 10.8.8
of [60], and Corollary 15 of [98]. Proposition 2.52 of [292] gives a fairly explicit
description of the crossed product by a free action of Z/27Z on a compact space X,
although the question of triviality of the resulting bundle is not addressed.

Example 10.11. Let X = Z/nZ, and let Z act on X by translation. We will
give a direct proof that that C*(Z, X) = M, ® C(S*). This is a special case of
Example 2.12. In the general case (see Theorem 10.13 below), it turns out that

C*(G,G/H) = K(L*(G/H)) ® C*(H).

There is no twisting.

Identify Z/nZ with {1,2,...,n}. (We start at 1 instead of 0 to be consistent
with common matrix unit notation.) Let a € Aut(C(Z/nZ)) be a(f)(k) = f(k—1),
with the argument taken mod n in {1,2,...,n}. (Equivalently, a(X{x}) = X{x+1}>
with &k + 1 taken to be 1 when k = n.) In C(S') let 2 be the function z(¢) = ¢ for
all ¢. In M,(C(S')) = M,, ® C(S'), abbreviate e;r ® 1 to e;, and let v be the
unitary

00 -+ --- 0 0 2z
10 - --- 0 0 0
01 -«- - 0 0 0
v =
o0 --- --- 1 00
00 --- --- 010

(This unitary differs from the unitary s in Example 10.9 only in that here the upper
right corner entry is z instead of 1.)

Define ¢ : C(Z/nZ) — M, @ C(S") by @o(x{r}) = ex for k=1,2,...,n, and
extending linearly. Then one checks that vpo(f)v* = po(a(f)) for all f € C(Z/nZ).
Letting v be the standard unitary in C*(Z,Z/nZ) from the generator 1 € Z (called
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uy in Notation 8.7), there is therefore a homomorphism ¢: C*(Z,Z/nZ) — M, ®
C(S") such that ¢|c(z/nz) = ¢o and @(u) = v. We claim that ¢ is an isomorphism.

The following description of M,, ® C(S') will be useful: it is the universal
unital C*-algebra generated by a system (ejr)i1<jr<n of matrix units such that
Z;L:1 ej; = 1 and a central unitary y. The generators e; j are the matrix units we
have already used, and the central unitary is 1 ® z. (Proof: Exercise 10.12 below.)

To prove that ¢ is surjective, it suffices to prove that its image contains 1 ® z

and contains e; ;, for j,k =1,2,...,n. The image contains 1® z because v" = 1®z.
For j = 1,2,...,n, the image contains e;; = po(xy;3). The image therefore also
contains ej41,; = €j41,j41ve;; for j = 1,2,...,n — 1. It now easily follows that

the image contains e; j for all j and k.

To prove injectivity, we claim that it suffices to prove that whenever A is a
unital C*-algebra, ¢o: C(Z/nZ) — A is a unital homomorphism, and w € A is
a unitary such that wyg(f)w* = Yo(a(f)) for all f € C(Z/nZ), then there is a
homomorphism ~: M, ® C(S') — A such that yopy = ¥ and y(v) = w. To prove
the claim, we use the universal property of the crossed product (Theorem 8.21).
Take A = C*(Z,Z/n7Z), let 1)y be the inclusion of C(Z/nZ) in C*(Z,Z/nZ), and let
w = u (the standard unitary in C*(Z,Z/nZ)). Let v: M, ® C(S') — C*(Z,Z/nZ)
be the corresponding homomorphism. Then

vyop: C(Z,Z/nZ) — C*(Z,Z/nZ)
satisfies (yop)(a) = a for a € C(Z/nZ) and (yop)(u) = u. So yop = ide+(z,2/nz)-
Therefore ¢ is injective.

It remains to construct v, and it suffices to define v on the generators. For
J=12,...,n, we define f;; = ¥o(xy;3). For 1 <k < j < n, we define f;; =
fjvjwj*kfkyk and fp; = ]f'jk. One easily checks that (f;r)i<jk<n is a system of
matrix units such that Z;.Z:l fi; =1, and that w™ is a unitary which commutes
with f; for j,k=1,2,...,n. Accordingly, we may define v by v(1 ® z) = w™ and
v(ejk) = fix for j,k =1,2,...,n. It is obvious that v o ¢y = 1. To compute
(v o p)(u), we observe that

n—1
QD(U) =0 = (1 ® Z)elm + Z €j+1,5-
j=1
Therefore, using the definitions of the f; for j # k at the third step and the
relations fj41 j11 = wfjjw* for j=1,2,...,n—1and f1; =w "D f, w" ! at
the fourth step, we get
n—1
(vo@)(u) = Y(v) = " frn+ I fisrs
j=1
n—1 n—1
=w" fraw "D fo o+ Z fiv1 1wl = wfnn + Z wfj;=w.
j=1 j=1

This completes the proof.

Exercise 10.12. Prove the description of M, ® C(S') in terms of generators and
relations used in Example 10.11.

The relations are essentially the ones which define M,, ®max C(S1).
The outcome of Example 10.11 holds much more generally.
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Theorem 10.13 (Corollary 2.10 of [99]; Theorem 4.30 of [292]). Let G be a locally
compact group, let H C G be a closed subgroup, and let G act on G/H by trans-
lation. (This is Example 2.12.) Assume that there is a measurable cross section
from G/H to G. Then

C*(G,G/H) = K(L*(G/H)) ® C*(H).

There is no twisting.
Several generalizations are worth mentioning.

Theorem 10.14 (Corollary 2.8 of [99]). Let G be a locally compact group, let
H C G be a closed subgroup, and let G act on G/H by translation. Assume
that there is a measurable cross section from G/H to G. Let G also act on a
C*-algebra A. Then, using the diagonal action,

C*(G, Co(G/H) ® A) = K(L*(G/H)) ® C*(H, A).

Theorem 10.15 (Theorem 4.1 of [99]). Let G be a locally compact group, let
H C G be a closed subgroup, and let G act on G/H by translation. Let X be a
locally compact G-space such that there is a surjective continuous equivariant map
p: X — G/H. Assume that there is a measurable cross section from G/H to G.
Let Y be the inverse image under p of the point H € G/H. Then

C*(G,X)=2 K(L*(G/H))® C*(H,Y).

Example 10.16. The following example (not done in detail here) combines the
features of Examples 10.9 and 10.11.

Regard the action of Example 10.9 as an action of Z rather than of Z/nZ. (This
action of Z also appears in Example 2.16, where it is called a rational rotation.)
That is, fix n € Z~g, and consider the action of G = Z on S' generated by rotation
by 27 /n, equivalently, generated by the homeomorphism h(¢) = e2™/"¢ for ¢ € S*.

The crossed product is a special case of what is known as a rational rotation
algebra. (The general case uses generating rotations by 27k/n, not just 27 /n.) The
heuristic argument of Example 10.9 and the outcome of Example 10.11 suggest that
the crossed product should be the section algebra of a locally trivial bundle over
St with fiber C(St, M,,). It is not hard to show that this is in fact what happens.
(Exercise: Do it.) The resulting bundle is not trivial. In fact, it can be easily
seen that it is also the section algebra of a locally trivial bundle over S* x S' with
fiber M,,. This bundle is also nontrivial. The bundles for general rational rotation
algebras are computed in [116]. (See Example 8.46 of [292].)

Remark 10.17. In Examples 10.9 and 10.11, we have seen two sources of ideals in
a reduced crossed product CF(G, A, «): invariant ideals in A, and group elements
which act trivially on A. There is a theorem due to Gootman and Rosenberg which
gives a description of the primitive ideals of any crossed product C*(G, A) with G
amenable, and which, very roughly, says that they all come from some combination
of these two sources. (One does not even need to restrict to discrete groups.) To be
a little more precise, every primitive ideal in C*(G, A) is “induced” from an ideal .J
in a crossed product by the stabilizer subgroup of some primitive ideal P of A, with
J closely related to P. The theorem is Theorem 8.21 of [292]; see Definition 8.18
of [292] for the terminology. The proof of the Gootman-Rosenberg Theorem is
quite long. (Starting from about the same assumed background as these notes, it
occupies a large part of the book [292].)
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Example 10.18. Take X = S! = {¢ € C: |¢| = 1}, and let Z/2Z act by sending
the nontrivial group element to the order two homeomorphism ¢ ~ (. (This is
Example 2.29.) Let a € Aut(C(S!)) be the corresponding automorphism. We
compute the crossed product, but we first describe what to expect. By considering
Theorem 8.32 and Examples 10.1 and 10.9, we should expect that the points 1 and
—1 contribute quotients isomorphic to C @ C, and that for { # +£1, the pair of
points (C ,Z) contributes a quotient isomorphic to Ms. We will in fact show that
C*(Z/2Z, X) is isomorphic to the C*-algebra
B={feC([-1,1], Ma): f(1) and f(—1) are diagonal matrices}.

First, let Cy C M be the subalgebra consisting of all matrices of the form (2 ’;)

with A\, € C. (The reader should check that Cy is actually a subalgebra.) Then
define

C ={f:[-1,1] = Ms: f is continuous and f(1), f(—1) € Co}.
Let v € C be the constant function v(t) = (9}) for all ¢ € [-1, 1]. Define
©o: C(SY) — C by
_(fE+ivVI—¢2) 0
eotne = (S )

for f € C(S') and t € [—1, 1]. One checks that the conditions at +1 for membership
in C are satisfied. Moreover, v? = 1 and voo(f)v* = pola(f)) for f € C(S1).
Therefore there is a homomorphism ¢: C*(Z/2Z, X) — C such that ¢|c(s1) = @0
and ¢ sends the standard unitary v in C*(Z/2Z, X) to v. It is given by the formula

folt+ivI—12) fi(t+iv1—12)
filt —ivI—12)  fo(t —iv1—12)

for f1, fo € C(S') and t € [-1, 1].
We claim that ¢ is an isomorphism. Since

C*(Z)2Z, X) = {fo + fiu: fi, fa € C(Sl)}
by Corollary 9.14, it is easy to check injectivity. For surjectivity, let

fana() ara(t)
““)—(ali(t) al;(t))

define an element ¢ € C. Then

o(fo+ fru)(t) = <

(103) al,l(—l) = agyz(—l) and (12’1(—1) = alyg(—l),
and
(104) a171(1) = a272(1) and a271(1) = al,g(l).
Now set
_ Jara(Re(Q)) Im(¢) = 0
fol0)= {az,z(Re(C)) () <0
and

 fms(Re(©)) ()
)= {a2,1<Re<c>> ()

IN IV
o o
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for ¢ € S*. The relations (10.3) and (10.4) ensure that fo and f; are well defined
at £1, and are continuous. One easily checks that ¢(fy + fiu) = a. This proves
surjectivity.

The algebra C' is not quite what was promised. Set

1 1
_[ vz V2
VZ V2
which is a unitary in Ms. Then the required isomorphism v : C*(Z/2Z, X) — B is
given by ¥(a)(t) = we(a)(t)w*. (Check this!)

In this example, one choice of matrix units in Ms was convenient for the free
orbits, while another choice was convenient for the fixed points. It seemed better
to compute everything in terms of the choice convenient for the free orbits, and
convert afterwards.

Exercise 10.19. Let Z/2Z act on [—1, 1] via & +— —z. Compute the crossed
product.

Exercise 10.20. Let Z/27 act on
S ={(z1,29, ..., Tny1): 23 + 25+ -+ a5,y =1}

via (z1,22, ..., Tn, Tni1) — (21, Ta, ..., Tp, —Tp4t1). Compute the crossed prod-
uct.

In [78], there is a detailed analysis of the structure of crossed products of compact
spaces by compact groups, in terms of sections of suitable bundles of C*-algebras,
usually not locally trivial but locally trivial over suitable subspaces of the base
space.

The crossed products and fixed point algebras of the actions of finite subgroups
of SLy(Z) (discussed in Example 3.12) on the rational rotation algebras (take 6 € Q
in Example 3.12; the case # = 0 is the action on S! x S' in Example 2.30) have been
computed in Theorems 6.1, 1.2, and 1.3 of [31] (for Z/2Z), in the theorem at the
end of Section 1 of [84] (for Z/3Z), in Theorem 6.2.1 of [83] (for Z/4Z), and in the
theorem at the end of Section 1 of [85] (for Z/6Z). (For Z/3Z and Z/6Z, the proofs
are only given for the corresponding computation of the fixed point algebras.) The
rational rotation algebras are not commutative, but they are close to commutative,
being section algebras of locally trivial bundles over S x S' whose fiber is a single
matrix algebra.

Example 10.21. We compute the crossed product by one of the specific examples
at the end of Example 3.25, namely the action of Z/2Z on the 2°° UHF algebra A
generated by @ -, Ad ((1, o ) We simply write « for the automorphism given by
the nontrivial group element. (In Example 13.6, this action is shown to have the
Rokhlin property.)

Write A = lim Msn, with maps ¢,: Mon — Mantr given by a — (&9) for
a € My and n € Z>g. Define unitaries z, € My~ inductively by zp = 1 and
Zn4l = (Z(}‘ _gn ) (In tensor product notation, and with an appropriate choice
of isomorphism Myn ® My — Man+1, these are p,(a) = a ® 1y, and zp,41 =
2 (59))

Let

@i C* ()22, Myn, Ad(2,)) = C*(Z/2Z, Mynsr, Ad(2,11))



112 N. CHRISTOPHER PHILLIPS

be the corresponding map on the crossed products. By Theorem 8.34, the crossed
product C*(Z/2Z, A, «) is the direct limit of the resulting direct system.

In the crossed product C*(Z/2Z, Ma~, Ad(z,)), let u, be the standard unitary
corresponding to the nontrivial group element. (This notation is not entirely con-
sistent with Notation 8.7.) From the discussion at the end of Example 10.4, we get
the isomorphisms

on: C*(Z/2Z, Man, Ad(z,)) = Man & Man
given by a + bu,, — (a + bz,, a — bz,). We now need a map
U Man @ Man — Mayni1 @ Maynia
which makes the following diagram commute:

C*(Z)2Z, Man, Ad(z,)) —2"—  Man & Mon

- [

C* (Z/ZZ, Mon+1, Ad(zn+1)) % Mon+1 & Mon+1.
That is, ¥, sends
on(a+buy) = (a+ bz, a — bzy)
to

Ont1(pn(a) + @n(b)unt1)
(GGG 2)-6)-CE %)
((a +0bzn ) obzn> | (a —Obzn ) +Obzn>> .
o= (0 0 (1))
for b,c € Man.

Those familiar with Bratteli diagrams will now be able to write down the Bratteli
diagram for the crossed product. Here, we give a direct identification of the direct
limit. Inductively define unitaries x,,,y, € Man by o = yo = 1 and

Tnt1 = (0 yn> and - yng1 = (xn yo)

for n € Z>¢. Then define A,,: Mon — Man @ Man by A, (a) = (znazl, ypay)) for
a € Man, and define p,: Maon & Mon — Mon+1 by

_ (xrbxy 0
tn (b ) = ( 0 yi:cyn)
for b,c € Man. Then one checks that pu, o A, = ¢, and A, 41 0 py, = 9, for all n.
It follows that the direct limit of the system

So we take

CHC LS My My 25 My My 22 My @ Mg 2% -+,

which is the crossed product C*(Z/2Z, A, «), is isomorphic to the direct limit of
the system

C 2% My 25 My 225 Mg 2
which is the original algebra A.
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It follows from Lemma 3.26 that the action in Example 10.21 is not inner. The
result of the computation of the crossed product implies this as well. Indeed, the
crossed product is simple, so comparison with Example 10.4 shows that the action
is not inner.

The theorem of Gootman and Rosenberg described in Remark 10.17 gives no
information here.

The fact that we got the same algebra back in Example 10.21 is somewhat special,
but the general principle of the computation is much more generally applicable. We
sketch a slightly different example in which we do not get the same algebra back.

Example 10.22. Let « the action of Z/27 on the 3°° UHF algebra A generated
by

oo 1 0 O

QAdfo 1 0

n=1 0 0 -1
for n € Z~p and a € M3n. Again, we also write « for the automorphism given by
the nontrivial group element. (This action has the tracial Rokhlin property but not
the Rokhlin property. See Remark 14.9 and Example 13.23.)

Write A = li%mMgn, with maps ¢, : M3n — Msznt+1 given by a — diag(a, a,a) for

n € Z>o and a € Msn». Define unitaries z, € M3~ inductively by zp = 1 and

zn O 0
Zn4+1 = 0 Zn 0
0 0 -z,

Let
@n: C*(Z/2Z, M3n, Ad(zy,)) = C*(Z/2Z, M3n+1, Ad(2p41))
be the corresponding map on the crossed products, so that C*(Z/2Z, A, «) is the
direct limit of the resulting direct system. Let u, € C* (Z/QZ, Mszn, Ad(zn)) be
the standard unitary, as in Example 10.21. The isomorphism
Op - C* (Z/?Z, Mgn, Ad(Zn)) — Mgn D Mgn
is still a + bu,, — (a + bz, a — bz,). Using calculations similar to those of Exam-
ple 10.21, one sees that the map
wn: M3n @ M3n — M3n+1 EB M3n+1
should now be given by
wn(bv C) = (diag(ba b, C)a diag(c, ) b)) .

Again, one can immediately write down the Bratteli diagram for the crossed
product. Instead, we directly calculate the (unordered) Ky-group of the crossed
product. It is the direct limit @KO(M?,W, @ M3n), with the maps being

(Un)s: Ko(Mzn & Msn) — Ko(Mzn+1 @ Man+a).

The calculation is based on the observation that the map (v,,).: Z? — Z? is given
by the matrix (¢,)« = (% 1), which has eigenvector (1, —1) with eigenvalue 1 and
eigenvector (1,1) with eigenvalue 3. (Usually one will not be so lucky: the calcula-
tions will be messier.)

We claim that we can identify Ko (C*(Z/2Z, A, «)) with

H={(kl)eZeoZ[t] : k+i1c2-Z[1]},
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and with the class [1] being sent to (0,1). For n € Zx, define f,: Z? - Z® Z [1]

by
fn(rys) = <r — s, 7;)

for r, s € Z. One checks immediately that f,, = fnt1 © (¢n)«. Therefore the group
homomorphisms f,, combine to yield a homomorphism f: @ZQ — 7 D7 [%},
whose range is easily seen to be in H. This homomorphism is injective because f,
is injective for all n € Z>¢.

It remains only to show that if (r,s) € H then there exist n € Z>o and k,l € Z
such that f,,(k,l) = (r,s). Choose n € Z>( such that 3"s € Z. Set

3"s+r 3"s—r

5 and | = g

It is easy to see that either r € 2Z and s € 2-7Z [%] orr ¢2Z and s ¢ 2-Z [%},
and that in either case k,l € Z. Thus (k,l) € Z?, and clearly f,(k,l) = (r,s). This
completes the calculation.

k

The following two exercises are much harder than most of the exercises in these
notes. The first combines the methods of Example 10.18 (see Exercise 10.20) and
the methods of Example 10.22, and the second uses Example 10.10 in place of
Exercise 10.20. The computations asked for in the exercises are an important part
of Propositions 4.6 and 4.2 of [209], which describe the properties of two significant
examples of crossed products. Both actions are shown in [209] to have the tracial
Rokhlin property, but do not have the Rokhlin property.

Exercise 10.23. Let m € Z~g. Define h: S?™ — S?™ by
h(x(),xla LY 7x2m) = (_.T07.’171, cv ey m2m)
for x = (z0,21,...,T2m) € S?™, and let B € Aut(C(S*™)) be the corresponding
automorphism of order 2. For r € Zso and b € S?™, define ,.,: C(S?*™) —
May1 ® C(S*™) by
brp(f)(x) = diag(f(x), f(b), F(R(b)), F(b), F(R(D)), ... F(b), F(R(D)))

for x € S*™, where f(b) and f(h(b)) each occur 7 times. Choose a dense sequence
((n))nez., in S*™, such that no point z, is a fixed point of h, and choose a
sequence (r(n))nez., of strictly positive integers. Set

s(n) = [2r(1) + 1][2r(2) + 1] - - - [2r(n) + 1],
and set A, = M,y ® C(S*™), which, when appropriate, we think of as
Map(1)41 @ Map2)41 @ -+ @ Map(n)41 @ C(S*™).

Define ¢y, : Ap—1 — Ay by @5 =idm,,_,) ® ¥r(n), z(n)- Then set A = @An.
For r € Z~¢ define a unitary w,. € Ma,;1 by

. 0 1 01 0 1
wr—dlag(l7 (1 0), (1 0),..., (1 0))
Then define an automorphism «,, € Aut(A,) of order 2 by

oy = Ad(wr(l) ® Wr(2) Q- & wr(n)) ® B.

One checks that ¢, o ap—1 = ay 0 v, so that the automorphisms a,, define an
automorphism o € Aut(A) of order 2.



CROSSED PRODUCT C*-ALGEBRAS 115

Compute the crossed product C*(Z/27Z, A, ), at least sufficiently well to deter-
mine its K-theory.

Exercise 10.24. Repeat Exercise 10.23, with just one change: the formula for A is
now h(z) = —x for all z € S?™. The algebras in the direct system for the crossed
product are harder to describe, since they are section algebras of nontrivial bundles
(see Example 10.10), but the full description is not needed in order to compute the
K-theory of the resulting direct limit.

Example 10.25. Let § € R. Recall from Example 3.10 that the rotation algebra Ag
is the universal C*-algebra generated by unitaries u and v satisfying vu = e uuv.

Let hg: S' — S be the homeomorphism hg(¢) = e*™(. (Recall Example 2.16.)
We claim that there is an isomorphism ¢: Ay — C*(Z, S, hy) which sends u to
the standard unitary u; in the crossed product (see Notation 8.7), and sends v to
the function z € C(S!) defined by z(¢) = ¢ for all ¢ € S'. (In Corollary 8.23, the
unitary u; was called u, so we are essentially sending u to u.)

The proof of the claim is by comparison of universal properties. First, one checks
that zu; = €>™%u; 2, so at least there is a homomorphism ¢ with the properties
claimed. Next, define a homomorphism vq: C(S') — Ag by 1o(f) = f(v) (contin-
uous functional calculus) for f € C(S'). For n € Z, we have, using vu = > %up
at the second step,

uwo(zn)u* _ (’LL’UU*)H _ e—27rin9vn — wO (e—QWinGzn) _ wO (Zn o h;l)

Since the functions 2" span a dense subspace of C(S1), it follows that ut(f)u* =
Yo (f o h;l) for all f € C(S'). By Corollary 8.23, there is a homomorphism
V: C*(Z,S*, hg) — Ag such that ¥|c(s1) = 1o and ¥(uy) = u.

We have (¢ o ¢)(u) = u and (¢ o p)(v) = v. Since u and v generate Ay, we
conclude that ¢ o ¢ = idy,. Similarly, (¢ o ¢)(z) = z and (¢ o ¥)(u1) = uy, the
elements z and u; generate C*(Z, S*, hg) (since z generates C(S')), and therefore
o =idos(z,51 hy)-

We will see below that for § € R\ Q, the algebra C*(Z, S*, hy) is simple. (See
Theorems 15.10 and 15.12 below, and also Proposition 2.56 of [292].) On the other
hand, if 6 = p/q in lowest terms, with ¢ > 0, then Ay turns out to be the section
algebra of a locally trivial bundle over S! x S with fiber M,. (See Example 8.46
of [292].) The bundles have trivial Dixmier-Douady class, so are stably trivial, but
they are not trivial. They are analyzed in [116].

We finish this section with several further results on crossed products by tensor
products of actions, given as exercises. Remark 10.2 and Exercise 10.3 can be
obtained from Exercise 10.26 and Exercise 10.27 by taking H = G and restricting
to the diagonal subgroup {(g,9): g € G} C G x G, or (for Exercise 10.3) taking H
to be trivial.

Exercise 10.26. Let G and H be topological groups, let A and B be C*-algebras,
and let a: G — Aut(A) and 8: H — Aut(B) be actions of G and H on A and B.

(1) Prove that there is a unique action v: Gx H — Aut(A®max B) such that for
allge G,he H,ac A, and b € B, we have v, p)(a ®b) = ay(a) @ Br(b).
(2) Prove that there is a unique action p: G x H — Aut(A®min B) such that for
allge G,he H,ac A, and b € B, we have p(, p)(a®b) = ay(a) @ Br(b).
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When G and H are locally compact, the full crossed product in Exercise 10.26(1)
and the reduced crossed product in Exercise 10.26(2) are

C*(GvAa Oé) ®max O*(HaBaﬁ) and C:(G,A,Oé) ®Hlill C:(H7B7B)
See Exercise 10.27 and Exercise 10.28 for the case in which G and H are discrete.

Exercise 10.27. Let G and H be discrete groups, let A and B be C*-algebras,
and let a: G — Aut(A) and 8: H — Aut(B) be actions of G and H on A and B.
Let v: G x H — Aut(A ®max B) be the action of Exercise 10.26(1), satisfying
Yig,h)(a®b) = ag(a) ® Br(b) for g G, h€ H,a € A, and b € B. Prove that

C*(’Ya G X H’ A®max B) g C*(G’A7a) ®max C*(H7B7/B)'

Exercise 10.28. Let G and H be discrete groups, let a: G — Aut(A) and 5: H —
Aut(B) be as in Exercise 10.27, and let p: G x H — Aut(A ®muin B) be the action of
Exercise 10.26(2), satisfying v(4,n)(a ®b) = ay4(a) @ pp(b) for g€ G, h € H, a € A,
and b € B. Prove that

Cip, G x H, A@min B) = C; (G, A, @) @min C7 (H, B, ).

Exercise 10.29. Let GG, X, and the action of G on X be as in Example 2.24.
(That is, X is the group [~ Z/k,Z, and G is the subgroup @, , Z/k,Z, taken
as discrete and acting by translation.) Prove that C*(G, X) =2 @, , Mk, .

If there were only finitely many factors in the product, this computation would
follow from Exercise 10.27. With infinitely many factors, one must take a direct
limit.

We mention some explicit computations of crossed products that are found else-
where: VIIL4.1 of [52] (crossed products of the Cantor set by odometer actions);
Section VIIL9 of [52] (the crossed product of S' = R/Z by the group Z[3] C R
regarded as a discrete group and acting by translation, and also the crossed product
of a particular Bunce-Deddens algebra by a particular action of Z/27Z).

Part 3. Some Structure Theory for Crossed Products by Finite Groups
11. INTRODUCTORY REMARKS ON THE STRUCTURE OF C*-ALGEBRAS

Our main interest is in structural results for crossed products. We want sim-
plicity, but we really want much more than that. We particularly want theorems
which show that certain crossed products are in classes of C*-algebras known to
be covered by the Elliott classification program, so that the crossed product can
be identified up to isomorphism by computing its K-theory and other invariants.
In many cases, one settles for related weaker structural results, such as stable rank
one, real rank zero, order on traces determined by projections, strict comparison
of positive elements, or Z-stability. Some results with conclusions of this sort are
stated in these notes, but mostly without proof.

We provide definitions of some of these conditions here: stable rank one, real
rank zero, order on traces determined by projections, and property (SP). (Strict
comparison of positive elements will be discussed later. See Definition 21.1.) We
also define tracial rank zero. We state various results relating these conditions, and
prove some of them. For use in these proofs, and some later proofs, we prove an
assortment of standard lemmas on Murray-von Neumann equivalence of projections.
The proofs mostly consist of repeated application of continuous functional calculus.
Many of these results are in Section 2.5 of [152].
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Definition 11.1. Let A be a unital C*-algebra. We say that A has stable rank
one if the invertible elements in A are dense in A. If A is not unital, we say that
A has stable rank one if its unitization A% does.

The (topological) stable rank tsr(A) of a general C*-algebra A (not necessarily
unital) was introduced in [241]. (See Definition 1.4 there.) It can take arbitrary
values in Z~oU{oco}. Definition 11.1 gives the value most relevant for classification,
since, apart from the purely infinite case, almost all known classification results
apply only to C*-algebras with stable rank one. For further information, see Section
V.3.1 of [24] (without proofs), and for the case of stable rank one, including some
consequences, see Sections 3.1 and 3.2 of [152]. The topological stable rank of C'(X)
is related to the covering dimension of X, which is discussed after Corollary 16.2.

It is clear that M,, has stable rank one.

Theorem 11.2. Let A be a C*-algebra. Then the following are equivalent:

(1) A has stable rank one.

(2) There is n € Zsq such that M, (A) has stable rank one.
(3) For all n € Z~q, the algebra M, (A) has stable rank one.
(4) K ® A has stable rank one.

Proof. See Theorem 3.3 and Theorem 3.6 of [241]. (Theorem 3.3 actually only does
the unital case. To get the nonunital case, one needs Theorem 4.4 and Theorem
4.11 of [241].) O

Usually the stable rank of M,,(A) is smaller than that of A. (There is an exact
formula. See Theorem 6.1 of [241].) It is easily checked that C'(X) has stable rank
one if X is the Cantor set, [0, 1], or S*. In fact, C'(X) has stable rank one if and only
if the covering dimension of X is at most one. More generally, by Proposition 1.7
of [241], the algebra C'(X) has stable rank n if and only if the covering dimension
of X is 2n—1 or 2n. (We will say more about covering dimension near the beginning
of Section 16. The formal definition is Definition 16.7.)

Definition 11.3. Let A be a C*-algebra. We say that A has real rank zero if the
selfadjoint elements with finite spectrum are dense in the selfadjoint part of A.

Again, this is the bottom case of a rank which takes arbitrary values in Z>oU{co}.
The general version is a kind of generalization of having the invertible selfadjoint
elements be dense in the selfadjoint part of A. See the beginning of Section 1 of [35].
The case real rank zero is discussed in Section V.7 of [52], with various examples,
although one of the basic results (A has real rank zero if and only if M,,(A) has real
rank zero) is not explicitly stated. For further information, see Section V.3.2 of [24]
(without proofs), and for the case of real rank zero, including some consequences,
see Sections 3.1 and 3.2 of [152].

The following C*-algebras all have real rank zero: M,, C(X) when X is the
Cantor set, K (H), all AF algebras, all von Neumann algebras, and all purely infinite
simple C*-algebras. (See Theorem V.7.4 of [52] for the purely infinite simple case.)

The real rank of C(X) is the covering dimension of X. (See Proposition 1.1
of [35].) The real rank of M, (C(X)) is usually smaller than that of C'(X) (again,
there is an exact formula; see Corollary 3.2 of [18]), but the behavior is unknown
when C(X) is replaced by a general C*-algebra A.

Property (SP) is a condition which is considerably weaker than real rank zero,
but which will play an important role later.



118 N. CHRISTOPHER PHILLIPS

Definition 11.4. Let A be a C*-algebra. Then A is said to have property (SP) if
every nonzero hereditary subalgebra in A contains a nonzero projection.

It is fairly easy to show that real rank zero implies property (SP). See Proposi-
tion 11.13 below. The converse is known to be false, even in the simple case. The
examples Ap and As in [26] are counterexamples.

We state here some results about simple C*-algebras with property (SP) which
will be needed later. They involve Murray-von Neumann equivalence of projections,
so we start by giving our notation for Murray-von Neumann equivalence and proving
some standard results. Murray-von Neumann equivalence will also often be needed
later.

Notation 11.5. Let A be a C*-algebra, and let p,q € A be projections. We write
p ~ ¢ to mean that p and ¢ are Murray-von Neumann equivalent in A, that is, there
exists v € A such that v*v = p and vv* = q. We write p 3 ¢ if p is Murray-von
Neumann equivalent to a subprojection of q.

There are two other commonly used equivalence relations on projections, namely
homotopy and unitary equivalence, so one needs to be careful with the meaning of
p ~ q when reading papers. There is also a relation on positive elements, used in
connection with the Cuntz semigroup, which is commonly written with the same
symbol. (See Definition 18.1(2) below.) This relation does not always agree with
Murray-von Neumann equivalence on projections. However, the most common
meaning of ~ is Murray-von Neumann equivalence.

We give several standard functional calculus lemmas for working with projec-
tions. Proofs are included for the convenience of the reader.

For convenience, we recall polar decomposition in unital C*-algebras.

Lemma 11.6. Let A be a unital C*-algebra, and let a € A be invertible. Then
a(a*a)~'/? and (aa*)~'/%a are unitary.

Proof. We only prove the first; the second is similar. Set u = a(a*a)~'/2. Then
uwu = (a*a)"?a*a(a*a) /2 =1
and
wu* = a(a*a)"Y?(a*a)"2%a* = a(a*a) "t = 1.
Thus w is unitary. O

The following lemma is contained in Proposition 4.6.6 of [23]. See Chapter 4
of [23] for much other related material.

Lemma 11.7. Let A be a C*-algebra, and let p,q € A be projections such that
[p—q| <1. Thenp~gq.

In fact, p is unitarily equivalent to ¢: the unitary u in the proof satisfies u*pu = q.

Proof of Lemma 11.7. Define
a=02p—-1)(2¢—1)+1€ A",
Using ||1 — 2p|| < 1 at the third step, we get
lla = 2|l = l[4pg — 2p — 2q|| < 2|1 = 2p]|[lp — gl < 2.

Therefore a is invertible. Then u = a(a*a)~'/? is unitary by Lemma 11.6.
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We have
pa=p(2¢—1)+p=2pg=(2p—1)qg+q=aq.
Taking adjoints gives
a*p =qa”.
Combining these equations gives

(aa™)q = q(aa™).

Therefore
(aa*)"Y2q = q(aa*)~Y/2.
So
uq = a(aa*)_l/Qq = aq(aa*)_l/2 = pa(aa*)_1/2 = pu.
Now v = ug satisfies v*v = ¢ and vv* = p. (|

Lemma 11.8. Let A be a C*-algebra, and let p,q € A be projections. Suppose
that ||pg — ¢|| < 1. Then ¢ = p.
Proof. We have

llapg — ql| < llqllllpg — 4l < 1.

Therefore gpq is an invertible element of ¢Aq. Let x be the inverse of ¢pg in ¢Aq.
Set s = z'/2gp. Then ss* = q. Therefore s*s is a projection. Clearly s*s € pAp, so
s*s < p. O

At one point, we will need a quantitative version of the argument in Lemma 11.7.
The estimate is not the best possible, but is chosen for convenience. (All we really
need is that for all € > 0 there is § > 0 such that if ||p — ¢|| < ¢ then there is a
unitary u such that uqu* = p and ||lu — 1| <e.)

Lemma 11.9. Let A be a unital C*-algebra, and let p,q € A be projections such
that ||p — g|| < §. Then there is a unitary u € A such that

[u—1] <10[lp—¢q  and  uqu” =p.
Proof. We follow the proof of Lemma 11.7 with a slight change. Define

b:%[(?p—l)@q—l)—kl].

Then the calculation in the proof of Lemma 11.7 shows that [[b—1|| < [[p—q| < 3.
So b is invertible, and we define u = b(b*b)~'/2. This element is the same unitary
as in the proof of Lemma 11.7, so ug = pu as there, whence uqu* = p.

Since [|b— 1| < &, we certainly have |[b]| < 2. Therefore

16°6 = 1]} < [[lo* = 1][[[b]] + [[b = 1]} < 3[|]b = 1]| <

[N

One can check that if A € R satisfies |A — 1| < %, then ‘)\_1/2 — 1‘ < \/§|)\ — 1], so
that

lw = 1)} < [IBII[|(6°B) /2 = 1| + [|b = 1| < 2v2)[*b = 1| + [|b — 1]
<2V2-3b =1+ b= 1)l = (6v2+ 1) [Ib = 1] < (6v2+ 1) [p — gl
Since 6v/2 4+ 1 < 10, this completes the proof. O
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Lemma 11.10. Let A be a C*-algebra, and let a € Ay, satisfy [|a® —a < 3. Then
there is a projection p € A such that

2|ja® — a
1—4]ja—af

—all <
72 H,1+

Proof. Set r = ||a*> — al|. Since r < 1, the sets

So={re(—o00, 1) [N =)l <7}
and
S1 = {)\6 (%,oo): A2 — )| Sr}
are disjoint. Moreover sp(a) C Sy U S;. Therefore we can define a projection p € A
by p = xs, (a). We need to estimate ||p — a||. Clearly

(11.1) lp — all Smax(sup |Al, sup |/\—1|> .
AESo AES
By inspection of the shape of the graph of the function A — A?>—\ on R, it is easy
to see that both the supremums in (11.1) are equal to sup(Sp), and that moreover
the number s = sup(Sy) is completely determined by the relations s € [O, %) and
s — 52 =r. It is easily checked directly that the number
2r

14++v1—4r

satisfies both these conditions. O

S =

Corollary 11.11. For every € > 0 there is § > 0 such that whenever A is a C*-
algebra and a € As, satisfies ||a® — a|| < 4, then there is a projection p € A such
that p —al| <e.

Proof. Using

2r
lim —— =0,
r—0t 14+ +/1—4r
this is immediate from Lemma 11.10. O

Lemma 11.12. For every ¢ > 0 there is 6 > 0 such that whenever A is a C*-
algebra, B C A is a subalgebra, and p € A is a projection such that dist(p, B) < 4,
then there is a projection ¢ € B such that ||p — ¢|| < e.

Proof. Choose é9 > 0 following Corollary 11.11 with § in place of e. Set § =
min (1, 5 %0). Let A be a C*-algebra, let B C A be a subalgebra, and p € A be
a projection such that dist(p, B) < §. Choose ¢ € B such that [|[p — ¢|| < §. Set
b= 3(c+c*). Then b € By, and [|p — b|| < 6. Using p*> = p at the first step and
6 <1 at the third step, we have

1% = oIl < 1blll1b = pll + 116 = plllipl + 16 = pll = (6]l +2)lIb = pll < 4]} = pll < bo.
The choice of dy provides a projection ¢ € B such that ||p —b|| < 5. Now

e e €
— < —b b— <0+ -<= — =c.
llg—pl < llg=bll + 1o —pl <d+5 <5 +5=¢
This completes the proof. ([l

Proposition 11.13. Let A be a C*-algebra with real rank zero. Then A has
property (SP).
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Much more is true: every hereditary subalgebra in A has an approximate identity
consisting of projections (in the nonseparable case, not necessarily increasing). See
Theorem 2.6 of [35].

Proof of Proposition 11.13. Let B C A be a nonzero hereditary subalgebra. Choose
b € By such that ||| = 1. Choose dy > 0 as in Lemma 11.12 for e = 1. Set
§ = min (1, %0). Choose ¢ € Ag, with finite spectrum such that ||c — b|| < §. Write

c= Z;Zl Ajp; for nonzero orthogonal projections p1,p2,...,pn € A and numbers
A, A2, ..., A, € R such that Ay < Ay < --- < \,,. Then

le]l <1+6 <2, |An — 1] <6, and CPnC = AnPn-
Therefore

16pnb = pall < b= clll[palllloll + llelllpallllo — el + 1An = 1llpnll < 46 < do.

Therefore the choice of dy provides a projection p € B such that ||p — pn| < 1.
Since p,, # 0, we deduce from Lemma 11.7 that p # 0.

Lemma 11.14. Let A be a C*-algebra, let a € A, and let p € A be a projection.
Suppose that there is v € A such that ||v*av — p|| < 1. Then there is a projection
q € aAa such that ¢ is Murray-von Neumann equivalent to p.

Although we have not yet defined Cuntz subequivalence (see Definition 18.1(1)
below), we state a consequence in these terms. If a € Ay, p € A is a projection, and
p 2 a, then aAa contains a projection which is Murray-von Neumann equivalent p.

Proof of Lemma 11.14. Define b € A by b = a'/?vp. Then b*b € pAp and
16°6 = pll = [[p(v*av = p)pll < |Ip|l - [[v"av —p]| - [Pl < 1.

Therefore b*b is an invertible element of pAp, and, taking functional calculus in
pAp, we can form (b*b)~1/2. Define s € A by s = b(b*b)~*/2. Then

s*s = (b*b)"Y/2p*b(b*b) /2 = p.
Therefore ss* is a projection. Since (with (b*b)~! evaluated in pAp) we have
ss* = al/zvp(b*b)flpv*a € aAa,
the result follows. O

Lemma 11.15. Let r € (0,00), and let f: [0,7] — C be a continuous function.
Then for any C*-algebra C' and any ¢ € C with ||| < r/2, we have cf(c*c) =

flec*)e.

Proof. We first observe that for any C*-algebra C, any ¢ € C, and any n € Zx>, we
have ¢(c*c)™ = (ec*)™c. Therefore ch(c*c) = h(cc*)e whenever h is a polynomial.
Now let f be arbitrary. If C is not unital, we work in C*. Let £ > 0; we prove
that [|cf(c*c) — f(cc®)c|| < e. Choose a polynomial h such that |h(A) — f(A)] <
g/(3r'/2) for all X € [0,7]. Then
* * 9
[h(c™c) = f(c o)l < sup [h(A) = fFN] < 7>
A€[0,7] 3rt/
SO

leh(e*e) ~ cf (o < llell- (5573 < 5-
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Similarly,
(e )e = flec)el| < .
Therefore
lef(ee) = flec)ell < flef(c"c) = ch(ce)]| + Ih(ec)e = flec)el < 5 + 5 <.
This completes the proof. O

The following lemma is essentially in Section 1 of [44]. (Also see the proof of
Lemma 4.1 of [185].)

Lemma 11.16. Let A be a C*-algebra, and let ¢ € A. Then for any projection
p € cAc*, there exists a projection g € ¢* Ac such that p ~ q.

Much more is true. There is an isomorphism ¢: c*Ac — cAc* (this is in 1.4
of [44]) such that ¢(p) ~ p for all projections p € c¢*Ac (this is easily deduced
from [44]). In fact, using Cuntz equivalence (which we have not defined), for every
a € (¢*Ac)y, p(a) is Cuntz equivalent in A to a. This fact is made explicit in
Lemma 3.8 of [195].

Proof of Lemma 11.16. For each € > 0 define continuous functions f., g : [0, 00) —
[0,1] by

0 A< 5 0 A< £
FN=050-5) §<a<e  and  g(N)=¢2(A-5) §<A<e
% e< A 1 e <A\

Then g.(A\) = Afe()) for all A € [0, 00).
The net (g:(cc*))eso is an approximate identity for cAc*. In particular, there is
€ > 0 such that

|9 (cc*)pge(cc™) —p|| < 1.

Define a = f.(c*c)c*pef-(c*c), which is a positive element in cAc*. Then, using
Lemma 11.15 twice at the second step,

leac”™ —pl| = |[efe(c"c)epefo(c*c)e” — p||
= || f(cc)ec* pfe(cc)ec® — p|| = ||ge(cc*)pge(cc®) — pl| < 1.
Now Lemma 11.14 provides a projection ¢ in the hereditary subalgebra generated

by a, and hence in the hereditary subalgebra generated by cc*, such that ¢ ~ p.
The hereditary subalgebra generated by cc* is cAc*. O

The following lemma is essentially Lemma 3.1 of [150], but no proof is given
there.

Lemma 11.17 (Lemma 1.9 of [208]). Let A be a simple C*-algebra with prop-
erty (SP). Let B C A be a nonzero hereditary subalgebra, and let p € A be a
nonzero projection. Then there is a nonzero projection ¢ € B such that ¢ = p.

Proof. Choose a nonzero positive element a € B. Since A is simple, there exists
x € A such that ¢ = azp is nonzero. Since A has property (SP), there is a nonzero
projection ¢ € cAc*. Then ¢ € B, and by Lemma 11.16 there is a projection
e € c*Ac such that e ~ ¢. We have c*Ac C pAp, so e < p. [
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We need to know that an infinite dimensional simple unital C*-algebra contains
an arbitrarily large finite number of nonzero orthogonal positive elements. In the
literature, this is usually derived from a result on page 61 of [2], according to
which a C*-algebra which is not “scattered” contains a selfadjoint element whose
spectrum is [0, 1]. In the next three lemmas, we give instead an elementary proof
of the statement we need, which applies to any infinite dimensional C*-algebra.

Lemma 11.18. Let A be a C*-algebra, let e, f € A be projections, and suppose
that

eAe:{)\e:/\G(C} and fAf:{)\f:AE(C}.
Then dim(eAf) < 1.

Proof. We may assume that e, f # 0 and eAf # {0}.

Choose a nonzero element ¢ € eAf. Then c*c is a nonzero element of fAf, so
there is v € (0,00) such that ¢*¢c = vf. Define s = y~%/2¢. Then s*s = f. We
show that eAf = span(s).

Let a € eAf. Then as* € eAe, so there is A € C such that as* = Ae. Now

a=af =as*s = M\s,

as desired. 0

Lemma 11.19. Let A be a unital C*-algebra, and let p € A be a projection such
that pAp and (1 — p)A(1 — p) are finite dimensional. Then A is finite dimensional.

Proof. Since pAp and (1 — p)A(1 — p) are finite direct sums of matrix algebras,
we can find mutually orthogonal rank one projection ej,es,... e, € pAp and
fisfas-oos fn € (1 —p)A(1 — p) such that

Zej:p and kazl—p.
j=1 k=1

In particular,
ejAej = {/\ej: A€ (C} and kafk = {)\fk: NS (C}
forj=1,2,....mand k=1,2,...,n. Now

PA(L—p) =" ejAfr,
j=1k=1
so dim(pA(1 — p)) < mn by Lemma 11.18. Similarly dim((1 — p)Ap) < mn. This
completes the proof. [l

Lemma 11.20. Let A be an infinite dimensional C*-algebra. Then there exists a
sequence ai,as, ... in A consisting of nonzero positive orthogonal elements.

In the proof, the case dealt with at the end, in which sp(a) is finite for all a € Ag,,
can’t actually occur.

Proof of Lemma 11.20. We first observe that it suffices to prove the result when
A is unital. Indeed, if A is not unital, ai,as,... is such a sequence in A*, and
m: AT — C is the map associated with the unitization, then there can be at most
one n € Zsg such that m(ay) # 0.

We therefore assume that A is unital.
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Suppose that there is a € Ag, such that sp(a) is infinite. Choose a sequence in
sp(a) whose terms are all distinct, choose a convergent subsequence, and (deleting
at most one term) choose a subsequence (\,)nez., such that the limit is not one
of the terms. Then there are disjoint open sets Uy, Us,... C R such that A\, € U,
for all n € Z~q. For n € Z~g, choose a nonzero continuous function f,: R — [0,1]
with compact support contained in U,, and set a, = f,(a). Then the sequence
ay,as, ... satisfies the conclusion of the lemma.

Now suppose that sp(a) is finite for all @ € As,.

We claim that if B is a unital C*-algebra with B 2 C and such that every
element of Bg, has finite spectrum, then B has a nontrivial projection. Indeed,
there must be an element b € B, which is not a scalar, so sp(b) is a finite set
with more than one element. Therefore functional calculus produces a nontrivial
projection.

In particular, there is a nontrivial projection p; € A. By Lemma 11.19, and
replacing p; with 1 — py if necessary, we can assume that p; Ap; is infinite dimen-
sional. Clearly sp(a) is finite for all a € (p1 Ap1)sa- Therefore there is a nontrivial
projection ps € p1Ap;, and we may assume that (p; — p2)A(p1 — p2) is infinite
dimensional. Proceed by induction. Then taking pg = 1 and a,, = pp_1 — pp for
n € Zso gives a sequence ag,as, ... as in the conclusion of the lemma. O

Lemma 11.21 (Lemma 1.10 of [208]; Lemma 3.2 of [150]). Let A be an infinite
dimensional simple unital C*-algebra with property (SP). Let B C A be a nonzero
hereditary subalgebra, and let n € Z~y. Then there exist nonzero Murray-von
Neumann equivalent mutually orthogonal projections pi, ps,...,p, € B.

Proof. Use Lemma 11.20 to choose nonzero positive orthogonal elements
a1,a2,...,0, € A.

Choose a nonzero projection e; € ajAa;. Inductively use Lemma 11.17 to find
nonzero projections

ey € asAasg, e3 € azAas, ..., e, € anAay,

such that e; 3 e;—; for j = 2,3,...,n. Set p, = e,. Since p, 3 ep—1, there is

Pn_1 < enp_1 such that p,_1 ~ p,. Then p,_1 3 e,_2, so the same reasoning gives
Pn—2 < e,_s such that p,_s ~ p,_1. Construct p,_3,Pn_4,...,p1 similarly. ([l

Lemma 11.22 (Lemma 1.11 of [208]). Let A be an infinite dimensional simple
unital C*-algebra, and let n € Z~o. Then A has property (SP) if and only if
M,, ® A has property (SP). Moreover, in this case, for every nonzero hereditary
subalgebra B C M,, ® A, there exists a nonzero projection p € A such that 1 ® p is
Murray-von Neumann equivalent to a projection in B.

Proof. Let (e;x)1<j.k<n be a system of matrix units for M,

If M,, ® A has property (SP), then so do all its hereditary subalgebras, including
(C6171 & A=A

Now assume that A has property (SP), and let B C M, ® A be a nonzero
hereditary subalgebra. Choose € B\ {0}. There is j € {1,2,...,n} such that
(ej; ® D)z # 0. Then C = (e, ; ® 1)z(M,, ® A)z*(e; ; ® 1) is a nonzero hereditary
subalgebra in (e;; ® 1)(M,, ® A)(e;; ® 1) = A. Because A has property (SP),
there is a projection f € A\ {0} such that e; ; ® f € C. Use Lemma 11.21 to
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choose mutually orthogonal nonzero Murray-von Neumann equivalent projections
fi, fa,..., fn € A such that f; < f for all k. Then

n n
lofi=) enp®fin) ;@ fi<e;®f.
k=1 k=1

Furthermore, Lemma 11.16 tells us that e; ; ® f is Murray-von Neumann equivalent
to a projection in

x*(ejvj ® 1)(Mn ® A)(ejyj ® 1)93 C B.
This completes the proof. O

Now we consider tracial states. See the beginning of Section 6.2 of [174].

Definition 11.23. Let A be a C*-algebra. A tracial state on A is a state 7: A — C
with the additional property that 7(ba) = 7(ab) for all a,b € A. We define the
tracial state space T(A) of A to be the set of all tracial states on A, equipped with
the relative weak™ topology inherited from the Banach space dual of A.

That is, a tracial state is a normalized trace. Tracial states have actually already
occurred, in Theorem 5.28 and in Theorem 6.7.

Recall (Corollary 3.3.4 of [174]) that if A is a unital C*-algebra and w: A — C
is a linear functional such that w(l) = 1 and ||w|| = 1, then w is automatically
positive, and hence a state. In particular, if 7: A — C is a linear functional such
that 7(1) =1, ||7]| = 1, and 7(ba) = 7(ab) for all a,b € A, then 7 is a tracial state.

Example 11.24. Let n € Z~q. Define 7: M,, — C by

a1 ai2 -0 Qin
a1 G2 - G2n 1 <&
T . . . . = — E k. k-
. . . . . n
: : : =1
An,1  Qn2 T Gn,n

Then 7 is a tracial state.

The tracial state on M, in Example 11.24 is just a normalization of the usual
trace on the n x n matrices.
The following example generalizes Example 11.24.

Example 11.25. Let A be a C*-algebra, let 79 be a tracial state on A, and let
n € Zsg. Define 7: M,,(A) — C by

a1 Qai2 -+ Aln
a1 Q22 -0 G2n 1 & ( )
T . . . . = — E TolAk,k)-
. . . . n
k=1
an,1 Qap2 " an,n

Then 7 is a tracial state.

For consistency with K-theory, we usually want to use the unnormalized version,
namely > ;'_, 7o(ag k). For example, see Definition 16.14.

Example 11.26. Let X be a compact metric space, and let u be a Borel probability
measure on X. Then the formula

7(f) =/deu
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defines a tracial state on C(X).

Of course, all that is really happening in Example 11.26 is that every state on a
commutative C*-algebra is automatically tracial.
Given Example 11.26, the following is a special case of Example 11.24.

Example 11.27. Let n € Z~q, let X be a compact metric space, and let y be a
Borel probability measure on X. Let 79: M,, — C be the tracial state of Exam-
ple 11.24. Then the formula

r(a) = /X rola(z)) du(z)

defines a tracial state on C'(X, M,,).
Explicitly, if

alylgxg aLQEx; e al,ngxg
a($) _ a1\ az 2(T a2 n T
an1(z) an2(x) -+ apn(x)

for x € X, then

7(a) = /X % (Z%k(@) du(x).

Exercise 11.28. Let n € Z~g, let X be a compact metric space, and let 7 be a
tracial state on C(X, M,,). Prove that there exists a Borel probability measure p
on X such that 7 is obtained from p as in Example 11.27.

Example 11.29. Let G be a discrete group. Then the continuous linear functional
7: CF(G) — Csuch that 7(u1) = 1 and 7(ug) = 0 for g € G\ {1} (see Theorem 5.28)
is proved there to be a tracial state.

Example 11.30. This example is a generalization of Example 11.29. Let a: G —
Aut(A) be an action of a discrete group G on a C*-algebra A. Let 79 be a tracial
state on A, which is G-invariant in the sense that 79(ag(a)) = 1o(a) for all a € A
and g € G. Let E: Cf(G,A,a) — A be the standard conditional expectation
(Definition 9.18). Define 7: C}(G,A,a) - C by 7 = 79 0 E. Then 7 is a tracial
state on CF (G, A, a).

Using Exercise 9.17, it is easy to check that 7 is a state. It remains to prove that
E(ab) = E(ba) for a,b € C(G, A, a). By continuity, it suffices to prove this when

a= Z agug € Co(G, A, a) and b= Z byuy € Ce(G, A, )
geG geG

with all but finitely many of the a, and b, equal to zero. We have, changing
variables at the third step,

ab = Z agugbpup, = Z agg(bp)ugn = Z <Z akak(bklg)ug>

g,h€G g,h€G geG \keG
and similarly

ba = Z (Z bkak(aklg)ug> .

g€G \keG
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Therefore
7(ab) = Z 7o (arak (by-1)) and 7(ba) = Z 7o (brovk (ag-1)).
keG keG

Starting with the second expression, we change k to k~! at the first step, use the
trace property of 79 at the second step, and then G-invariance of 7y at the third
step, to get

7(ba) = > 7o (be-r a1 (ax))

keG
= Z To(akfl(ak)bkfl) = Z TO(akak(bkfl)) = T(ab)-
keG keG

This completes the proof.

Example 11.31. As a special case of Example 11.30, let G be a discrete group,
and let X be a compact metric space with an action of G. Then every G-invariant
Borel probability measure on X induces a tracial state 7 on C*(G, X). On elements
of Ce(G, C(X)), written as finite sums - foug with fy in C(X) for g € G and
fg = 0 for all but finitely g € G, it is given by the formula

T<ngug> :/Xfld,u.

geG
Lemma 11.32 (Remark 6.2.3 of [174]). Let A be a unital C*-algebra, and let 7
be a tracial state on A. Then the set

{a € A: 7(a*a) =0}
is a closed ideal in A.

Proof. Set
I={acA:7(a*a) =0}.
Since T is a state, it follows from the Gelfand-Naimark-Segal construction that I is

a closed left ideal in A. To show that I is in fact a two sided ideal, it suffices to show
that I* = I. But 7(aa*) = 0 if and only if 7(a*a) = 0 by the trace property. O

Traces are related to Murray-von Neumann equivalence in the following way.
Lemma 11.33. Let A be a unital C*-algebra, let T be a tracial state on A, and

let p,q € A be projections.

(1) If p ~ q, then 7(p) = 7(q).
(2) If p 3 g, then 7(p) < 7(q).
(3) If A is simple and there is a projection e € A such that

p~e e<g  and  e#Fg,
then 7(p) < 7(q).

Proof. For (1), the hypotheses imply that there is v € A such that v*v = p and
vv* = q. Therefore

7(p) = T(v*0) = T(vv") = 7(q).
Part (2) follows from (1) because positivity of 7 implies that if e is a subprojection
of ¢, then 7(e) < 7(q).
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For (3), we have 7(p) = 7(e) < 7(q) by (2). It remains to show that 7(e) # 7(q).
Now ¢ — e is a nonzero positive element. By Lemma 11.32, if 7(q — e) were zero,
then A would contain the nontrivial ideal

I={a€cA:7(a"a)=0}.
This completes the proof. ([l

Under good conditions (some of which we will see later), there is a kind of
converse to Lemma 11.33. For simple unital exact C*-algebras, the right notion is
given in the following definition. It is a version of Blackadar’s Second Fundamental
Comparability Question (FCQ2). See 1.3.1 of [21].

Definition 11.34. Let A be a unital C*-algebra. We say that the order on pro-
jections over A is determined by traces if whenever p,q € My (A) are projections
such that 7(p) < 7(q) for every tracial state 7 on A, then p < g.

In general, one should use quasitraces in place of tracial states. See Definition
I1.1.1 of [25] or Definition 2.31 of [4] for the definition of a quasitrace. When A
is exact, every quasitrace is a trace; see Theorem 5.11 of [102]. For general C*-
algebras, it is an open question whether every quasitrace is a trace.

Algebras with this property include M, finite factors, and simple unital AF al-
gebras. (The case of simple unital AF algebras is a special case of Theorem 5.2.1
of [21].)

Another useful condition on the relation between traces and K-theory is pre-
sented in Remark 16.12, Definition 16.13, Definition 16.14, and Remark 16.15.

We use the following definition of tracial rank zero. Tracial rank was first defined
in Definition 3.1 of [151], and tracial rank zero is equivalent (by Theorem 7.1(a)
of [151]) to being tracially AF in the sense of Definition 2.1 of [150] (at least for
simple C*-algebras). We use the version in Definition 3.6.2 of [152], with k there
taken to be zero. (See Definition 2.4.1 of [152], where it is stated that equivalence
means Murray-von Neumann equivalence.) The original version (Definition 2.1
of [150]) omitted the requirement that p # 0, but required unitary equivalence
in (3). One warning: the condition p # 0 was omitted in Proposition 2.3 of [208].
Without this condition, purely infinite simple unital C*-algebras would have tracial
rank zero, by taking p = 0.

We use the notation [a, b] for the commutator ab — ba.

Definition 11.35 (Definition 3.6.2 of [152]). Let A be a simple unital C*-algebra.
Then A has tracial rank zero if for every finite subset F C A, every € > 0, and
every nonzero positive element ¢ € A, there exist a nonzero projection p € A and a
unital finite dimensional subalgebra D C pAp such that:

(1) |l[a,p]|| <€ foralla € F.

(2) dist(pap, D) < ¢ for all a € F.

(3) 1 — p is Murray-von Neumann equivalent to a projection in cAc.

The word “nonzero” is missing in Proposition 2.3 of [208]. Without this require-
ment, all purely infinite simple unital C*-algebras would have tracial rank zero.

When checking whether a C*-algebra has tracial rank zero, it is only necessary
to use finite subsets of a fixed generating set.

Lemma 11.36. Let A be a simple unital C*-algebra, and let T' C A be a subset
which generates A as a C*-algebra. Assume that for every finite subset F' C T,
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every € > 0, and every nonzero positive element ¢ € A, there exists a nonzero
projection p € A and a unital finite dimensional subalgebra D C pAp such that:

(1) [/la,pl|| < ¢ for all a € F.

(2) dist(pap, D) < ¢ for all a € F.

(3) 1 — p is Murray-von Neumann equivalent to a projection in cAc.
Then A has tracial has rank zero.

The only change from Definition 11.35 is that we only use finite subsets of T'.
Exercise 11.37. Prove Lemma 11.36.

The proof is related to the proof of Lemma 22.10, which is given in full, and
also to the proofs of similar statements earlier. For example, see the proof of
Lemma 3.14, although that proof is easier.

Lemma 16.16 gives another slightly weaker condition which implies tracial rank
Zero.

Higher values of the tracial rank also exist (Definition 3.6.2 of [152]), and there
is a definition for algebras which are not simple. See Definition 3.1 of [151] for both
generalizations.

AF algebras have tracial rank zero; indeed, one can always take p = 1. Other
examples are less obvious. The condition looks hard to check. One of the important
points in the theory is that in fact there are a number of cases in which the condition
can be checked. (See Theorem 14.17 for the case most relevant here.)

For our purposes, the most important consequence of tracial rank zero is that,
together with simplicity, separability, nuclearity, and the Universal Coefficient The-
orem, it implies classification. See Theorem 5.2 of [153].

Theorem 11.38. Let A be an infinite dimensional simple unital C*-algebra with
tracial rank zero. Then A has real rank zero and stable rank one, and the order on
projections over A is determined by traces.

Proof. Real rank zero and stable rank one are part of Theorem 3.4 of [150]. Order
on projections over A determined by traces is Theorem 6.8 of [151], which applies
by Theorem 6.13 of [151]. O

These results are also found in [152]: Theorem 3.6.11 (for stable and real rank),
and Theorem 3.7.2 (for order on projections determined by traces; to get from A
to M (A), see Lemma 11.41 below).

At least the first two parts can fail in the nonsimple case.

Corollary 11.39 (Lemma 3.6.6 of [152]). Let A be an infinite dimensional simple
unital C*-algebra with tracial rank zero. Then A has property (SP).

Proof. Combine Theorem 11.38 and Proposition 11.13. ]

Lemma 11.40 (Lemma 3.6.5 of [152]). Let A be an infinite dimensional simple
unital C*-algebra with tracial rank zero, and let e € A be a nonzero projection.
Then eAe has tracial has rank zero.

We omit the proof, although it is not hard with what we now have.

Lemma 11.41 (Special case of Theorem 3.7.3 of [152]). Let A be an infinite di-
mensional simple unital C*-algebra with tracial rank zero, and let n € Z~y. Then
M, (A) tracial has rank zero.
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Proof. We use standard matrix unit notation. Let F' C M,, ® A be finite, let ¢ > 0,
and let ¢ € (M, ® A)4 \ {0}. Let S C A be the set of all matrix entries of all
elements of F'.

By Lemma 11.22 and Corollary 11.39, M,, ® A has property (SP). So there is a
nonzero projection q € ¢(M,, ® A)c. Use Lemma 11.17 to find a nonzero projection
go € A such that e;1 ® go 3 ¢. Use Lemma 11.21 to find nonzero Murray-von
Neumann equivalent mutually orthogonal projections ey, es, ..., e, € goAqy. Apply
Definition 11.35 with £/n? in place of &, with e; in place of ¢, and with S in place
of F', getting a nonzero projection py € A and a unital finite dimensional subalgebra
Dy C pgApg. Set p=1®py and D = M,, ® Dy. Then

n n
1-p3 Zej,j ®ep ~ 261,1 ®ej <qo 34
j=1 j=1
Also, for a € F we can find a; € S for j,k =1,2,...,nsuch that a = Z?kzl €jr®
a;r, and bj, € Dg for j,k =1,2,...,n such that ||poa;rpo — bkl < e/n%. Then
b= Z?,k:l ejk® bj’k € D and

n n n
llpap —bll = || D ek ©@poajipo — Y ein @binl < D lpoajipo — bjxll < e
jk=1 jk=1 jk=1
Finally,
n n
lpa —apll = || D ejx @ (poajk — ajxpo)|| < D lIpoajk — poasxll < e
J,k=1 j,k=1

This completes the proof. O

12. CrOSSED PropuUCTS BY FINITE GROUPS

In this section, we look briefly at some of the general theory of crossed prod-
ucts by finite groups, mostly in the simple case. In Section 13 we will consider
the structure of crossed products when the action has the Rokhlin property, and
in Section 14 we will consider the structure of crossed products when the action
has the tracial Rokhlin property. A version of the tracial Rokhlin property using
positive elements instead of projections seems to be the weakest hypothesis for good
structure theorems for crossed products, but in these notes we will only consider
the version using projections.

In this section, we give a fairly short proof that if G is finite, A is simple, and
a: G — Aut(A) is pointwise outer, then C*(G, A, «) is simple. From the point of
view of these notes, one can’t say more without a stronger hypothesis on the action,
presumably some version of the tracial Rokhlin property. The various examples and
problems we discuss in this section indicate how things can go wrong if one assumes
less. See [207] for a much more extensive discussion, with the defect that higher
dimensional Rokhlin properties are not mentioned; they were not known at the
time that [207] was written.

Recall (Corollary 9.14) that if a: G — Aut(A) is an action of a finite group G
on a C*-algebra A, then the maps

(12.1) Co(G, A, a) — C*(G, A, a) — C*(G, A, a)
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are bijective. This means that, unlike all other cases, one can explicitly write down
all elements of C*(G, A, «): as in Remark 8.8, they are the sums deg agug with
ag € Afor geG.

The next strongest condition after versions of the tracial Rokhlin property with-
out projections is pointwise outerness.

Definition 12.1. Let A be a C*-algebra, let G be a group, and let a: G — Aut(A)
be an action of G on A. The action « is called pointwise outer if o is not inner
(Definition 3.3) for all g € G\ {1}.

Such actions are often simply called outer. This designation can lead to confusion
because of the temptation to say that an action is outer if it is not inner (as in
Example 3.4). There are many actions « for which «y is inner for some choices of
g € G'\ {1} but outer for other choices. There are even actions a for which oy is
inner for all g € G but « itself is not inner. (See Example 3.5.)

Theorem 12.2. Let G be a finite group, let A be a simple unital C*-algebra, and
let a: G — Aut(A) be a pointwise outer action of G on A. Then C*(G, A, a) is
simple.

The proof we give for Theorem 12.2 is based on that of Theorem 1.1 of [240],
but is much simpler, since we prove much less. In fact, what we actually prove was
known long before. Apart from a small piece of operator algebra theory (isolated
in Lemma 12.3), it is entirely algebraic, and proves that the skew group ring for
a pointwise outer action of a finite group on a simple unital ring is again simple.
Rieffel was in fact motivated by arguments from algebra, but the algebraic version
of the result we prove was already proved in Theorem 4 of [11].

The result generalizes in at least two directions. By Theorem 15.26 below, the
reduced crossed product of a simple C*-algebra by a pointwise outer action of a
discrete group is simple. Thus, provided we use the reduced crossed product, we
can replace “finite” by “discrete” in Theorem 12.2. The proof of Theorem 15.26 is
quite different, requiring much more machinery. We do not give it in these notes,
although we give a proof of a special case of a theorem which implies this result
(not, however, the case needed for this result). The other direction is that taken
in [240]. For example, one part of Theorem 4.1 of [240] states that if G is finite
and A9 is type I, then A is type I (without assuming that « is pointwise outer,
but results on outerness are used in the proof). This is false for both compact and
infinite discrete groups. Also see Section 2 of [240], about primeness of crossed
products by finite groups.

We isolate the C*-algebraic part as a general lemma.

Lemma 12.3. Let A be a C*-algebra and let o € Aut(A4). Suppose there is z in
the multiplier algebra M (A) such that for all @ € A we have a(a) = zaz~'. Then «
is inner (Definition 3.3), that is, there is a unitary u € M (A) such that a(a) = uau*
for all a € A.

The proof is essentially the same as part of the proof of Lemma 11.7. It depends
(as it must) on the relation a(a*) = a(a)* for all a € A.

Proof of Lemma 12.3. We immediately get za = a(a)z for all a € A. In this
equation, take adjoints and replace a by a*, getting 2*a(a) = az* for all a € A.
Combine these two equations, getting x*xa = ax*x for all a € A. Therefore

(12.2) (z¥z)" V2% = a(a*z) /2
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for all a € A. Now u = z(z*z)~'/? is unitary by Lemma 11.6. Combining a(a) =
zaz~! for all @ € A with (12.2), we get a(a) = uau* for all a € A. O

Proof of Theorem 12.2. As discussed at the beginning of this section, we have
C* (G, A, a) = {deaagug: ay € Afor g€ G}

Thinking of C*(G, A, «) as C.(G, A, a) (bijectivity of the maps in (12.1); see Corol-

lary 9.14), we define the support of an element a = dec agug € C*(G, A, o) by

supp(a) = {g €G:aqy # 0}.

Now let I C C*(G, A, «) be a nonzero ideal. We will eventually show that
I =C*(G,A,a). Choose b € I\ {0} such that card(supp(b)) is minimal among all
nonzero elements of I. There is h € G such that b, # 0. Setting a = buj, we get
a =3 ,ccaqty € I\ {0} such that card(supp(a)) is minimal among all nonzero
elements of I and such that a; # 0.

We want to show that a € A. Suppose not. Then there is h € G \ {1} such that
ap # 0. We claim that there is a well defined bijective linear map T: A — A such
that, whenever n € Z>o and z;,y; € A for j =1,2,...,n, we have

(12.3) T(ijalyj> = zjanan(y)).
j=1 j=1

To prove this claim, we first observe that

n
{ijalyj: n € Zso and z;,y; € A for j = 1,2,...,n}
j=1
is equal to A because A is simple and unital. So T is defined on all of A.

Next, we show that if Z?Zl zja1y; = 0 then E?Zl zjapan(y;) = 0. So let
n € Zso and for j =1,2,...,nlet z;,y; € A. Suppose 22‘;1 zja1y; = 0. Define

5= szayj € C*(G, A, ).

Jj=1

Then s € I. Moreover, we can calculate

n n n

§= Z Z TjAgUglj = Z Z Tjagag(y;)ug = Z ( xjagag(%))“Q-
Jj=1g€G j=1g€qG geG \ j=1

It is clear from this formula that supp(s) C supp(a). Moreover, s; = 0. The fact

that card(supp(a)) is minimal among all nonzero elements of I therefore implies s =

0. In particular, Z?zl zjapan(y;) = sp, = 0. This proves the desired implication.

By considering differences of two expressions of the form 2?21 Z;a1Y;, it follows
that T is well defined. With this in hand, T is obviously linear, and it now also
follows that T is injective.

We finish the proof of the claim by showing that T' is surjective. Let d € A.
Since ap, # 0 and A is simple and unital, there are n € Z~¢ and z;,y; € A for
j = 1,2,...,n such that 37 xjapy; = d. Set ¢ = 37, zjaieg H(y;). Then
T(c) = d. This completes the proof of the claim.

It is immediate from (12.3) that for all a,c € A we have

(12.4) T(ca) = cT'(a) and T(ac) = T(a)ap(c).
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Thus T'(c) = ¢T'(1) for all ¢ € A, and using surjectivity to choose ¢ € A such that
T(c) = 1, we see that T'(1) is left invertible. Similarly, T'(¢) = T(1)ax(c) for all
¢ € A, and using surjectivity to choose ¢ € A such that T'(c) = 1, we see that T'(1)
is right invertible. So T'(1) is invertible. Combining the two parts of (12.4), we get
T()ap(c) = T(c) = ¢T'(1) for all ¢ € A. Applying Lemma 12.3 with x = T(1)~*
shows that «j, is inner. This contradiction shows that a € A.

We have shown that I N A # {0}. Since I N A is an ideal in the simple C*-
algebra A, it follows that 1 € INA. So1 €I, and I = C*(G, A, a). O

Pointwise outerness is not good enough for the kind of structural results we have
in mind for crossed products by finite groups.

Example 12.4. Example 9 of [70] contains a pointwise outer action « of Z/27Z on
a simple unital AF algebra A such that C*(Z/2Z, A, o) does not have real rank
zero. However, AF algebras have real rank zero for fairly trivial reasons.

The first example of an action of a finite group on an AF algebra such that the
crossed product is not AF was given in [22]. The action is in Example 3.29. The
actions in Exercise 10.23 and Exercise 10.24 are also examples of this phenomenon.
Among the known examples, the one that is easiest to construct is in Section VIII.9
of [52]. It is the dual action to an action of Z/2Z on a Bunce-Deddens algebra whose
crossed product is AF.

Example 12.5. Example 8.2.1 of [22] gives an example of a pointwise outer ac-
tion « of Z/27Z on a separable unital C*-algebra A such that A has stable rank one
but C*(Z/27Z, A, a) has stable rank two.

Example 12.4 and Example 12.5 are both accessible via the methods of Section 10
(although we need to appeal to classification theorems). The action in Example 12.5
is the tensor product of the action in Example 3.29 with the trivial action on
c([o,1]).

The following is a long standing open problem.

Problem 12.6. Let A be a simple unital C*-algebra with stable rank one. Let G
be a finite group, and let a.: G — Aut(A) be an action of G on A. Does it follow
that C*(G, A, «) has stable rank one?

A positive answer is not known even if G = Z/2Z and A is AF.
We do have (using methods not considered here) the following theorem, which
improves earlier known estimates.

Theorem 12.7 (Theorem 2.4 of [128]). Let A be a C*-algebra, and let a: G —
Aut(A) be an action of a finite group G on A. Then

tsr(C*(G, A, @) < tsr(A) + card(G) — 1.

Crossed products by finite groups do preserve type I C*-algebras and nuclear
C*-algebras. Both statements are true more generally: preservation of type I holds
for compact groups, at least when the algebra is separable and the group is sec-
ond countable (this can be gotten from Theorem 6.1 of [275]) and preservation of
nuclearity holds for amenable groups (Theorem 4.2.6 of [37]).

Crossed products by finite groups presumably do not preserve the Universal Co-
efficient Theorem, although, as far as we know, no example has been published.
The idea is as follows. Let A be the C*-algebra in the example in Section 4 of [257].
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It is not KK-equivalent to a nuclear C*-algebra, and therefore does not satisfy
the Universal Coefficient Theorem. Choose (see below) a contractible nuclear C*-
algebra B in the bootstrap class, with an action S of a finite group G on B such
that C*(G, B, 8) is also in the bootstrap class and K,.(C*(G, B, 3)) # 0. (Prefer-
ably K.(C*(G, B, )) should have a summand isomorphic to Z.) Set C = A® B
and define v: G — Aut(C) by v, = ida ® fy for ¢ € G. Then C is con-
tractible, so satisfies the Universal Coefficient Theorem for trivial reasons. How-
ever, C*(G,C,v) 2 A® C*(G, B, ). (See Remark 10.2 and Exercise 10.3.) So
the Kiinneth formula [251] relates K, (C*(G, C, 7)) to K.(A) and K.(C*(G, B, 3)).
For example, if

Ko(C*(G,B,p)=Z and K,(C*(G,B,p)) =0,

then

K.(C(G,C,7)) = K.(C*(G, B, p)).
This should transfer failure of the Universal Coeflicient Theorem for A to failure of
the Universal Coefficient Theorem for C*(G, C,~).

In Section 3 of [201], there are examples of homotopies ¢ + a¥ of actions
of a finite group G on a nuclear C*-algebra D (even a commutative C*-algebra)
such that K, (G,D,a(o)) 2 K, (G,D,a(l)). Such a homotopy defines an action
on C([0,1], D), for which the cone Cy((0,1], D) is invariant, and for which the K-
theory of the crossed product of the cone is sometimes nonzero. This can actually
happen in at least some of the examples in [201], but it isn’t clear whether one can
arrange to have the K-theory of the crossed product isomorphic to Z. (It can be
made isomorphic to Z[3].)

Despite all that seems to go wrong with crossed products by pointwise outer
actions of finite groups without stronger assumptions, there are no examples in
which the crossed product of a classifiable C*-algebra by a pointwise outer action
of a finite group is known not to be classifiable.

13. THE ROKHLIN PROPERTY FOR ACTIONS OF FINITE GROUPS

What is needed for good results on the structure of crossed products is some
notion of freeness of the action. Free actions on spaces are well known; see Defini-
tion 2.3. There are many versions of freeness for actions on C*-algebras even when
the group is finite. See [207] for an extensive discussion (which, however, makes
no mention of higher dimensional Rokhlin properties; these were introduced after
[207] was written). Versions of freeness range from free action on the primitive ideal
space (impossible when the group is nontrivial and the algebra is simple) to condi-
tions even weaker than pointwise outerness. The conditions which seem to be most
useful for theorems on the structure of crossed products are the Rokhlin property,
the tracial Rokhlin property, and various higher dimensional Rokhlin properties.
In this section, we consider the Rokhlin property, and in the next section we con-
sider the tracial Rokhlin property. Higher dimensional Rokhlin properties, which
we don’t discuss, were introduced in [114], and generalized (along with the ordinary
Rokhlin property) to the nonunital case in [112]. The paper [112] also defines a
related property called the “X-Rokhlin property”.

Although we will not discuss them in these notes, there are versions of the
Rokhlin property and the tracial Rokhlin property (including versions using positive
elements instead of projections) for actions of suitable not necessarily finite groups.
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In Definition 13.1 (and in Definition 14.1 below), one must use finite subsets of G
instead of the whole group; these finite subsets should be approximately invariant
under translation by a given finite set of group elements. (They should be Fglner
sets in the sense used in the Fglner condition for amenability. See Theorem 3.6.1
of [100]; Felner sets were used in the proof of the discrete case of Theorem 5.50
and in the proof of Theorem 9.7.) We give only a few references: [123] for Rokhlin
actions of Z, [185] for actions of Z with the tracial Rokhlin property, [111] for
a tracial Rokhlin property for finite groups and Z in terms of positive elements,
and [182] for a tracial Rokhlin property for countable amenable groups in terms of
positive elements.

The Rokhlin property was first introduced by Rokhlin, in measurable dynamics
for an action of Z of a measure space. See the discussion at the top of page 611
of [294]. The original Rokhlin Lemma is given in Lemma VIII.3.4 of [52]. The
Rokhlin property for actions of finite groups was defined for von Neumann algebras
before C*-algebras, in [131], but not under that name and in a slightly different
formulation.

The Rokhlin property and higher dimensional Rokhlin properties are also useful
in the nonsimple case. We don’t know how to define the tracial Rokhlin property
in the nonsimple case.

At first sight, the Rokhlin property looks strange. We explain how it can be
used in Remark 13.9 and in Lemma 13.19 and the discussion before its proof. The
interested reader can skip the discussion of examples of actions with (and without)
the Rokhlin property and look first at this remark and lemma.

Definition 13.1. Let A be a unital C*-algebra, and let a: G — Aut(A) be an
action of a finite group G on A. We say that « has the Rokhlin property if for every
finite set S C A and every € > 0, there are mutually orthogonal projections e, € A
for g € G such that:

(1) |lag(en) —egnll < e for all g,h € G.
(2) |lega — aey|| < e forallge Gand all a € S.
(3) Xyeces=1.
We call (eg)gec a family of Rokhlin projections for «, S, and e.

One can strengthen the statement.

Theorem 13.2 (Proposition 5.26 of [211]). Let A be a separable unital C*-algebra,
and let a: G — Aut(A) be an action of a finite group G on A. Then « has the
Rokhlin property if and only if for every finite set F' C A and every € > 0, there
are mutually orthogonal projections e, € A for g € G such that:

(1) ag(en) =egpn for all g,h € G.

(2) llega —aegy|| < e forall ge G and all a € F.

(3) Yyeces =1

The difference is that in (1) we ask for exact rather than approximate equality.

Theorem 13.2 simplifies some proofs by replacing some approximate equalities
by equalities. In particular, Lemma 13.16 becomes unnecessary. However, the
proof uses methods which are not standard and are not related to those here, and
moreover is more complicated than the work it would save here. In the interest of
completeness, we therefore give proofs without using this result.
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Example 13.3. Let G be a finite group, let B be any unital C*-algebra, set
A = C(G, B), and define a: G — Aut(4) by ay(a)(h) = a(htg) for a € A and
g,h € G. The algebra A is the direct sum of copies of B, indexed by G, and the
action permutes the summands. The projections required for the Rokhlin property
can be taken to be given by

eg(h) = {1 h=g

0 h#yg
for g, h € G.

The algebra in Example 13.3 is not simple. The Rokhlin property is very rare
for actions on simple C*-algebras. We give in the next section some examples of
actions with the tracial Rokhlin property but not the Rokhlin property. Here we
mention just a few examples of nonexistence of actions with the Rokhlin property,
based on elementary K-theoretic obstructions (not all of which require explicit use
of K-theory). There is no action of any nontrivial finite group on O or any
irrational rotation algebra which has the Rokhlin property (Proposition 13.24; Ex-
ample 13.21), there is no action of any finite group whose order is divisible by 2
on O3 which has the Rokhlin property (Proposition 13.25), and there is no action of
any finite group whose order is divisible by any prime other than 2 on the 2°° UHF
algebra which has the Rokhlin property (Example 13.22). Even more obviously,
there is no action of a nontrivial finite group on the Jiang-Su algebra (briefly de-
scribed in Example 3.33) which has the Rokhlin property, since the algebra has no
nontrivial projections. See Example 3.12 in [207] and the surrounding discussion
for more examples. On the other hand, actions with the Rokhlin property do exist
on suitable simple C*-algebras, and can be obtained using suitable choices in Ex-
ample 3.25. We describe the details for Z/27 in Example 13.6. This example is,
in slightly different notation, the special case at the end of Example 3.25, whose
crossed product is treated in Example 10.22. See Exercise 13.8 for a more general
case.

We look at the commutative case first.

Proposition 13.4. Let GG be a finite group, and let X be a compact Hausdorff G-
space. Then the corresponding action of G on C'(X) has the Rokhlin property if and
only if there are a compact Hausdorff space Y and an equivariant homeomorphism
from X to G x Y, with G acting on G by translation, trivially on Y, and via the
product action on G x Y.

Proof. Assume first that there is an equivariant homeomorphism X — G x Y. We
may then assume that X = G x Y. For any finite set F' C A and any ¢ > 0, we can
take e, = x{gyxy for g € G.

Now assume that the action on C(X) has the Rokhlin property. Apply Defini-
tion 13.1 with FF = @ and e = %, obtaining a family (e4)4ec of Rokhlin projections.
In C(X), if p and ¢ are projections with ||p — ¢|| < 1, then p = ¢q. Therefore we
get ag(en) = egp for all g,h € G. There is a closed and open subset Y C X such
that e; = xy. Define a continuous function m: G xY — X by m(g,y) = gy. Since
the projections ay4(xy) for g € G are orthogonal, the sets gY are disjoint, so m
is injective. Since deG ag(xy) = 1, we have UgEG gY = X, so m is surjective.
Therefore m is a homeomorphism. Giving Y the trivial action of G and G the
translation action, it is immediate to check that m is equivariant. [
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The following result is a restatement of Theorem 1.2 of [207].

Theorem 13.5. Let G be a finite group, and let X be a totally disconnected G-
space. Then the corresponding action of G on C(X) has the Rokhlin property if
and only if the action of G on X is free.

Proof. If the action of G on C(X) has the Rokhlin property, then freeness of the
action of G on X is is immediate from Proposition 13.4.

So assume the action of G on X is free. We first claim that for every x € X,
there is a compact open set L C X such that z € L and the sets gL, for g € G, are
disjoint. To prove the claim, for g € G choose disjoint compact open sets L, and
Mg such that x € Ly and gz € My. Then take

L= () (Lyng'M,).
g€G\{1}
This proves the claim.
Since X is compact, we can now find compact open sets Ly, Lo,...,L, C X
which cover X and such that, for each m, the sets gL,,, for g € G, are disjoint. Set
Ky =1L and form=2,3,...,n set

Kp=Lnn X\ |JgL1ULyU- - ULp_1)
geG

(This set may be empty.) One verifies by induction on m that the sets gk, for
g€ Gand j=1,2,...,m, are disjoint and cover UgeG g(L1 ULy U---UL,,). For
m = n, these sets form a partition of X. Set Y = K1 UKy U ---U K,,. Then the
sets gY, for g € G, form a partition of X. The conclusion follows. O

The Rokhlin property is a strong form of freeness. Not all free actions of finite
groups on compact spaces have the Rokhlin property. The actions of finite sub-
groups of S! on S! be translation (given in Example 2.16) are free but don’t have
the Rokhlin property. (See [207] for an extensive discussion of notions of freeness of
actions of finite groups on C*-algebras, but note that higher dimensional Rokhlin
properties had not yet been introduced when this article was written.)

Example 13.6. Let a be the action of Z/27Z on the 2°° UHF algebra A generated
by @,-; Ad(9}). (The 2 x 2 matrix in the above formula is unitarily equivalent
to the 2 x 2 matrix ((1) Pl) used in Example 10.22. One checks that this implies
that the actions are conjugate. See Exercise 13.7 below.) We simply write « for the
automorphism given by the nontrivial group element. In Example 10.22, we wrote
A= @Mgm with maps ¢, : Man — Mant1 given by a — (& 9). Here, we identify
Moy as the tensor product of n copies of Ms, which we write for short as (My)®™.
We identify the maps of the direct system

(M2)®™ 2% (Ma)®" D) = (Ma)®" @ M,

as a — a ® 1. We also identify (M2)®" with its image in A.
We claim that « has the Rokhlin property.
Let S C A be finite and let ¢ > 0. We have to find orthogonal projections
eg, €1 € A such that:
(1) ||la(eg) —e1|| < € and ||a(er) — eol| < e.
(2) |leoa — aep|| < € and |leya — aer]| < € for all a € S.
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(3) eg+e1 =1.
Write S = {a1,az,...,an}. Since U, ¢z (M2)®" is dense in A, there are n and
bi,b2,...,by € (M3)®™ C A such that
||b1—a1|| < %E, ||b2—a2H < %6, ey ||bN—ClN|| < %8.
Define
€p,€1 € (M2)®n ® M2 = (M2)®(n+1) Cc A
by
60:1(Mz)®"®((1)8) and 61:1(M2)®n®(8?).

It is obvious that eg + e; = 1, which is (3), and we easily check that a(ep) = e;
and «(e1) = eg, which implies (1).

It remains to check (2). For k € {1,2,..., N}, the element b;, actually commutes
with ey and eq, so

leoar, — areoll < lleoll - lax — bll + lax — bill - [leoll < 3¢ + 36 =¢.
This completes the proof that « has the Rokhlin property.

Exercise 13.7. Let G be a locally compact group, let A be a UHF algebra, and
let a: G — Aut(A) and p: G — Aut(A) be two infinite tensor product actions as
in Example 3.25, using the same infinite tensor product decomposition. That is,
let k1, ko, ... be integers with k,, > 2 for all n € Z~(, assume that A = ®Z°:1 My,
and that there are actions 3™, o™ : G — Aut(My,) for n € Z~ such that for all
g € G, we have oy = @, 5(7") and pg = @, Uén).

Now suppose that for every n € Zsq, the actions S and o™ are conjugate.
Prove that the actions a and p are conjugate.

Exercise 13.8. In Example 3.25, let G be a finite group, for each n € Z~( let g —

un(g) be a unitary representation of G'on C*» which is unitarily equivalent to a finite

direct sum of copies of the regular representation, and set ﬂén)(a) = u,(g)au,(g)*

for g € G and a € My, . Prove that the corresponding action g — &, Bs(,n) of G
on @~ ; M, has the Rokhlin property.

One use of the Rokhlin property is to “average” over the group in ways not
normally possible. This construction is more related to its use in classification of
actions than its use for structural properties of crossed products. Some cases have
an interpretation as “cohomology vanishing lemmas”, about which we say nothing
more here. The next remark gives an example of the method.

Remark 13.9. Let A be a unital C*-algebra and let ac: G — Aut(A) be an action
of a finite group G on A which has the Rokhlin property. Let u € A be a unitary.
The usual average

1
card(G) g%;; g (u)

will almost never be a unitary. Suppose, however, we choose Rokhlin projections
e, € Afor g € G as in Theorem 13.2. In particular, a4(e) = eg4p for g,h € G.
Assume, first, that they exactly commute with u. Then the element

v = Z ag(ejuer) = g eqgag(u)eg
9eG geG
is a G-invariant unitary in A.
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Having equ = ueq for all ¢ € G is far too much to hope for. If, however,
llegu — uegy|| is small enough, then

b= Z aglejuer) = Z eqgag(u)eg

geG geG

will be G-invariant and approximately unitary. So b(b*b)~/? will be a G-invariant
unitary which is close to b, and thus close to deG eqgag(u)eg.

One doesn’t really need the stronger condition in Theorem 13.2; the approxima-
tion argument works nearly as well using Definition 13.1 as it stands.

The next exercise gives an example of what one can do with the ideas in Re-
mark 13.9. It does not have much connection with the main ideas in these notes,
but is very important elsewhere.

Let A and B be unital C*-algebras. Two homomorphisms ¢,¢: A — B are
said to be approzimately unitarily equivalent if for every € > 0 and every finite set
F C A, there is a unitary u € B such that ||ug(a)u*—(a)|| < € for all a € F. (This
concept is very important in the Elliott classification program. As just one example,
if p and ¢ are approximately unitarily equivalent, then ., ¥,: K.(A) — K.(B)
are equal.)

Suppose now that G is a finite group, and a: G — Aut(A) and f: G — Aut(B)
are actions of G on A and B. One can easily imagine that one would want equi-
variant homomorphisms ¢, : A — B to be not just approximately unitarily equiv-
alent but in fact equivariantly approximately unitarily equivalent, that is, the uni-
taries u above can be chosen to be G-invariant. (If this is true, then, for example,
s, KG(A) — K&(B) are equal.)

Exercise 13.10. Let G be a finite group, let A and B be unital C*-algebras,
and let a: G — Aut(A) and 8: G — Aut(B) be actions of G on A and B. Let
v, A — B be equivariant unital homomorphisms, and assume that ¢ and 1 are
approximately unitarily equivalent (ignoring the group actions).

(1) Suppose that 8 has the Rokhlin property. Prove that ¢ and 1 are equiv-
ariantly approximately unitarily equivalent.

(2) Suppose that « has the Rokhlin property. Prove that ¢ and 1 are equiv-
ariantly approximately unitarily equivalent.

We will now return to ideas more directly related to the structure of crossed
products.

We first give several results whose proofs are more direct than that of Theo-
rem 13.15 (the main result of this section).

Theorem 13.11 (Proposition 4.14 of [187]). Let A be a unital C*-algebra, let G
be a finite group, and let a: G — Aut(A) be an action of G on A which has the
Rokhlin property. Then the restriction map defines a bijection from T(C*(G, A, «))
(see Definition 11.23) to the set T(A)¢ of G-invariant tracial states on A.

Proof. For g € G, following Notation 8.7, let uy € C*(G, A, ) be the standard uni-
tary in the crossed product. Let E: C*(G, A,a) — A be the standard conditional
expectation (Definition 9.18), which is given by F (dec agug) =a; whenay € A
for g € G.
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We will show that the map 7 — 70 FE is an inverse of the restriction map. First,
let 7 € T(A)%. Then 7o E is a tracial state on C*(G, A, «) by Example 11.30. It
is immediate that (70 E)|4 = 7.

Now let 7 € T(C*(G, A,«)). We claim that for all g € G\ {1} and a € A,
we have 7(augy) = 0. Let € > 0. Choose Rokhlin projections e, € A for h € G
according to Definition 13.1, using

€
(14 ||la|))card(G)

in place of ¢ and with F' = {a}. For h € G, using at the second step g # 1 (so that
enegn, = 0), we get

6:

epligen, = eh(ugehu; — €gh)Ug + Enegrly = eh(ugehu; — egn)Uy.
Therefore
lenugen|l < llenlllan(en) — egnllllug|l < 6.

So, using ), . en = 1 at the first step and the trace property at the second step,

Im(aug)l < Y Ir(auger)| = D Ir(enaugen)| < Y (llena — acnl + [r(aenugen)))

heG heG heG
< D (lena = aenll + llall - llenugen]|) < card(G)(L + la])d = e.
hea

Since € > 0 is arbitrary, the claim follows.
Now let a € C*(G, A, o), and choose a, € A for g € G such that a = deG Aglg.
Then E(a) = a1, so, remembering that u; =1 and 7(auy) = 0 for g # 1, we get

(r]a) 0 E = 7(ar) = Y m(auy) = 7(a).

geG

This completes the proof. O

Proposition 13.12. Let A be a unital C*-algebra, let G be a finite group, and let
a: G — Aut(A) be an action of G on A which has the Rokhlin property. Then a4
is outer for every g € G \ {1}.

Proposition 4.16 of [207] has a stronger statement, with a closely related but
more complicated proof: « is strongly pointwise outer in the sense of Definition 4.11
of [207].

Proof of Proposition 13.12. Let h € G \ {1}, and suppose that ay, is inner. Thus,
there is a unitary u € A such that such that ay(a) = uwau* for all ¢ € A. Choose
projections e, € A for ¢ € G as in Definition 13.1, with S = {u} and ¢ = %
Then calculate as follows, using orthogonality of e; and e; at the first step and

ap(e1) = uequ® at the second step:
1= ller —enl| < |ler — ueru™|| + [lan(er) — enl|
|| |+ lan(er) = enll < = + % = =
= |letu — ue ap(er) —e -4+ -=-
1 1 nle1 h 3t373

This is a contradiction. O

Thus, if A is simple, then Theorem 15.26 below implies that C*(G, A, «) is
simple. Actually, more can be proved directly, although with a bit of work.
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Proposition 13.13 (Corollary 2.5 of [194]). Let A be a unital C*-algebra, let G
be a finite group, and let a: G — Aut(A) be an action of G on A which has the
Rokhlin property. Let J be an ideal in C*(G, A, «). Then there is a G-invariant
ideal I C A such that J = C*(G, I, a).

The proof in [194] uses other results not directly related to the Rokhlin property.
We give a direct proof. A direct proof for the same result for integer actions with the
Rokhlin property is given for Theorem 2.2 of [195]. We state a lemma separately,
which is the finite group version of Lemma 2.1 of [195]. It is in the proof of the
lemma that the Rokhlin property is actually used.

Lemma 13.14. Let A be a unital C*-algebra, let G be a finite group, and let
a: G — Aut(A) be an action of G on A which has the Rokhlin property. Let
E: C*(G,A,a) — A be the standard conditional expectation (Definition 9.18).
Then for every finite set F' C C*(G, A, «) and every € > 0, there exist mutually

orthogonal projections e, € A for g € G such that deG eg =1 and

HE(a) - deGegaegH <e
forall a € F.

Proof. Write ' = {b1,ba,...,b,}. For j =1,2,...,n write b; = >, -~ a; pup with
ajn € Afor h € G. Set
Fo={aj,:heGandje{1,2,...,n}} and M = sup ||al|.
a€Fyp
Choose projections e, € A for g € G according to Definition 13.1, with
€
(1 4+ M)card(G)?

in place of € and with Fy in place of F.
Let j € {1,2,...,n}. The key estimate is as follows: for g,h € G, we have

6:

Hegaj,huheg — egehgaj,huhH
< lleglllajnll|unes — engunl| + leglll|ajneng — engajnllllun]
< Mé + 4.
For h # 1 we have egeng = 0, so |lega; puney|| < (M + 1)0. For h = 1 we have

€g€hg = €g, SO ||egaj’huheg—egaj,huh|| < (M+1)6. (Since up, = 1 here, one actually
gets the estimate §.) Summing over g, h € G, we get

Zg heiC9inUheg = Z egajiur || < card(G)*(M +1)5 = e.
’ geG

Using

b = Z aj pUp, Z eqg =1, up =1, and E(bj) = ajq,
heG geG

we can rewrite this inequality as

Hzgeaegbjeg - E(bJ)H <eg,

which is the desired estimate. O
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Proof of Proposition 13.13. For g € G, following Notation 8.7, let u, € C*(G, A, )
be the standard unitary in the crossed product.

Let J C C*(G, A, ) be an ideal. Set I = J N A.

We first claim that I is a G-invariant ideal in A. It is obvious that I is an ideal
in A. Let g € G and a € I. Certainly a,(a) € A, and a,(a) = ugauy, which is in
J since a € J. The claim is proved.

By Theorem 8.32, we can identify C*(G, I, a) with an ideal in C*(G, A, ). We
next claim that C*(G, I,a) C J. Solet a € C*(G, I, a). Since G is finite, there are
ag € I for g € G such that a = 3_ _ agug. Since the elements ag are in J and J is
an ideal in C*(G, A, ), it follows that a = dec agug € J. The claim is proved.

Let E: C*(G, A,a) — A be the standard conditional expectation. We claim that
E(J)C . SoletacJ,and let € > 0. Lemma 13.14 provides mutually orthogonal

projections e, € A for g € G such that > e, =1 and

HE(a) - deaegaegH <e.

Since > . egaeq € J and € > 0 is arbitrary, it follows that E(a) € J. The claim
follows.

We finish the proof by showing that J C C*(G, I, «). Let a € J. Choose a4 € A
for g € G'such that a =} 5 agu,. For g € G, we have auj € I, so ay = E(auy) €
I by the previous claim. Therefore a =

gec Agug € C7(G, I, a). O

The Rokhlin property for finite groups was used in noncommutative von Neu-
mann algebras before it was used in noncommutative C*-algebras. It was first
used there for the purpose of classification of actions on the hyperfinite factor of
type II; [131]. In that situation, pointwise outerness implies the Rokhlin property,
which is far from the case for C*-algebras. The Rokhlin property has been used
for classification of actions on C*-algebras; for a brief survey, in [207] see Theo-
rems 2.10-2.13 and the preceding discussion. That it has strong consequences for
classification of crossed products was only realized very late. We show (Theorem
2.2 of [208]) that if G is finite, A is a unital AF algebra, and o: G — Aut(A) has
the Rokhlin property, then C*(G, A, «) is AF. Thus, crossed products by actions
with the Rokhlin property preserve classifiability in the sense of Elliott’s original
AF algebra classification theorem [70].

Theorem 13.15 (Theorem 2.2 of [208]). Let A be a unital AF algebra. Let
a: G — Aut(A) be an action of a finite group G on A which has the Rokhlin
property. Then C*(G, A, «) is an AF algebra.

The basic idea is as follows. Let e, € A, for ¢ € G, be Rokhlin projections.
Let uy € C*(G, A, a) be the canonical unitary implementing the automorphism
a4 (Notation 8.7). Then wy,j, = ugp-1e; defines an approximate system of matrix
units in C*(G, A, «). (This formula is derived from the formula (10.1) for v, in
Example 10.8.) Let (vg.1)g,nec be a nearby true system of matrix units. Using the
homomorphism M, ® e;Ade; = C*(G, A, a) given by vy, @ d — vy 1dv1 1, one can
approximate C*(G, A, a) by matrix algebras over corners of A. A more detailed
discussion is given after the statement of Lemma 13.19.

We begin with a semiprojectivity lemma (Lemma 2.1 of [208]), whose proof we
omit. The proof uses the kinds of methods (functional calculus) that go into the
proof of Lemma 11.7, but is more work.
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Lemma 13.16. Let n € Z~. For every € > 0 there is § > 0 such that, whenever
(ej,k)1<j,k<n is & system of matrix units for M,,, whenever B is a unital C*-algebra,
and whenever wj i, for 1 < j,k < n, are elements of B such that ||w}, —wy ;|| <§
for 1 < j, k < n, such that ||wj, & W), ks —0jy ke, Wi, ko || < O for 1 < gy, jo, k1, ko < n,
and such that the w; ; are orthogonal projections with E?Zl w;; = 1, then there
exists a unital homomorphism ¢: M,, — B such that p(e; ;) = w;; for 1 <j<n
and [|p(ejr) —wjk|| <eforl<jk<n.

Exercise 13.17. Prove Lemma 13.16.

Whenever we have a unital homomorphism v¢: M,, — A, then A has a tensor
factorization as M,, ® B, in which B is the corner of A corresponding to the image
under ¥ of a rank one projection in M,,.

Lemma 13.18. Let A be a unital C*-algebra, let S be a finite set, and let
vo: L(I*(S)) — A be a unital homomorphism. Let (vs;)stes be the standard
system of matrix units in L(I2(S)) (as in Notation 10.7, except that they were
called e, there). Let so € S, and set e = p(vs,,s,). Then there is an isomorphism
¢: L(I*(S)) ® eAe — A such that for all s, € S and a € eAe, we have

@(Us,t 0y a) = ¢0<U8730)a@0(7]80»t)'

Proof. To check that there is such a homomorphism, it suffices to show that

[‘PO (Vs,s50) @0 (USO,t)] "= %0 (Ut,s())a*wo(vs(),ﬁ
for s,t € S and a € eAe, and that

[900 (Uslyso)alwo(vso,tl )] [900 (1)52,80)0‘2900 (vso,t2)]

_ [@O(Uslyso)ala%o@(vsoh)} S2 =11
0 S92 75 tl

for s1,s9,t1,t2 € S and a1, as € eAe. Both these are immediate.
For surjectivity, let a € A. Then one easily checks that

@ (Zs,tesv‘” ® wo(vso,s)a%(vt,so)) =a.

For injectivity, suppose that a5, € eAe for s,t € S, and that

0 (2, estur Baur) =0

For s,t € S, multiply this equation on the left by ¢o(vs,s) and on the right by
wo(ve,s,) tO get
0= @(Uso,so)as,tw(vsoyso) = Gs,t-

Since this is true for all s,t € .S, injectivity of ¢ follows. O

Lemma 13.19. Let G be a finite group, and set n = card(G). Then for every e > 0
there is 6 > 0 such that the following holds. Let (G, A, «) be a unital G-algebra,
let (eg)gcc be a family of orthogonal projections in A, and let F' C A be a finite
set such that ||a|| < 1 for all @ € F. Suppose that:

(1) |lag(en) —egnl| < 6 for all g,h € G.
(2) |lega — aey|| < 6 for all g € G and all a € F.

(3) deG eg = 1.
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For g € G let ugy be the standard unitary of Notation 8.7. Then there exists a unital
homomorphism ¢: M, ® e;Ae; — C*(G, A, a) such that for every a € FU{u,: g €
G}, we have dist(a, ¢(L(I*(G)) ® e1Ae1)) < e, and such that (using standard
matrix unit notation) for every a € e; Ae; we have ¢(e11 ® a) = a.

To make clear what is happening, suppose that in the hypotheses of Lemma 13.19
we actually had:
(1) ag(en) =egn for all g,h € G.
(2) eqa =aegy for all g € G and all a € F.
(3) ZgEG e.’] =1
We use L(I2(G)) instead of M,,. The same computation as in Example 10.8 (where
we showed that if G is discrete then C*(G, Co(G)) = K(I2(Q))) shows that if we
define wy;, € C*(G,A,a) by wgn = equgp—1 for g,h € G (compare with equa-
tion (10.1)), then the wg ; form a system of matrix units in C*(G, A, ). That is,
letting (vg,1)g,nec be the standard system of matrix units in L(I?(G)) (as in Nota-
tion 10.7, except that they were called e; j there), there is a unital homomorphism
vo: L(I*(G)) — C*(G, A, «) such that ¢o(vyn) = wyy for all g,h € G.
The elements u, are already in the range of ¢o. Indeed, we have wy, 4-1, = expug,

SO
Ug = epU —SO v —1 )
4 Z h®g O(ZhGG h,g="h

heG

Since @o(v1,1) = e1 € A, we have e;Ae; C e1C*(G, A, )eq, and we can apply
Lemma 13.18 to get a unital homomorphism ¢: L(I*(Q)) ® e; Ae; — C*(G, A, ).
Suppose now that a € A commutes with e, for all g € G. Then

a= Z eqgaeg = Z Qg (elagl(a)el).
geG geG

Applying the formula for ¢ in Lemma 13.18, we get

® (degv979 ® elagl(a)el> = Z egugelagl(a)elu;eg

geG

= Z €gQy (elag_l(a)el)eg
geG

= Z Qy (elogl(a)el) =a.
geG

In the actual proof, many of the equations in the computations above become
statements that the norm of the difference between the two sides is small.

Proof of Lemma 13.19. We will use L(I>(G)) instead of M,,; the lemma as stated
will follow by choosing a bijection from G to {1,2,...,n}. As will be seen later, we
require that this bijection send the identity of G to 1.

Set eg = €/(4n). Choose § > 0 according to Lemma 13.16 for n as given and for
€0 in place of . Also require 6 < e/[2n(n+1)]. Assume that (eg)4ec¢ is a family of
orthogonal projections in A and that F' C A is a finite set such that the hypotheses
(1), (2), and (3) of the lemma hold for this value of 6. Define wg = egugy,-1 for
g,h €G.
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We claim that the wg j form a d-approximate system of n x n matrix units in
C*(G, A, o). We estimate:

[wyg.n=whgll = llug,-reg—entung—1[| = l[eg—ugn-1enug, 1| = lleg—agn-1(en)|| < 9.
Also, using egep, = g pep, for g, h € G at the second step,

ngl,hlwgz,hz - 6927h1w91,h2 H = Hegluglhl’legzquhgl - 692,/11 egluglh;I H
= Hegluglhflegzugghgl T €01€ gy Mg hT P gahy ! H
= Hegl (uglhfle.‘hu;lh;l - eg1hf1gz)u91hflgzh;1 H
= ||6g1 (aglh;1(6g2) - eglhflg2)uglh;1g2h;1 || < 0.

Finally, deG Wy g = deG eg = 1. This proves the claim.

Let (vg,1)g,nec be the standard system of matrix units in L(I*(G)) (as in Nota-
tion 10.7, except that they were called e, ;, there). By the choice of ¢, there exists a
unital homomorphism ¢g: L(I?(G)) = C*(G, A, «) such that ||po(vgn)—wg sl < €o
for all g,h € G, and @g(vg,4) = €4 for all g € G. Since po(v1,1) = e1 € A C
C*(G, A, a), we can restrict the homomorphism of Lemma 13.18 from L(I?(G)) ®
e10%(G, A, a)e; to the subalgebra L(I*(G)) ® e;Ae;. We get a unital homomor-
phism ¢: L(I*(G))®e1de; — C*(G, A, a) such that o(vy n®a) = ¢o(vg.1)ape(vin)
for g,h € G and a € e;Ae;. Since po(v1,1) = ex and we identify 1 € G with
1€{1,2,...,n}, the relation @(61,1 ® a) = q for a € e1 Ae; is immediate.

We complete the proof by showing that every element of S is within € of an
element of the algebra D = ¢(L(I*(G)) ® e Aey).

For g € G we have ), . wo(vgn,n) € D and, using >, s en =1,

lug =", _potng-)| £ 3 llenuy = @o(vng-1a)]

heG

= Z [Wh,g-1h — Po(Vn,g-1n)|| < meo <e.
heG

Now let a € F. Set

b= Z Vg,g ® €10y, (a)er € M, @ €1 Aey.
geG

Using |legaen|| < |lega — aegl| + ||aegen|| = |lega — aegy|| at the third step, we get

13.1 Ha—z egqae H = HZ eqae —Z eqae H
( ) geg 9779 ghec 9 h geq 9°°9

< Z llegaen|| < n(n —1)0.

g#h
Combining [le; — o, ' (eg)|| < 6 for all g € G and [Jal| <1 for all a € F, we get
(13.2) ||610£;1((1)81 - a;l(egaeg)H < 26.

Also, for g € G we have, taking adjoints at the first step,

(13.3) llgo(vg)er —uger] = llerpo(vig) — efugll < llexllllwo(v1,g) — wigll < eo.
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For a € F, we use (13.3) and ||a|| < 1 at the second step, (13.2) at the third step,
and (13.1) at the fifth step, to get

la=e®ll = [a=>" _ eolvs)era; @erpo(wr)
< 2neg + Ha — decugela;(a)elqu

< 2negg + 2nd + Ha - Z eGugagl(eQaeQ)u;H
g

= 2neg + 2nd + Ha - deGegaeQH
< 2neop+2nd +n(n—1)0 <e.

This completes the proof. (Il

Proof of Theorem 13.15. We prove that for every finite set S C C*(G, A, «) and
every € > 0, there is an AF subalgebra D C C*(G, A, «) such that every element
of S is within € of an element of D. It is then easy to use Theorem 2.2 of [30] to
show that C*(G, A, a) is AF.

It suffices to fix a set T which generates C*(G, A, ) as a C*-algebra, and to
consider only finite subsets S C T. Thus, we need only consider S of the form S =
FU{ug: g € G}, where F is a finite subset of the unit ball of A and u, € C*(G, A4, «)
is the canonical unitary implementing the automorphism a4 (Notation 8.7). So let
F C A be a finite subset with |ja]| < 1 for all @ € F and let € > 0. Choose § > 0
as in Lemma 13.19 for ¢ as given. Apply the Rokhlin property to « with F' as
given and with ¢ in place of €, obtaining projections e, € A for g € G. Define
Wg.n = egugp—1 for g,h € G. Set n = card(G), and let ¢: M, ® e;Ae; — A be the
homomorphism of Lemma 13.19. It is well known that a corner of an AF algebra
is AF, and that a quotient of an AF algebra is AF, so D = ¢(M,, ® e;Ae;) is an
AF subalgebra of C*(G, A, @) such that for every a € F U {uy: g € G}, we have
dist (a, (M, ® elAel)) < e. This completes the proof. O

We summarize a number of other theorems related to Theorem 13.15 which have
been proved in [187] and elsewhere.

Crossed products by actions of finite groups with the Rokhlin property preserve
the following classes of C*-algebras:

(1) Various other classes of unital but not necessarily simple countable direct
limit C*-algebras using semiprojective building blocks, and in which the
maps of the direct system need not be injective:

(a) AT algebras (Corollary 3.6(1) of [187]).

(b) AT algebras (Corollary 3.6(2) of [187]).

(¢) Unital direct limits of one dimensional noncommutative CW complexes
(Corollary 3.6(4) of [187]).

(d) Unital direct limits of Toeplitz algebras, a special case of the sort
studied in [158] except not necessarily of real rank zero (Example 2.10
and Theorem 3.5 of [187]).

(e) Various other classes; see Section 2 and Theorem 3.5 of [187] for details.

(2) Simple unital AH algebras with slow dimension growth and real rank zero
(Theorem 3.10 of [187]).
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(3) D-absorbing separable unital C*-algebras for a strongly self-absorbing C*-
algebra D (Theorem 1.1(1) and Corollary 3.4(i) of [113]). (See [113] for the
definition of a strongly self-absorbing C*-algebra.)

) Unital C*-algebras with real rank zero (Proposition 4.1(1) of [187]).

) Unital C*-algebras with stable rank one (Proposition 4.1(2) of [187]).

) Separable nuclear unital C*-algebras whose quotients all satisfy the Uni-
versal Coefficient Theorem (Proposition 3.7 of [187]).

(7) Unital Kirchberg algebras satisfying the Universal Coefficient Theorem
(Corollary 3.11 of [187]).

(8) Separable unital approximately divisible C*-algebras (Corollary 3.4(2) of
[113], which also covers actions of compact groups; also see Proposition 4.5
of [187)).

(9) Unital C*-algebras with the ideal property and unital C*-algebras with
the projection property ([194]; also see [194] for the definitions of these
properties).

(10) Simple unital C*-algebras whose K-theory:
(a) Is torsion free.
(b) Is a torsion group.
(c) Is zero.
(Theorem 2.6(11) of [207]; the proof of this part is in the discussion after
Theorem 2.7 of [207]. The main part of the proof comes from Theorem 3.13
of [124].)
We now give some examples to show that the Rokhlin property is rare. The
proofs depend implicitly or explicitly on K-theory. For the first three, we use the
restriction in the next lemma.

Lemma 13.20. Let A be a unital C*-algebra with a unique tracial state 7, let G
be a finite group, and let a: G — Aut(A) be an action of G on A which has the
Rokhlin property. Then there exists a projection p € A such that 7(p) = card(G)~*.

Proof. In Definition 13.1, take ¢ = 1 and ' = @. We get projections e, for g € G
such that, in particular:

(1) |lag(er) —egll <1 for all g € G.

(2) Ygecg =1
It follows from (1) and Lemma 11.7 that a4(e1) is Murray-von Neumann equivalent
to eq4 for all g € G. Therefore 7(ey) = 7(agy(e1)) by Lemma 11.33(1). Since 7 is
unique, we have T oay = 7 for all g € G. So 7(ey) = 7(e1) for all g € G. It follows

that
1

T(en) = card(G)’
This completes the proof. ([

Existence of an action of G with the Rokhlin property implies much stronger
restrictions on the K-theory than are suggested by this result, or by the methods
used in Proposition 13.24 and Proposition 13.25 below. See Theorem 3.2 of [125].

Example 13.21. Let § € R\ Q, and let Ay be the rotation algebra, as in Ex-
ample 3.10. Tt is known (Proposition VI.1.3 of [52]) that Ay has a unique tracial
state 7. Moreover, for every projection p € Ay, one has 7(p) € Z + 0Z C R. (See
Theorem VI.5.2 of [52]; for less technical proofs relying on the Pimsner-Voiculescu
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exact sequence in K-theory, see the Appendix in [221] and the general theory devel-
oped in [80], specifically Example IX.12 there.) In particular, there is no n € Zso
with n > 2 such that there is a projection p € Ay with 7(p) = % It follows from
Lemma 13.20 that there is no action of any nontrivial finite group on Ay which has
the Rokhlin property.

Example 13.22. Let A be the 2°° UHF algebra. Then A has a unique tracial
state 7. Moreover, for every projection p € A, one has 7(p) € Z[%] C R. (This is
really a statement in K-theory, but there is enough in Section 11 to give a direct
proof. See below.) It follows from Lemma 13.20 that the only finite groups G which
can possibly have actions on A with the Rokhlin property are groups whose order is
a power of 2. In particular, there is no action of Z/3Z on A which has the Rokhlin
property.

We prove the statement about traces of projections. Let p € A be a projection.
Choose § > 0 as in Lemma 11.12 for ¢ = 1. By the direct limit description of A,
there are n € Z>o and a unital subalgebra B C A with B = My~ such that
dist(p, B) < §. By the choice of ¢ using Lemma 11.12; there is a projection g € B
such that ||p — ¢|| < 1. We have p ~ ¢ by Lemma 11.7, so 7(p) = 7(¢) by Lemma
11.33(1). The restriction of 7 to B must be the normalized trace on Man, so 7(q)
is an integer multiple of 2% Therefore so is 7(p), as desired.

Example 13.23. The same reasoning as in Example 13.22 shows that there is no
action of Z/2Z on the 3°° UHF algebra which has the Rokhlin property.

The next two examples depend much more heavily on K-theory, and we therefore
assume basic knowledge of K-theory.

Proposition 13.24. There is no action of any nontrivial finite group on O, which
has the Rokhlin property.

Proof. Let G be a nontrivial finite group, and let a: G — Aut(O4) be an action
with the Rokhlin property. The computation Ky(Oy) = Z is Corollary 3.11 of [48].
The fact that [1] is a generator can be read from the proof there and the proof of
Proposition 3.9 of [48]. It follows that every automorphism of O, is the identity
on Ko(Ox). Now apply Definition 13.1 with F' = & and ¢ = 5. We get projections
eg € Ox for g € G such that |le, — ay(er)|| < 3 for g € G and > gec s = 1.
By Lemma 11.7, the inequality implies [eg] = [ag4(e1)] in Ko(Oo); since ag4 is the
identity on Ko(Oc), it follows that [e4] = [e1]. From }  _,e, = 1 we therefore
get card(G)le1] = [1] in Kp(Ox). Since Ko(Ou) = Z via n +— nl[l], this is a
contradiction. O

Proposition 13.25. The only finite groups G which can possibly have actions
on O3 with the Rokhlin property are groups of odd order.

Proof. The proof is similar to that of Proposition 13.24. Let G be a finite group
with even order, and let a: G — Aut(O3) be an action with the Rokhlin property.
The computation Ko(O,,) = Z/(n — 1)Z is Theorem 3.7 of [48]; in the proof it is
shown that [1] is a generator. It follows that every automorphism of O, is the
identity on K¢(O,). In particular, Ko(Os) = Z/2Z and ()« is the identity on
Ky(Os3) for all g € G. Apply Definition 13.1 with F' = & and ¢ = % As in the
proof of Proposition 13.24, one gets card(G)[e1] = [1] in Ko(Os3). Since card(G) is
even, this implies [1] = 0 in Ky(O3), a contradiction. O
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14. THE TRACIAL ROKHLIN PROPERTY FOR ACTIONS OF FINITE GROUPS

As was discussed in Section 13, there are very few actions of finite groups which
have the Rokhlin property. The tracial Rokhlin property (Definition 14.1 below)
is much more common. The differences are discussed in several places in Section 3
of [207], and an illuminating example is given in Exercise 14.11.

The tracial Rokhlin property is still very useful in classification. Indeed, if G
is finite, A is a simple unital C*-algebra with tracial rank zero in the sense of Lin
(originally called “tracially AF”; see Definition 11.35 above), and a: G — Aut(A)
has the tracial Rokhlin property, then C*(G, A, «) has tracial rank zero. This is
Theorem 2.6 of [208] (Theorem 14.17 below). Lin has proved (Theorem 5.2 of [153])
that simple separable unital nuclear C*-algebras with tracial rank zero and which
satisfy the Universal Coefficient Theorem are classifiable. Thus, this result can be
used for classification purposes. For example, it played a key role in the proof [65]
that the crossed products by the actions of Example 3.12 are AF (except that this
was known earlier for the action of Z/27Z).

It is not true the crossed products of simple unital AF algebras by actions of
finite groups with the tracial Rokhlin property are AF. See Sections 3 and 4 of [209].
The actions used are those in Example 3.29, Exercise 10.23, and Exercise 10.24.

Ironically, Theorem 2.6 of [208] was proved before Theorem 2.2 of [208] (the AF
algebra and Rokhlin property version).

It is presumably not sufficient for classification purposes to just consider point-
wise outer actions. Example 12.4 shows that the crossed product by a pointwise
outer action of a finite group on a simple unital AF algebra need not have real
rank zero; in particular, by Theorem 11.38, it need not have tracial rank zero. Ex-
ample 12.5 shows that the crossed product by a pointwise outer action of a finite
group on a nonsimple unital C*-algebra with stable rank one need not have stable
rank one. These results suggest that crossed products by pointwise outer actions of
finite groups might well not respect classifiability, although no examples are known.
Although we will not pursue this direction in these notes, there are useful weaken-
ings of the tracial Rokhlin property which are stronger than pointwise outerness.
For example, see Definition 5.2 of [111] (and also Definition 6.1 of [111] for actions
of Z and [182] for actions of countable amenable groups).

Definition 14.1 (Definition 1.2 of [208]). Let G be a finite group, let A be an
infinite dimensional simple unital C*-algebra, and let ov: G — Aut(A) be an action
of G on A. We say that « has the tracial Rokhlin property if for every finite set
F C A, every € > 0, and every positive element € A with ||z|| = 1, there are
nonzero mutually orthogonal projections e, € A for g € G such that:

(1) |lag(en) —egnll < e for all g,h € G.

(2) |lega — aeg|| < e forall ge G and all a € F.

(3) Withe = dea eg, the projection 1—e is Murray-von Neumann equivalent
to a projection in the hereditary subalgebra of A generated by x.

(4) With e as in (3), we have |jexe| > 1 —e.

When A is finite, the last condition is redundant. (See Lemma 1.16 of [208], which
is Lemma 14.14 below.) However, without it, the trivial action on Oy would have
the tracial Rokhlin property. (It is, however, not clear that this condition is really
the right extra condition to impose.) Without the requirement that the algebra
be infinite dimensional, the trivial action on C would have the tracial Rokhlin
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property (except for the condition (4)), for the rather silly reason that the hereditary
subalgebra in Condition (3) can’t be “small”.

Remark 14.2 (Remark 1.4 of [208]). Let G be a finite group, let A be an infinite
dimensional simple separable unital C*-algebra, and let a: G — Aut(A) be an
action of G on A. If « has the Rokhlin property, then « has the tracial Rokhlin

property.

Lemma 14.3 (Lemma 1.13 of [208]). Let G be a finite group, let A be an infinite
dimensional simple separable unital C*-algebra, and let a: G — Aut(A) be an
action which has the tracial Rokhlin property. If A does not have property (SP),
then a has the Rokhlin property.

Proof. Suppose A does not have property (SP). Then there is € Ay \ {0} which
generates a hereditary subalgebra which contains no nonzero projections. So the
projection e in condition (3) must be equal to 1. O

As with the Rokhlin property (see Theorem 13.2), one can strengthen the state-
ment.

Theorem 14.4 (Proposition 5.27 of [211]). Let G be a finite group, let A be an
infinite dimensional simple separable unital C*-algebra, and let v: G — Aut(A) be
an action of G on A. Then « has the tracial Rokhlin property if and only if for
every finite set F' C A and every € > 0, there are mutually orthogonal projections
eg € A for g € G such that:

(1) ag(en) =egpn for all g,h € G.

(2) |lega — aey|| < € forall ge G and all a € F.

(3) Withe =} s ey, the projection 1 —e is Murray-von Neumann equivalent
to a projection in the hereditary subalgebra of A generated by x.

(4) With e as in (3), we have |lexe| > 1 —e.

The proof uses the same methods as that of Theorem 13.2, and, for the same
reasons as given in the discussion there, we do not use the stronger condition in
these notes.

We give two other conditions for the tracial Rokhlin property. We omit both
proofs.

The first uses an an assumption on comparison of projections using traces to
substitute an estimate on the trace of the error projection for condition (3) in
Definition 14.1, and finiteness and Lemma 14.14 below to omit condition (4). Tt is
the motivation for the term “tracial Rokhlin property”.

Proposition 14.5 (Lemma 5.2 of [65]). Let G be a finite group, let A be an
infinite dimensional simple separable unital C*-algebra, and let a: G — Aut(A) be
an action of G on A. Assume that A is finite, that A has property (SP), and that
the order on projections over A is determined by traces. Then « has the tracial
Rokhlin property if and only if for every finite set S C A and every £ > 0, there
exist orthogonal projections e, € A for g € G such that:

(1) |lag(en) —egnll < e for all g,h € G.

(2) |lega —aeg|| < e forall ge G and alla € S.
(3) Withe=3" _eg we have 7(1 —e) < ¢ for all 7 € T(A).
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The second applies to C*-algebras with tracial rank zero (Definition 11.35) and
a unique tracial state. (There should be an analog without requiring uniqueness
of the tracial state, but we don’t know what it is.) It relates the tracial Rokhlin
property for a to the corresponding action o’ on the factor of type II; gotten
by applying the Gelfand-Naimark-Segal construction to the tracial state. Since
this factor is hyperfinite, and since pointwise outer actions of finite groups on the
hyperfinite type II; factor necessarily have the von Neumann algebra version of the
Rokhlin property, it says that « has the tracial Rokhlin property if and only if o
has the Rokhlin property. Its proof proceeds via Theorem 5.3 of [65], a criterion for
the tracial Rokhlin property for an action of a finite group on a simple C*-algebra
with tracial rank zero which looks very similar to Definition 14.1 except that it
uses trace norms in place of the usual norm. This criterion does not depend on
uniqueness of the tracial state.

Theorem 14.6 (Theorem 5.5 of [65]). Let G be a finite group, let A be an in-
finite dimensional simple separable unital C*-algebra, and let a: G — Aut(A) be
an action of G on A. Assume that A has tracial rank zero and has a unique tra-
cial state 7. Let m,: A — B(H,) be the Gelfand-Naimark-Segal representation
associated with 7, and for 8 € Aut(A) let 5” denote the automorphism of 7. (A)”
determined by 3. Then a has the tracial Rokhlin property if and only if oy is an
outer automorphism of m.(A)"” for every g € G\ {1}.

Proposition 13.12 is also valid for actions with the tracial Rokhlin property, with
essentially the same proof.

Lemma 14.7 (Lemma 1.5 of [208]). Let G be a finite group, let A be an infinite di-
mensional simple separable unital C*-algebra, and let a: G — Aut(A) be an action
which has the tracial Rokhlin property. Then « is pointwise outer (Definition 12.1).

Proof. Let g € G\ {1}; we prove that ag4 is outer. So let u € A be unitary. Apply
Definition 14.1 with F' = {u}, with ¢ = %, and with = 1. Then e; and e, are
orthogonal nonzero projections, so

1

lag(er) —ueru™|| = [leg —erll = [lag(er) = eg]| = [lueru” —er][ > 1= 2 —

1

- =0.
2 2
Therefore oy # Ad(u). Since u is arbitrary, this shows that ay is outer. O

We will prove results about the tracial Rokhlin property below. First, we give
an example for which it is easy to see (using several of the results below) that the
tracial Rokhlin property holds, but where the Rokhlin property fails.

Example 14.8. For k € Z~, define vy € M3k to be the unitary
vp =diag(1, 1, ..., 1, =1, =1, ..., —1) € Mg,

in which the diagonal entry 1 occurs %(3 4 1) times and the diagonal entry —1
occurs (3% — 1) times. Set A = ®j-; Mz, which is just a somewhat different

expression for the 3°° UHF algebra. Define

= ®Ad(vk) € Aut(A).

n=1
Then p is an automorphism of order 2. Let a: Z/2Z — Aut(A) be the action
generated by p. Then « is a product type action, as in Example 3.25. It follows
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from Example 13.23 that o does not have the Rokhlin property. However, we will
show that a does have the tracial Rokhlin property.

Set r(k) = £(3% —1). It is easy to check that vy is unitarily equivalent to the
block unitary

0 M,y O
wk = 1M,,,(k) O O € Mgk.
0 0 1c

It follows (Exercise 13.7) that u is conjugate to the automorphism

V= é Ad(wk),
n=1

and therefore that « is conjugate to the action 3: Z/27Z — Aut(A) generated by v.
We claim that 8 has the tracial Rokhlin property. It will follow that a does too.
Let S C A be finite and let ¢ > 0. Let 7 be the unique tracial state on A.

Appealing to Proposition 14.5, we have to find orthogonal projections eg,e; € A

such that:

(1) ||lv(eo) —e1]] < e and |v(e1) — eol| < e.
(2) |leoa — aep|| < € and ||era —aeq]| < e for alla € S.
(3) T(1—ep—e1) <e.
Write S = {a1,a2,...,an}. For n € Z~¢ set A, = @j_, M3 and identify A,

with its image in A. Since Un€Z>O A,, is dense in A, there are n and by, bs,...,by €
A,, such that -
€ € €
by —ail <3, bz —a2fl <5, ooy llon —an] <35

We can increase n, so we may also assume that 37771 < .
Using subscripts to indicate block sizes on the diagonals, set

17'(n+1) 0 0

Po = 0 Or(n+1) 0 S Mgn+1
0 0 01
and
Or(n+1) 0 0
p1= 0 1r(n+1) 0 € Msn+1.
0 0 01
Then
Wpy1powy g =p1 and  wWhppprwi, g = Po,
and the normalized trace of 1 — py — p; is
1 1
Srnt1)+1 3ol -
Set
eo = 1la, ®po and e1 = 1la, ®p1,
SO

€p,e1 € A, Q Msznt1 = An+1 C A.
On A,, ® M3nt1, the automorphism v has the form Ad(( heg We) ® wn_H), S0
v(ep) = e and v(e1) = eg.

Condition (1) follows trivially.
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The tracial state 7 restricts to the unique tracial state on Mgn+1, s0 7(1—eg—eq)
is the normalized trace of 1 — py — p1, and is thus equal to 37"~ ! < ¢. This is
condition (3).

It remains to check (2). For k € {1,2,..., N}, the element b;, actually commutes
with eg and eq, so

& I3
leoar — axeoll < [leolll|ar — bxl| + [|ar — b ll[eoll < 3t5=¢

This completes the proof that o has the tracial Rokhlin property.

Remark 14.9. The matrix sizes in Example 14.8 grow rapidly, and the number
of diagonal entries equal to 1 and the number of diagonal entries equal to —1 are
very close. This looks special. It actually isn’t. It turns out that the action « of
Example 14.8 is conjugate to the action generated by

1 0 0

p:éAd 0 1 0 on éMg.
n=1 0 0 -1 n=1

So the action generated by p has the tracial Rokhlin property.

Exercise 14.10. Prove the conjugacy statement in Remark 14.9 by combining
suitable finite collections of tensor factors in the definition of p.

The following exercise (which requires work, and also requires some of the results
below) gives some idea of the differences between the Rokhlin property, the tracial
Rokhlin property, and pointwise outerness.

Exercise 14.11 (Section 2 of [209]). Let D be a UHF algebra and let o € Aut(D)
be an automorphism of order two, of the form

(oo} (oo}
D = ®Mk(n) and o= ®Ad(pn —Gn),
n=1 n=1
with k(n) € Z-o and where p,, g, € My, are projections with p, + ¢, = 1 and

rank(p,) > rank(gy). Define

A, = rank(p,,) — rank(g, ) >0
rank(p,,) + rank(g, )

for n € Z~, and, for m < n, define

A(m,n) = Apt1dmyz - An and A(m,o00) = lim A(m,n).

n—oo
Prove the following:

(1) The action « has the Rokhlin property if and only if there are infinitely
many n € Zso such that rank(p,) = rank(g,,) (that is, A, = 0).

(2) The action « has the tracial Rokhlin property if and only if A(m,c0) =0
for all m.

(3) The action « is pointwise outer if and only if there are infinitely many
n € Zsq such that X\, <1 (that is, ¢, # 0).

Further prove that if (k(n))nez., is bounded and g, # 0 for all n € Z~¢, then «
has the tracial Rokhlin property.
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In Section 2 of [209], in each case various other equivalent conditions are proved,
involving tracial states, K-theory, or the dual action.

Example 3.12 of [207] contains a list of other interesting actions which have the
tracial Rokhlin property but not the Rokhlin property. They include the actions in
Example 3.29, Exercise 10.23, and Exercise 10.24.

We now show that when A is finite, the last condition in Definition 14.1 (part (4),
the requirement that ||exe|| > 1 — ) can be omitted. The next lemma comes from
an argument that goes back to Cuntz, in the proof of Lemma 1.7 of [48].

Lemma 14.12 (Lemma 1.14 of [208]). Let A be a C*-algebra with property (SP),
let © € Ay \ {0} satisfy ||z|| = 1, and let € > 0. Then there is a nonzero projection
p € xAx such that, for every nonzero projection ¢ satisfying ¢ < p, we have

llgz — zq|| < e, llgzq — ql| < &, and llgzql] > 1 —e.

Proof. Choose continuous functions g¢1,g2: [0,1] — [0,1] satisfying ¢,(0) = 0,
g1(t) = 1for t > 1 — 1¢, and |g1(t) — t| < £ for all ¢, and such that go(1) = 1
and g1g2 = g2. Define y = g (x) and 2z = go(x). These elements satisfy ||z —y|| <
and yz = z. Since 1 € sp(z), we have z # 0. Property (SP) provides a nonzero
projection p € zAz. Now suppose that ¢ is a nonzero projection such that g < p.
Since q € zAz, we have yqg = qy = q. So
5
lgz — 2ql| < 2llz —yll < 5 <e.
Moreover,

€
llgzq = all = llazq = ayall < o -yl < 7 <&,

whence also ||gzq|| > 1 —e. This completes the proof. O
Lemma 14.13 (Lemma 1.15 of [208]). Let A be an infinite dimensional finite
unital C*-algebra with property (SP). Let z € A, satisfy ||z|| = 1, and let € > 0.
Then there is a nonzero projection ¢ € xAx such that, for every projection e € A
satisfying 1 — e < ¢, we have |lexe|| > 1 —e.

Proof. We apply Lemma 14.12 with z'/2 in place of = and with £ in place of €.

Since x1/2Ax1/2 = z Az, this gives a nonzero projection p € xAx such that for every
nonzero projection ¢ < p we have, in particular,

||qx1/2q — qH < g and ||qx1/2 - x1/2q|| < %
Combining these estimates gives
(14.1) a2~ ql| < %

Using Lemma 11.21, choose a nonzero projection ¢ < p such that p—q # 0. Now let
e € A be a projection satisfying 1 —e 3 g and |leze| <1 —e. Using |la*a| = ||aa™|]
at the first and fourth steps and (14.1) at the second step, we get

4e 4e 4e €
lepell = llpepll < [|lp="/2ex'2p|| + o < ||a!/Zex/ || + = = flewe] + — <1 - .

So
1/2
le = e(1 = p)|| = llepll = lepe] 2 < (1 - £)"* <1.
By Lemma 11.8, we now get ¢ 3 1 —p. We have 1 — e 3 ¢ by assumption, so it
follows that 1 S 1 — (p — q). We have contradicted finiteness of A. O
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Lemma 14.14 (Lemma 1.16 of [208]). Let A be an infinite dimensional finite
simple separable unital C*-algebra, and let a: G — Aut(A) be an action of a finite
group G on A. Then « has the tracial Rokhlin property if and only if for every finite
set B C A, every € > 0, and every z € A, \ {0}, there are mutually orthogonal
projections e, € A for g € G such that:

(1) |lag(en) —egnll < e for all g,h € G.

(2) |lega — aeg|| < e forall ge G and all a € F.

(3) Withe = dec eg, the projection 1—e is Murray-von Neumann equivalent

to a projection in the hereditary subalgebra of A generated by x.

Proof. Since (1), (2), and (3) are all part of Definition 14.1, the tracial Rokhlin
property certainly implies the condition in the lemma. So assume the condition in
the lemma holds.

If A does not have property (SP), we can choose x € A \ {0} so that the hered-
itary subalgebra it generates contains no nonzero projections. Then the projection
e in condition (3) must be equal to 1. This shows that a has the Rokhlin property.
(This is the same proof as for Lemma 14.3.) Accordingly, we assume that A has
property (SP).

Let F' C A be finite, let € > 0, and let x € A, satisfy ||z|| = 1. Lemma 14.13
gives us a nonzero projection ¢ € xAz such that for all projections e € A with
1—e 3 q, we have ||exe|]| > 1 —e. Apply the hypothesis of the lemma with F and
as given and with ¢ in place of z. We get projections e, € A for g € G. As in (3),
define e = 3 ;€5 Then [exel > 1—¢ by the relation 1 —e 3 ¢ and the choice
of q using Lemma 14.13. This completes the proof. O

It is convenient to have a formally stronger version of the tracial Rokhlin prop-
erty, in which the defect projection is a-invariant. This is a weaker statement than
Theorem 14.4, but is much easier to prove.

Lemma 14.15 (Lemma 1.17 of [208]). Let G be a finite group, let A be an infinite
dimensional simple separable unital C*-algebra, and let a: G — Aut(A) be an
action of G on A which has the tracial Rokhlin property. Let F' C A be finite, let
e >0, and let x € A be a positive element with ||z|| = 1. Then there are mutually
orthogonal projections e, € A for g € G such that:

(1) |lag(en) —egnll < e for all g,h € G.

(2) |lega —aeg|| < e forall ge G and all a € F.

(3) Withe = deG eg, the projection 1— e is Murray-von Neumann equivalent

to a projection in the hereditary subalgebra of A generated by x.
(4) With e as in (3), we have |Jexe| > 1 —e.
(5) The projection e of (3) is a-invariant.

Proof. Without loss of generality ||a| < 1 for all a € F. Set

. e 1
= min _— .
£0 41720

Choose ¢ as in Lemma 11.12 with &g in place of €, and also require § < 5. Set
1)
" card(G)
Apply Definition 14.1 to a,, with F' and z as given, and with Jy in place of . Let
(Pg)gec be the resulting family of projections. Define p =3, - pn. For g € G we
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have
lag(p) = pll < llag(pn) — pgnll < card(G)dy < 6.
heG
Set

1
b= card(G) gEZGCVg(P)~

Then b is in the fixed point algebra A and

1
b1 < gy 2 lowto) =l <
geG
The choice of § using Lemma 11.12 means that there is a projection e € A% such
that |le — p|| < eo.
Since £y < 55, Lemma 11.9 provides a unitary v € A such that [v — 1] <
10/le — p|| < 10gp and wpv* = e. Now define e, = vpyv* for g € G. Clearly

lleg — pgll < 20eq. So, for g, h € G,
llag(en) — egnll < llen — pull + llegn — pgnll + [leg () — Pyl < 20e0 + 2020 + o < e.
For g € G and a € F, and using ||a]| < 1, we similarly get

llega — aeql| < 20e9 + 20eg + dp < €.

We have
(1 =€) = (1 =p)ll <20e0 <1,
so 1 —e~1—p, and is hence Murray-von Neumann equivalent to a projection in

the hereditary subalgebra of A generated by x. Finally,

2
He:ceHz||pxp||72||6*p||>1*§0725021757£>175.

This completes the proof. O

We adapt Lemma 13.19, the key step in the proof that crossed products of
AF algebras by Rokhlin actions are AF (Theorem 13.15), to the tracial Rokhlin

property.

Lemma 14.16. Let G be a finite group, and set n = card(G). Identify M, with
L(I*(G)), and let for g,h € G let ey, be the rank one operator on ?(G) given by
eg.né = (€, 0n)dy, as in Notation 10.7. Also, for g € G let u, be the standard unitary
of Notation 8.7. Then for every € > 0 there is 6 > 0 such that the following holds.
Let (G, A, ) be a G-algebra, let (eg)4ecc be a family of orthogonal projections, and
let F C A be a finite set such that ||a|| < 1 for all @ € F. Suppose that:

(1) |lag(en) —egnll < 6 for all g,h € G.

(2) |lega — aeg|| < 6 for all g€ G and all @ € F.

(3) The projection e =3° €4 is a-invariant.
Then there exists a unital homomorphism ¢: M, ® e;Ae; — eAe such that for
every a € FU{uy: g € G} there are

xr €M, ®e e and ye(l—e)A(l—e)

with ||[¢(z) + y] — a|| < &, and such that (using standard matrix unit notation) for
every a € ejAe; we have p(e11 ®a) =a.
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Proof. Apply Lemma 13.19 with § in place of ¢, getting a number § > 0, and further
require that 6 < e¢/(4n). Now let (G, A, a) be a G-algebra, let (e4)4cc be a family
of orthogonal projections, let F' C A is a finite set such that |ja|| <1 for all a € F,
and suppose that the conditions (1), (2), and (3) hold. Define e = »_ ; e,4. Using
eqge — eey = €4 for g € G, it is easy to check that ||egeae — eaeey|| < 0 for all g € G
and all @ € F. Since e is a-invariant, G acts on the algebra eAe. Call this action
B, and for g € G let v, € C*(G,eAe, §) be the standard unitary of Notation 8.7.
As usual, we let uy € C*(G, A, ) be the standard unitary in this crossed product.
One immediately checks that C*(G, eAe, () is a subalgebra of C*(G, A, «), in fact,
that C*(G, ede, B) = eC*(G, A, a)e, that u, commutes with e for all g € G, and
that vy, = euge.

With this in mind, apply the choice of § using Lemma 13.19 to the algebra eAe
and the finite set {eae: a € F'}. The result is a unital homomorphism

w: M, ® e;Ae; — C*(G, eAe, B)

such that for every a € F'U {uy: g € G}, we have
(14.2) dist (eae, p(M, ® e14er)) < g,
and ¢(e11 ® a) = a for all a € e;Ae;. This last condition is the last part of the
conclusion of the lemma.

We next claim that for all a € F'U {u,: g € G}, we have

(14.3) la—[eae+ (1 —e)a(l —e)]|| < %

For a = u4 with g € G, this is immediate since e commutes with u,. To prove the
claim for a € F, first estimate

llea — ae| < Z llega — aegq|| < card(G)d < Z
geG
Therefore c c
leal—) <= and (1~ e)ac] < £,
SO

Ha — [eae + (1 —e)a(l — e)]H < |lea(1 —e)|| + ||(1 — e)ae|| < %

Now let a € FU {u,: g € G}. Use (14.2) to choose z € M, ® e1Ae; such that
llo(x) —eae|| < 5. Set y = (1 —e)a(l —e). Then, using (14.3) at the second step,
we get

e €

llo(z) +y] — all < llp(@) = eae]| + [[[eae + (1 —e)a(l =€) —af < 5+ 5 =&,

as desired. This completes the proof. (I

Theorem 14.17 (Theorem 2.6 of [208]). Let G be a finite group, and let A be an
infinite dimensional simple separable unital C*-algebra with tracial rank zero. Let
a: G — Aut(A) be an action of G on A which has the tracial Rokhlin property.
Then C*(G, A, «) has tracial rank zero.

The proof will be given at the end of this section. As mentioned above, in [208]
the condition p # 0 was omitted in one of the ingredients, Proposition 2.3 of [208].
The basic idea is the same as that of the proof of Theorem 13.15. The main
difference is that there is a small “error projection” in both the definition of the
tracial Rokhlin property and the definition of tracial rank zero. The main technical
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complication is that when one carries out the obvious modification of the proof
of Theorem 13.15, what one gets is that the “error projection” in the definition
of tracial rank zero for the crossed product, which is supposed to be Murray-von
Neumann equivalent to a projection in a previously specified hereditary subalgebra
of C*(G, A, «), actually comes out to be Murray-von Neumann equivalent to a
projection in a previously specified hereditary subalgebra of A. A priori, this is not
good enough. The day is saved by the following theorem, which is a special case of
Theorem 4.2 of [127].

Theorem 14.18 (see Theorem 4.2 of [127]). Let G be a finite group. Let A be a
simple unital C*-algebra with property (SP). Let a: G — Aut(A) be a pointwise
outer action. Let B C C*(G, A, «) be a nonzero hereditary subalgebra. Then there
exists a nonzero projection p € B which is Murray-von Neumann equivalent to a
projection in A.

We omit the proof of Theorem 14.18. Instead, we give a proof of a special case
which is good enough for the purposes of this section, with some of the lemmas
given in greater generality. Our proof requires less work and uses methods closer
to those of these notes.

Definition 14.19. Let a: G — Aut(A) be an action of a locally compact group G
on a C*-algebra A. We say that « is minimal, or that A is G-simple, if the only
G-invariant (closed) ideals in A are {0} and A.

This definition generalizes the usual definition of minimality of a group action on
a locally compact Hausdorff space, which is given in Definition 2.1. We make three
brief comments. First, if A is simple (the case of most interest to us now), then
clearly A is G-simple. However, in Theorem 14.22, where we assume G-simplicity,
there is no simplification in the proof by assuming simplicity instead. Second, G-
simplicity is an elementary necessary condition for simplicity of the reduced crossed
product C¥*(G, A, a), since if I is a proper G-invariant ideal in A, then C*(G, I, «)
is a proper ideal in C}(G, A,«). (See Theorem 9.24(4).) Third, G-simplicity is
not a sufficient condition for simplicity of the reduced crossed product. Indeed,
the trivial action of a locally compact group G on C is obviously minimal, but the
reduced crossed product is C(G), which is usually not simple (in particular, never
simple if G is amenable and nontrivial).

We introduce a property of actions, not previously named, which we call Kishi-
moto’s condition after the paper [142] in which it appeared in close to this form.
We proceed via Kishimoto’s condition in this section for two reasons. First, it is
the first step in the proofs of two different results which we need here. Second, we
will want it again later, for proofs of these same results under weaker hypotheses.

Definition 14.20. Let a: G — Aut(A) be an action of a discrete group G on a
C*-algebra A. We say that a satisfies Kishimoto’s condition if for every positive
element x € A with ||z|| = 1, every finite set F' C G \ {1}, every finite set S C A4,
and every € > 0, there is a positive element ¢ € A with ||c|| = 1 such that:

(1) |lexe|| > 1 —e.

(2) |lebay(c)|| <eforallge Fandbe S.

This condition is essentially the conclusion of Lemma 3.2 of [142]. Tt is a kind
of freeness condition. For example, if A = C(X) and f € C(X) is a function such
that supp(f) Ng - supp(f) = @, then fbay(f) =0 for every y € C(X). It is shown
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in [142] that if A is simple and « is pointwise outer, then « satisfies Kishimoto’s
condition. In fact, as discussed there, weaker hypotheses suffice. (In [142], see
Lemma 3.2 and the second part of Remark 2.2.) We give here a much easier proof
of a special case of this fact, strengthening the hypotheses to the tracial Rokhlin
property. The fact that our hypotheses are unnecessarily strong is suggested by the
fact that we never use the condition in the tracial Rokhlin property which requires
that 1 — e be “small”.

We point out that a condition related to Kishimoto’s condition has been gener-
alized in [184] to conditional expectations on unital C*-algebras, with the reduced
crossed product situation corresponding to the standard conditional expectation
(Definition 9.18). The definition is near the beginning of Section 2 of [184]. In gen-
eral, outerness of the conditional expectation is stronger than pointwise outerness
of the action.

Lemma 14.21. Let G be a finite group, let A be an infinite dimensional simple
unital C*-algebra, and let o: G — Aut(A) be an action of G on A. Assume that
« has the tracial Rokhlin property (Definition 14.1). Then « satisfies Kishimoto’s
condition (Definition 14.20). In fact, the element a in the conclusion can be taken
to be a projection.

Proof. Let x € A be a positive element with ||z|| = 1, let S C A be finite, and let
e > 0. We may as well take the finite set F' C G\ {1} in Kishimoto’s condition to
be G'\ {1} itself.

Without loss of generality ¢ < 1. Set

n = card(G), M = max (1, 222 ||b|> , and €0 = min <M€—|— L ;) .

Apply the tracial Rokhlin property (Definition 14.1) with S U {«} in place of F,
with ¢ in place of €, and with = as given. Call the resulting family of projections

(eg)gec, and set e = deG eg.

\/\/e haVe
— E < E .
Hexe €g$€gH h||egxeh||

Since egep, = 0 for g # h, the term |legzep|| on the right is dominated by ||zes, —
epz|| < €. Therefore

Hexe - decegxegH < n(n —1)eo,
and
HzgeGegxegH > |lexe|l — Heme - deGegacegH >1l—egg—nn—1)gg>1—¢.

Since the elements ejxey, for g € G, are orthogonal, it follows that there is gg € G
such that ||eg,ze,, || > 1 —¢c. Set a = eg,. Since € < 1, we have ey, # 0, so ||a| = 1.
Now let b € S and let h € G\ {1}. Then ey epg, = 0, so
laban(a)|| = llegybon(egy )l = llegoban(egy) — €gyeng,bll
< Hego” : ”bH ) ”ah(ego) - ethH + Hego” : ”behgo - ehgobH

< Meg+e¢p <Le.

This completes the proof of Kishimoto’s condition. ([l



160 N. CHRISTOPHER PHILLIPS

The following two results are stated for discrete groups rather than merely for
finite groups. The finite group case is all that is needed here. The proofs when G
is finite are a bit simpler, because one can omit the step in which an element of
Cr(G, A, «) is approximated by an element of C.(G, A), eliminating some of the
estimates, but otherwise the proofs are the same.

The next theorem is contained in Theorem 3.1 of [142], and follows the proof of
Theorem 3.2 of [67].

Theorem 14.22. Let A be a C*-algebra, and let a: G — Aut(A) be a minimal
action (Definition 14.19) of a discrete group G on A. Assume that « satisfies
Kishimoto’s condition (Definition 14.20). Then CF(G, A, ) is simple.

Proof. Let J C C.(G,A) be a proper ideal. For g € G let uy be the standard
unitary of Notation 8.7.

We first claim that J N A is a G-invariant ideal in A. That it is an ideal is
clear. Let g € G. If A is unital, then u, € CJ(G, A, @), and for a € J N A we have
ag(a) = ugauy € JNA. In the general case, let (ex)xea be an approximate identity
for A. Then for A € A, the elements eyugy and ugey = ag4(ex)uy are in CF (G, A, a),
SO

ag(a) = liinag(e)\aeA) = liinuge)\aeAug e JNA.

The claim is proved.

We next claim that J N A = {0}. Since « is minimal, we need only rule out
A C J. Suppose A C J. Let (ex)rea be an approximate identity for A. For a € A
and g € G, we have au, = limy aeyuy € J. Therefore C.(G,A) C J, whence
J = C}(G, A,a). This contradiction proves the claim.

Let E: C}(G, A, a) — A be the standard conditional expectation, as in Defini-
tion 9.18. We now claim that if a € J then E(a*a) = 0. Given the claim, since
E is faithful (Proposition 9.16(4)), this implies that a*a = 0, whence a = 0. So
J = {0}, proving the theorem.

We prove the claim. Let a € J and let ¢ > 0. We show that ||E(a*a)| < e.
Choose y € C.(G, A) with ||y — al| so small that [|y*y — a*a|| < §. Then there are
a finite set F C G and elements b, € A for g € F such that y*y = > bguyg.
Without loss of generality 1 € F. We must have by = E(y*y) > 0. Also

(14.4) by = Ea™a)|| < [ly"y —a”al < §.

Suppose by = 0. Then (14.4) implies ||[E(a*a)| < e, as desired. So we may
assume by # 0.
Set

geF

1 €
_ -1
x=|bi||” b1 and 50—m1n<2 5 card(F))

Apply Kishimoto’s condition with F'\ {1} in place of F', with

S ={by: g€ F\{1}},
with x as given, and with g in place of €. Let ¢ be the resulting element.
We can now estimate

[ey™ye — cbic| = HZ eP\{1} chgugc HZQEF\{I} chgag(c)ug

< Y lebgagle)ll < card(F)ep < g~
geF\{1}
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Therefore, using ||c|| < 1,

€ & 2
llca*ac — ebic|| < ||a*a — y*y|| + ||cy™ye — cbic|| < £ + ===
Let m: CF (G, A, a) = C¥(G, A, «)/J be the quotient map. Since JNA = {0}, the
restriction 7|4 is injective, so ||7(cbic)| = ||cbic||. On the other hand, ca*ac € J,
so m(ca*ac) = 0. Thus
2
llcbic|| = || (cbic)|| = ||w(ebic — caac)| < ||cbic — ca®ac| < gg

The choice of ¢ and the relation gy < % imply that
llebrell > [[b1[(1 — 0) = 5lball.

Thus [|by|| < 2||cbic| < %. Combining this with (14.4), we get |E(a*a)|| < e. This
completes the proof. (I

The next theorem is contained in Theorem 4.2 of [127].

Theorem 14.23. Let A be a C*-algebra which has property (SP), and let a: G —
Aut(A) be an action of a discrete group G on A. Assume that « satisfies Kishimoto’s
condition (Definition 14.20). Then for every nonzero hereditary subalgebra D C
C} (G, A, «), there is a nonzero projection p € D which is Murray-von Neumann
equivalent to a projection in A.

The proof of Lemma 16.23 is very similar but done in an easier context, so one
may want to read the proof of that lemma first.

Proof of Theorem 14.25. Let E: C}(G, A, a) — A be the standard conditional ex-
pectation (Definition 9.18). Choose a € D4 \ {0}. Since E is faithful (Proposi-
tion 9.16(4)), we have E(a) # 0. By scaling, we may assume || E(a)|| = 1. Choose
y € Cc(G, A) with ||y — a'/?|| so small that [|y*y — a| < 1. Then there are a finite
set F C G and elements b, € A for g € F such that y*y = ) bgug. Without
loss of generality 1 € F. Set

geF

1
~ 2(card(F) +2)°
Apply Kishimoto’s condition with F'\ {1} in place of F, with S = {b,: g € F\{1}},
with = E(a), and with § in place of €. Let ¢ be the resulting element.
For g € G let u4 be the standard unitary of Notation 8.7. We can now estimate

levve = B el =[5,y otiae]| = |, oy cBoa(ch
< Z llebgag(c)|| < card(F')é.
geF\{1}

Therefore, using ||c|| < 1,
(14.5)  [leac — cB(a)e|| < 2[la —yy*|| + lley*ye — cE(y™y)ell < 5 + card(F)s.

Let f, fo: [0,1] — [0, 1] be the continuous functions which are linear on [0, 1—2J]
and [1 — 24, 1], and satisfy

f(0)=fo(0) =0, fo(1=20)=0, f(1-26)=1, and f(1)=fo(1)=1
Then ffo = fo. Also ||cE(a)c|| > 1 — 4, so fo(cE(a)c) # 0. Use property (SP)
to choose a nonzero projection e in the hereditary subalgebra of A generated by
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fo(cE(a)c). Since ffo = fo, we have f(cE(a)c)e = e. Since |f(t) —t] < 26 for
t €10,1], we get ||cE(a)ce — e|| < 2. Combining this estimate with (14.5), we get
lecace — e|| < ||cac — cE(a)c|| + ||e|| - ||cE(a)ce — e|| < & + card(F)d + 26 = 1.
Set 29 = a'/2ce. Then z3zy = ecace € eC}(G, A, a)e, and moreover satisfies
lz&62z0 — €]| < 1. Evaluating functional calculus in eC*(G, A, a)e, we may therefore

set r = (za‘zo)*l/z. Then z = zgr satisfies z*z = e. Also p = zz* is a projection
such that

p =a'?cer?ecal’? € a*/?C*(G, A, a)a/? C D.
Since p is Murray-von Neumann equivalent to e, the proof is complete. (I

We are now ready for the proof of Theorem 14.17.

Proof. We will use Lemma 11.36, taking T" to be (following Notation 8.7 for the
standard unitaries in the crossed product)

T={ug:9geG}U{acA: [|a] <1}.
Accordingly, let S C T be finite, let € > 0, and let ¢ € C*(G, A, a)+ \ {0}. We may
take
S={uy:geG}UF
with F C A finite and |ja]| < 1 for all @ € F. We further write
S ={ay,as,...,an}.

In Lemma 14.16, choose d > 0 for the number § in place of €. Since A has prop-
erty (SP) by Corollary 11.39 and « satisfies Kishimoto’s condition by Lemma 14.21,
we can apply Theorem 14.23 to find a nonzero projection g € A which is Murray-
von Neumann equivalent to a projection in ¢C*(G, A, a)c. Again using the fact
that A has property (SP), use Lemma 11.21 to choose nonzero orthogonal pro-
jections q1,q2 € qAq. Apply the strengthening of the tracial Rokhlin property in
Lemma 14.15, with F' as given, with ¢ in place of £, and with ¢; in place of x, getting
projections e, € A for g € G as there. In particular, the projection e = deg eg is
G-invariant and satisfies 1 —e = ¢1. The choice of § using Lemma 14.16 implies that
there is a unital homomorphism ¢: M, ®e; Ae; — eAe such that for j =1,2,..., N
there are

zj € M, @ e1Aeq and yi € (1—e)A(l —e)
with ||[o(z;) + y;] — a;|| < §. Moreover, we have p(e1,1 ® a) = a for all a € e; Ae;.

Use Lemma 11.17 to choose a nonzero projection f € e; Aey such that f 3 go.
Since A has tracial rank zero, so does e;Ae; (by Lemma 11.40) and therefore
also so does M,, ® e;Ae; (by Lemma 11.41). Therefore there exist a projection
po € M, ® e; Aey, a unital finite dimensional subalgebra Dy C po(M,, ® e1 Aeq)po,
and dy,ds,...,dy € Dg such that:

(1) H[a:j,po]H < % for j = 1,2,...,N.
(2) Hpoxjpo — d]H < % fOI‘j =1,2,...,N.
B)1-poZen®f

Set p = p(po) and D = ¢(Dy). Then

(1—e)+(e—p)
l—e)+o(l-p) S (1-e)+plern®f)=1-e)+fZa+ae=<g

1-p
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so 1 —p is Murray-von Neumann equivalent to a projection in ¢cC*(G, A, a)c. Next,
for j=1,2,...,N, we have py; = y;p = 0. So
€

e, ¢(z5) +yilll = lllp, (@)l < Nl[zj. polll < 5

whence
o aslll < 2lla; = () + illl + llp, w(a) + )l <2 () +5 =<

Moreover, ¢(d;) € D and
Ipajp — (dj)ll < llaj — [o(z;) +yslll + |[ple(a;) +yilp — o(dy) |
= lla; — le(z;) + y;lll + llpe(z;)p — (d;)]]
€ €
< llag — [o(@;) +yilll + poxspo —djll < 7 + 5 <e.
This completes the proof. ([l

Part 4. An Introduction to Crossed Products by Minimal
Homeomorphisms

15. MINIMAL ACTIONS AND THEIR CROSSED PRODUCTS

In this section, we discuss free and essentially free minimal actions of countable
discrete groups on compact metric spaces, with emphasis on minimal homeomor-
phisms (actions of Z). We give two simplicity proofs, using very different methods.
One works for free minimal actions, and the method gives further information,
as well as some information when the action is not minimal. See Theorem 15.20
and Theorem 15.22. The second proof is a special case of a more general simplic-
ity theorem; the case we prove allows some simplification of the argument. Our
theorem is Theorem 15.10, and its proof is given before Theorem 15.25. The full
theorem is stated as Theorem 15.25. Both proofs end with an argument related
to the proof that Kishimoto’s condition (Definition 14.20) implies simplicity of the
crossed product (Theorem 14.22), but the two proofs use quite different routes to
get there.

We recall Definition 2.1, specialized to the case of locally compact groups and
spaces. It is also the specialization of Definition 14.19 to the commutative case.

Definition 15.1. Let a locally compact group G act continuously on a locally
compact space X. The action is called minimal if whenever T C X is a closed
subset such that g7T" C T for all g € G, then T = @ or T = X.

In short, there are no nontrivial invariant closed subsets. This is the topological
analog of an ergodic action on a measure space (Definition 2.6). It is equivalent
(Lemma 2.2) that every orbit be dense.

If the action of G on X is not minimal, then there is a nontrivial invariant
closed subset T C X, and C*(G, X \ T) is a nontrivial ideal in C*(G, X). See
Theorem 8.32. Thus C*(G, X) is not simple. In fact, C*(G, X) is not simple, by
Theorem 9.24(4).

For the case G = Z, the conventional terminology is a bit different.

Definition 15.2. Let X be a locally compact Hausdorff space, and let h: X — X
be a homeomorphism. Then h is called minimal if whenever T C X is a closed
subset such that h(T) =T, then T = or T = X.



164 N. CHRISTOPHER PHILLIPS

Almost all work on minimal homeomorphisms has been on compact spaces. For
these, we have the following equivalent conditions.

Lemma 15.3. Let X be a compact Hausdorff space, and let h: X — X be a
homeomorphism. Then the following are equivalent:

(1) h is minimal.
(2) Whenever T' C X is a closed subset such that h(T) C T, then T = & or

T=X.

(3) Whenever U C X is an open subset such that h(U) = U, then U = & or
U=X.

(4) Whenever U C X is an open subset such that h(U) C U, then U = @ or
U=X.

(5) For every x € X, the orbit {h"(z): n € Z} is dense in X.
(6) For every x € X, the forward orbit {h"(z): n > 0} is dense in X.

Conditions (1), (3), and (5) are equivalent even when X is only locally compact,
and in fact there is an analog for actions of arbitrary groups. Minimality does not
imply the other three conditions without compactness, as can be seen by considering
the homeomorphism n +— n + 1 of Z. (This is the case G = Z of Example 2.12.)
Also, even for compact X, it isn’t good enough to merely have the existence of some
dense orbit, as can be seen by considering the homeomorphism n — n + 1 on the
two point compactification Z U {£oo} of Z. (This action is one of those described
in Example 2.15.)

Exercise 15.4. Prove Lemma 15.3.
We recall a few examples.

Example 15.5. Let G be a locally compact group, let H C G be a closed subgroup,
and let G act on G/H be translation, as in Example 2.12. This action is minimal:
there are no nontrivial invariant subsets, closed or not.

Example 15.5 is a “trivial” example of a minimal action. Here are several more
interesting ones.

Example 15.6. The irrational rotations in Example 2.16 are minimal homeomor-
phisms.

Example 15.7. The homeomorphism = +— x + 1 on the p-adic integers (Exam-
ple 2.21) is minimal. The orbit of 0 is Z, which is dense, essentially by definition.
Every other orbit is a translate of this one, so is also dense. (This is a special case
of Proposition 2.18.)

Example 15.8. The shift homeomorphism of {0,1}% (Example 2.20) and the ac-
tion of SLy(Z) on S* x S (Example 2.30) are not minimal. In fact, they have fixed
points.

Other examples of minimal homeomorphisms include Furstenberg transforma-
tions (Example 2.19) and generalizations (some of which are discussed after Ex-
ample 2.19), odometers (Definition 2.22; see Exercise 2.23), restrictions of Denjoy
homeomorphisms of the circle to their minimal sets ([234]), and certain irrational
time maps of suspension flows, studied in [122]. There are many others, such as
those discussed after Example 2.38 and those of Theorem 2.42 and Theorem 2.45.
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The C*-algebras associated with many minimal homeomorphisms have been stud-
ied: Furstenberg transformations and generalizations in [189], [129], [146], Exam-
ple 4.9 of [204], Sections 2 and 3 of [206], and [237], restricted Denjoy homeomor-
phisms in [234], irrational time maps of suspension flows in [122], certain classes of
minimal homeomorphisms of S! x X in [154], [155], and [156], and certain classes
of minimal homeomorphisms of S* x S x X in [268]. Again, there are others not
mentioned here.

Minimal actions are plentiful: a Zorn’s Lemma argument shows that every
nonempty compact G-space X contains a nonempty invariant closed subset on
which the restricted action is minimal.

The transformation group C*-algebra of a minimal action need not be simple.
Consider, for example, the trivial action of a group G (particularly an abelian
group) on a one point space, for which the transformation group C*-algebra is
C*(G).

Let a locally compact group G act continuously on a locally compact space X.
Recall from Definition 2.3 that the action is free if whenever g € G\ {1} and = € X,
then gz # x, and is essentially free if whenever g € G\ {1}, the set {x € X: gx = z}
has empty interior.

Remark 15.9. Let X be an infinite compact Hausdorff space, and let h: X — X
be a minimal homeomorphism. Then the corresponding action of Z on X is free.
Indeed, if for some n # 0 and € X, we have h"(z) = z, then the orbit of x is finite,
hence closed, and is clearly invariant. Now minimality contradicts infiniteness of X.

Of course, nothing like Remark 15.9 is true for general groups. For example, let
G act freely and minimally on X, let H be some other group, and let G x H act
on X via (g, h)z = gz.

Recall from Proposition 2.4 that an essentially free minimal action of an abelian
group is free, and from the discussion after Definition 2.3 that essential freeness is
not the right concept for nonminimal actions. Example 2.35 gives an action of a
countable discrete group which is minimal and essentially free, but not free.

Let a locally compact group G act continuously on a locally compact space X.
Recall from Definition 1.5 that the corresponding action a: G — Aut(Co(X)) is
given by ay(f)(z) = f(g~ ') for g € G, f € Cp(X), and z € X. Also recall (Def-
inition 8.20 and Definition 9.6) that we abbreviate C*(G, Cy(X), a) to C*(G, X)
and C* (G, Cy(X), a) to C¥ (G, X).

The following result is essentially a special case of the corollary at the end of [5];
see the discussion before the corollary and the Remark before Lemma 1 of [5]. We
state a much more general result from [5] below (Theorem 15.25).

Theorem 15.10. Let a discrete group G act minimally and essentially freely on a
locally compact space X. Then C}(G, X) is simple.

Essential freeness of the action is not necessary. The reduced transformation
group C*-algebra for the trivial action of the free group on two generators on a one
point space is simple, by Theorem 6.6. However, minimality is certainly necessary.
This follows from Theorem 9.24(4).

Corollary 15.11. Let X be an infinite compact Hausdorff space, and let h: X — X
be a minimal homeomorphism. Then C*(Z, X, h) is simple.

Proof. This follows from Theorem 15.10 and the fact that Z is amenable, so that
the full and reduced crossed products are equal by Theorem 9.7. (]
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Our proof of Theorem 15.10 will follow [5], and will be given at the end of this
section. We first discuss some special cases and different proofs.

First, we point out that, when G is amenable and the action is free, and probably
even when the action is only essentially free, Theorem 15.10 can be derived from the
theorem of Gootman and Rosenberg described in Remark 10.17. See Corollary 8.22
of [292] for the free case.

Next, we give a simple proof for the special case of an irrational rotation on the
circle. It introduces some important ideas which we, regretfully, will not develop
further. (Also see Proposition 2.56 of [292].)

Theorem 15.12. Let # € R\ Q. Let hy: ST — S! be the homeomorphism hy(¢) =
e?™9¢. Then C*(Z, S, hy) is simple.

Proof. Following Example 10.25, we identify C*(Z,S*, hy) with the universal C*-
algebra Ag in Example 3.10 generated by unitaries v and v satisfying vu = >y,
by identifying v with the function ¢ — ¢ on S! and identifying u with the standard
unitary of the crossed product.

Following Example 3.15, let 3: S' — Aut(Ag) be the action such that B¢ (u) = Cu
and S (v) = v for ¢ € S*. Using normalized Haar measure in the integral, we define
a linear map E: Ag — Ag by E(a) = [g Bc(a)d¢. (The special case of Banach
space valued integration theory needed here, essentially for continuous functions on
a compact interval with respect to Lebesgue measure, is easily treated by elementary
methods.) One checks that E(v"u™) = v™ for m,n € Z. Since the elements v™u™
span a dense subset of Ay, it follows that E is equal to the the standard conditional
expectation coming from the crossed product structure (Definition 9.18).

Now let I C Ay be a nonzero closed ideal. We claim that E(I) C I. First, check
that, for ¢ = e?™% with k € Z, and for m,n € Z, we have

ﬂc(vnum) _ e27rikm0,0num _ Uk(vnum)vfk.

Therefore B¢:(a) = v*av=F for all @ € Ay. In particular, 3:(I) C I. Since
{e2m0 . k ¢ 7} is dense in S' (by Lemma 2.17), it follows from continuity of
the action that 8¢(I) C I for all ¢ € S'. The claim now follows by integration.
We finish the proof by showing that I = Ay. Choose a nonzero positive element
a € I. Let f = E(a), which is a nonzero nonnegative function in I N C(S1).
Then u* fu=%, which is the function in C(S*) given by ¢ + f(e*%ike(), is also
in INC(SY). Let U = {¢ € S': f(¢) # 0}. Then u*fu=F is strictly positive on
e?™ k017 The set Ukez e?™k01] is a nonempty invariant open subset of S', and
it therefore equal to S'. By compactness, there is a finite set S C Z such that
Upes €™*U = S'. Then Y, g u” fu™" is a strictly positive function on S*, and
is hence invertible. Since it is in I, we conclude that I = Ajy. O

Remark 15.13. The action 3: S* — Aut(Ay) used in the proof of Theorem 15.12
is a special case of the dual action on a crossed product by an abelian group, as
described in Remark 9.25.

The proof of Theorem 15.10 for G = Z given in [52] (see Theorem VIII.3.9
of [52]) is similar to the proof given for Theorem 15.12 above. However, it is harder
to prove that E(I) C I, since there is no analog of the automorphism Ad(v). The
proof in [52] uses the Rokhlin Lemma. (See the proof of Lemma VIIL.3.7 of [52].)



CROSSED PRODUCT C*-ALGEBRAS 167

We have avoided Rokhlin type arguments in this section. To obtain more infor-
mation about simple transformation group C*-algebras, such arguments are nec-
essary, at least with the current state of knowledge. Examples show that, in the
absence of some form of the Rokhlin property, stronger structural properties of
crossed products of noncommutative C*-algebras need not hold, even when they
are simple. However, the Rokhlin Lemma is not actually needed for the proof
in [52], and, in fact, the proof works for reduced crossed products by arbitrary
(not necessarily amenable) discrete groups. We give a version of this proof here.
The method has the added advantage of providing information about the tracial
states on the crossed product, and of being easily adaptable to at least some Ba-
nach algebra versions of crossed products. However, it requires that the space X
be compact.

The following definition is intended only for use in the proof of Proposition 15.19
and the lemmas leading up to it. For the definition to make sense, and for some of
the lemmas, we do not need to require that the subset F' be finite.

Definition 15.14. Let G be a discrete group, let X be a compact G-space, let U C
X be open, and let F' C G\ {1} be finite. We say that (F,U) is inessential if there
exist n € Zsg and s1, Sa,...,8, € C(X) such that [sg(z)] =1 for k =1,2,...,n
and all x € X, and such that for all z € U and g € F, we have

1 n
— Z sg(x)sk(g~tz) =0.
"=

Lemma 15.15. Let G be a discrete group, let X be a compact G-space, let g €
G\ {1}, and let € X be a point such that gx # x. Then there exists an open set
U C X with « € U such that ({g},U) is inessential in the sense of Definition 15.14.

Proof. Choose an open set U C X with z € U such that UNg~'U = @. Taken = 2,
and take s; to be the constant function 1. Choose a continuous function r: X — R
such that r(z) = 0 for z € U and 7(z) = 7 for x € g7 'U. Set sy(x) = exp(ir(z))
for x € X. For x € U, we have

S IOmrEnE
k=1

Thus ({g},U) is inessential. O

[1-1+1-(-1)]=0.

DN | =

The next two lemmas are based on the same calculation, namely (15.2) in the
proof of Lemma 15.16.

Lemma 15.16. Let G be a discrete group, let X be a compact G-space, let U,V C
X be open, and let F' C G\ {1} be finite. If (F,U) and (F, V') are both inessential,
then so is (F, UUV).

Proof. By definition, there exist m,n € Z~¢ and continuous functions
. 1
71,72, e ey Ty S1,52y« -3 St X — S

such that for every g € F', we have

(15.1)

1 & _— 1 & _—

- er(ac)rj(gflx) =0forzelU and - Zsk(x)sk(gflx) =0forzeV.
j=1 k=1
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The functions ;s are continuous functions from X to S', and we have

(152) =33 (s @)

j=1k=1
< Zr] ) ( Zsk 196))
By (15.1), this product vamshes for z € U and also for z € V. O

Lemma 15.17. Let GG be a discrete group, let X be a compact G-space, let U C X
be open, and let E, F C G\ {1} be finite. If (E,U) and (F,U) are both inessential,
then so is (EU F, U).

Proof. By definition, there exist m,n € Z~( and continuous functions
. 1
T1,72y ey Ty 81,82, ..., X — 8§

such that for every x € U, we have
7273 ri(g7te) =0forge E and Zsk si(g~1z) =0 for g € F.

The calculation in (15.2) in the proof of Lemma 15.16 shows that for all z € U and
g€ FUF, we have
m n

%ZZ risk)(z)(risk) (g~ 1z) = 0.

j=1k=1
This completes the proof. (I

Lemma 15.18. Let G be a discrete group, let X be a free compact G-space, and
let F'€ G\ {1} be finite. Then (F, X) is inessential.

Proof. Let g € G\ {1}. Use compactness of X and Lemma 15.15 to find n and
open sets Uy, Us, ..., U, C X such that ({g}, Ux) is inessential for k = 1,2,...,n
and such that |J;_, Uy = X. Then n — 1 applications of Lemma 15.16 show that
({9}, X) is inessential. Since F' is finite, repeated application of Lemma 15.17
implies that (F, X) is inessential. |

Proposition 15.19. Let G be a discrete group, let X be a free compact G-space,
and let E: Cf(G,X) — C(X) be the standard conditional expectation (Defini-
tion 9.18), viewed as a map C}(G,X) — C}(G, X). Then for every a € C}(G, X)
and € > 0, there exist n € Zso and $1,s2,...,S, € C(X) such that |si(z)] =1 for
k=1,2,...,nand all x € X, and such that

n

1
E(a) - - x
(a) - SLasy,

k=1

<e.

Proof. Let a: G — Aut(C(X)) be the induced action (Definition 1.5), that is,
ag(f)(z) = fl(g7'z) for g € G, f € C(X), and z € X. Also, for g € G let
uy € CH(G, X) be the standard unitary (Notation 8.7).

Choose a finite set F' C G and elements b, € C(X) for g € G such that, with
b= cr byug, we have

3
—-b —.
la—b] < 2
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Without loss of generality 1 € F. By Lemma 15.18 and Definition 15.14, there exist
n € Zso and s1, Sa, ..., s, € C(X) such that |sg(z)] =1 for k =1,2,...,n and all
x € X, and such that for all z € U and g € F'\ {1}, we have

n

Z sk(x)sk(g~tx) = 0.

k=1
Define P: C} (G, X) — C} (G, X) by

n
1 *
=— E siCSy,
n
k=1

for ¢ € Cf (G, X). We have to show that ||E(a) — P(a)|| < e. Since ||sg|| = 1 for
all k, we have ||P|| < 1. Therefore

|E(@) = P(a)]| < | E(a) = E®)l| + | E() = PO)] + [ PG) = Pla)]
< S +IB@®) = PO)|+ 5 = |E@®) - PO)] +e.

So it suffices to prove that P(b) = E(b).
Let g € F'\ {1}. Then

1 ¢ .
P(bguy) Zskb UgSy = by (n ;skag(sk)> u

Moreover, for z € X, we have

=S kg sI) = > si(e)snlg ) =
k=1 k=1

Thus P(bguy) = 0. Also,

1
n

(b1u1 = bl Z sksk = bl (b)

Thus, P(b) = E(b), as desired. O

Theorem 15.20. Let G be a discrete group, and let X be a free minimal compact
G-space. Then C}(G, X) is simple.

Proof. Let I C C}¥(G,X) be a proper closed ideal.

We first claim that I N C(X) = {0}. If not, let f € I N C(X) be nonzero.
Choose a nonempty open set U C X on which f does not vanish. By minimality,
we have UgeGgU = X. Since X is compact, there is a finite set S C G such that
Uyes 9U = X. Define b € C(X) by

=> flg7'x)flg1a)
geSs

for x € X. Then b(xz) > 0 for all € X, so b is invertible. For g € G let uy €
CY (G, X) be the standard unitary (Notation 8.7). Then b =3 _qugff u; € I.
So I contains an invertible element, contradicting the assumption that I is proper.
This proves the claim.

Let E: C}(G,X) — C(X) be the standard conditional expectation (Defini-
tion 9.18), viewed as a map CJ(G,X) — C}(G,X). We claim that E(a) = 0
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for all a € I. Tt suffices to show that E(a) € I. To prove this, let ¢ > 0. Use Propo-

sition 15.19 to choose n € Z~¢ and s1, Sa,. .., S, € C(X) such that |sg(z)| =1 for
k=1,2,...,n and all x € X, and such that

<eE.

1 n
E(a) — — E P
(a) n 2 Spasy,

We have L 371" spas; € I. Since £ > 0 is arbitrary, this implies that E(a) € T = 1.
The claim is proved.

Now let @ € I. For all g € G, we have auy € I, so E(aug) = 0. Proposi-
tion 9.16(1) now implies that a = 0. O

We can use the same methods to identify all the tracial states on C} (G, X).
This result requires that the action be free, but not necessarily minimal. The main
point is contained in the following proposition. The proof is taken from the proof
of Corollary VIII.3.8 of [52].

Proposition 15.21. Let G be a discrete group, let X be a free compact G-space,
and let A C C¥(G, X) be a subalgebra such that C(X) C A. Let E: C}(G, X) —
C(X) be the standard conditional expectation (Definition 9.18). Then for every
tracial state 7: A — C, there exists a Borel probability measure p on X such that
for all @ € A we have

T(a):/XE(a) du.

Proof. We prove that 7 = (7|¢(x)) o E. The statement then follows by applying
the Riesz Representation Theorem to 7|c(x)-

Let a € A and let € > 0. We prove that |7(a) — 7(E(a))| < €. Use Proposi-
tion 15.19 to choose n € Z~¢ and sy, sa,...,s, € C(X) such that |si(z)| = 1 for
k=1,2,...,n and all z € X, and such that

1 n
FE(a) — — T .
(a) . Z spas,|| < e
k=1
Since 1, 82, .., S, € A, we have 7(sgasy) = 7(a) for k =1,2,...,n. Therefore
(@) - 7(E@)| = |7 23 swasi | — (B @) < |[B@ - £ S suasi| <
7(a) — T =|r| = — - — .
. kS 7(E(a))| < a) - sLasy, €
k=1 k=1
This completes the proof. O

Theorem 15.22. Let G be a discrete group, and let X be a free compact metriz-
able G-space. Let E: C}(G,X) — C(X) be the standard conditional expectation
(Definition 9.18). For a G-invariant Borel probability measure 1 on X, define a
linear functional 7, on C} (G, X) by

7a(a) = /X E(a) dp.

Then p +— 7, is an affine bijection from the G-invariant Borel probability measures
on X to the tracial states on C}(G, X). Its inverse sends 7 to the measure obtained
from the functional 7|¢(x) via the Riesz Representation Theorem.
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The only reason for restricting to metrizable spaces X is to avoid the technical-
ities surrounding regularity and the uniqueness part of the Riesz Representation
Theorem on spaces which are not second countable.

Proof of Theorem 15.22. By Example 11.31, if u is a G-invariant Borel probability
measure on X, then 7, is a tracial state on C} (G, X). Clearly 7,(f) = [y fdu for
f € C(X). This implies that p — 7, is injective and that the description of its
inverse is correct on the range of this map.

It remains only to prove that u +— 7, is surjective. Let 7 be a tracial state on
CrHG, X ) Proposition 15.21 provides a Borel probability measure g on X such
that 7(a) = [ E(a)du for all a € C} (G, X). For g € G and f € C(X), using the
fact that Tis a trace at the second step, we have

/fg 12) da() = 7(ug fu) = 7( /fdu

Uniqueness in the Riesz Representation Theorem now implies that p is G-invariant.
This completes the proof. ([l

We now turn to the direct proof of Theorem 15.10. We need several lemmas,
which are special cases of the corresponding lemmas in [5].

Lemma 15.23. Let A be a C*-algebra, let B C A be a subalgebra, and let w be a
state on A such that w|p is multiplicative. Then for all a € A and b € B, we have
w(ab) = w(a)w(d) and w(ba) = w(b)w(a).

This is a special case of Theorem 3.1 of [40]. (The corresponding lemma in [5]
also follows from Theorem 3.1 of [40].)

Proof of Lemma 15.25. We prove w(ab) = w(a)w(b). The other equation will follow
by using adjoints and the relation w(c*) = w(c).

If A is not unital, then w extends to a state on the unitization AT. Thus, we
may assume that A is unital. Also, if w is multiplicative on B, one easily checks
that w is multiplicative on B + C - 1. Thus, we may assume that 1 € B.

We recall from the Cauchy-Schwarz inequality that |w(z*y)]? < w(y*y)w(z*z).
Replacing x by z*, we get |w(zy)]? < w(y*y)w(zz*). Now let a € A and b € B.
Then

2 X N
|w(ab) — w(a)w(b)| |w(alb —w(b) - 1])|" < w([b—w(d) - 1]*[b — w(b) - 1])w(aa®).
Since w is multiplicative on B, we have

w([b—w(b) - 1]*[b — w(b) - 1]) = w([b— w(b) - 1]*)w(b — w(b) - 1)) = 0.
So |w(ab) — w(a)w(b)|2 =0. O
Lemma 15.24. Let G be a discrete group, and let X be a locally compact G-
space. Let 2 € X, let g € G, and assume that gz # x. Let ev,: Cy(X) — C be the

evaluation map ev,(f) = f(x) for all f € Cy(X), and let w be a state on C (G, X)
which extends ev,. Then w(fu,) =0 for all f € Cy(X).

Proof. Let a: G — Aut(Co(X)) be ay(f)(z) = f(g~'z) for f € Cp(X), g € G, and
x € X (as in Definition 1.5; recalled before Theorem 15.10). Choose fo € Cp(X)
such that fo(z) = 1 and fo(gx) = 0. Applying Lemma 15.23 to w at the second
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and fourth steps, with A = C(G, X) and B = Cy(X), and using w(fy) = 1 at the
first step, we have

w(fug) = w(fo)w(fug) = w(fofug) = w(fugay(fo))
= w(fug)w(agl(fo)) = w(fuy)folgz) = 0.
This completes the proof. O

Proof of Theorem 15.10. Let I C C¥(G, X) be a nonzero closed ideal.
First suppose I N Cy(X) = 0. Choose a € I with a # 0. Let

E: CHG,X) = Co(X)

be the standard conditional expectation (Definition 9.18). Then E(a*a) # 0 by
Proposition 9.16(4). Choose b € Co(G, Co(X), a) such that ||b—a*a|| < [|E(a*a)]|.
We can write b = 3 s bgu, for some finite set S C G and with by € Co(X) for
g € S. Without loss of generality 1 € S. Since F(a*a) is a positive element
of Co(X), there is g € X such that E(a*a)(zo) = |E(a*a)||. Essential freeness
implies that

{zeX:gr#aforallge S\ {1}}

is the intersection of finitely many dense open subsets of X, and is therefore a dense
open subset of X. In particular, there is © € X so close to z¢ that F(a*a)(z) >
3||E(a*a)||, and also satisfying gz # x for all g € S\ {1}.

The set Co(X) + I is a C*-subalgebra of C}(G, X). Let wg: Co(X) + I — C be
the following composition:

Co(X) + T — (Co(X) + I)/T = Co(X)/(Co(X) N 1T) = Co(X) 5 C.

Then wq is a homomorphism. Use the Hahn-Banach Theorem in the usual way to
get a state w: C¥(G, X) — C which extends wy. Since a*a € I, we have w(a*a) = 0.
We now have, using Lemma 15.24 at the fifth step,

1llE@ a)l| > [|b—a”a|| > w(b—aa)| = |w(b)] = ’desw(bgug)
= |w(b)| = lwo(b)| = [b1(2)] = E(a”a)(z) - [|E(a”a) = b
> E(a*a)(z) — [la*a = b]| > §E(a*a)|| - [|E(a”a)|| = 3| E(a”a)ll.

This contradiction shows that I N Cy(X) # 0.

Since I N Cy(X) is an ideal in Cy(X), it has the form Cy(U) for some nonempty
open set U C X. We claim that U is G-invariant. Let g € G and let f € Cy(U).
Let (ex)aea be an approximate identity for Cy(X). Then the elements eyuy are in
Cy (G, X), and we have (exug) f(exug)* = exay(f)ex, which converges to a,(f). We
also have (exug)f(exug)* € I N Cy(X), since I is an ideal. So ay(Co(U)) C Co(U)
for all g € G, and the claim follows.

Since U is open, invariant, and nonempty, we have U = X. One easily checks that
an approximate identity for Cy(X) is also an approximate identity for C*(G, X),
so I = C¥ (G, X), as desired. O

Theorem 15.10 generalizes, with essentially the same proof, to crossed products
of actions of discrete groups on noncommutative C*-algebras A satisfying a kind
of essential freeness condition for the action on the space of unitary equivalence
classes of irreducible representations of A. Here is the general statement; it is the
corollary after Theorem 1 in [5].
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Theorem 15.25. Let a: G — Aut(A) be an action of a discrete group G on a
C*-algebra A. Suppose that « is minimal (Definition 14.19), that is, A has no
nontrivial a-invariant ideals. Suppose further that « is topologically free, that is,
with A being the space of unitary equivalence classes of irreducible representations
of A with the hull-kernel topology, the following property holds: for every finite set
F C G\ {1}, the set

{xegzgm#mforallgeF}
is dense in A. Then C7(G, A, @) is simple.

The changes to the proof include using irreducible representations in place of the
maps ev,, and completely positive maps to L(H) in place of states.

As discussed in [5] (see the remark after the corollary after Theorem 1), this
result implies Theorem 3.1 of [142]. We state the following important special case:

Theorem 15.26. Let a: G — Aut(A) be an action of a discrete group G on
a simple C*-algebra A. Suppose that o, is outer for every g € G \ {1}. Then
CH(G, A, «) is simple.

The original proof of Theorem 3.1 of [142] proceeded via Kishimoto’s condition
(Definition 14.20) and a generalization of Theorem 14.22.

Theorem 15.26 fails for actions of R and S'. We give examples based on calcu-
lations in [134] (originally Theorem 4.4 of [141], but the statement in [134] is more
explicit). See the beginning of Section 2 and Definition 2.1 of [134] for the notation.
Theorem 4 of [77] shows that the automorphisms which appear there are all outer
unless they are trivial. We will use Theorem 4.8 of [134], verifying condition (iii)
there. (See Definition 4.7 of [134] for the notation.) For S! take n = 2, take G = S*
(so that I' = Z), and take wq = 1 and wy = 0. Then Qg = Z>( # Z, so the crossed
product is not simple. The action one gets this way is the action a: St — Aut(Os)
determined by a¢(s1) = (s1 and ac¢(s2) = s for ¢ € S*. It is the restriction of an
action from Example 3.20 to a subgroup. For R, take n = 3, take G = R (so that
I' = R), and take w; = 1, wp = /2, and w3 = 0. Then Q3 C {0} U[1,00) # R, so
again the crossed product is not simple. The action one gets this way is the action
B: R — Aut(Os) determined by

Bi(s1) = exp(it)s, Bi(s2) = exp(iVv/2t)sa, and Bi(s3) = s3

for t € R. It is the restriction of an action from Example 3.20 to a nonclosed
subgroup.

For S!, alternatively, consider of the usual gauge action of S* on O (the re-
striction of the action of Example 4.4 to the scalar multiples of the identity). Its
strong Connes spectrum is Z~q (Remark 5.2 of [141]), so its crossed product is not
simple (Theorem 3.5 of [141]). This action is pointwise outer by Theorem 4 of [77].

16. CLASSIFIABILITY: INTRODUCTION AND A SPECIAL CASE

We discuss the structure and classification of transformation group C*-algebras
of minimal homeomorphisms. We will later say a little about free minimal actions
of more complicated groups, but less is known.

Our first main goal is the main result of [157] (Theorem 4.6 there), which gives
conditions under which C*(Z, X, h) has tracial rank zero. (See Definition 11.35.)
Such transformation group C*-algebras are automatically nuclear and satisfy the
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Universal Coefficient Theorem, so the conditions we give imply that C*(Z, X, h) is
in a class covered by a classification theorem. Here is the statement; the map p
will be explained afterwards (Definition 16.14), along with a reformulation of the
condition involving it which does not mention K-theory (Remark 16.15). For any
compact metric space X, we let dim(X) be its covering dimension. (We sometimes
just refer to dimension.) See the discussion starting after Corollary 16.2.

This theorem is not the best known result; by now, classifiability and related re-
sults are known under much more general conditions. For example, see Theorem 0.1
and Theorem 0.2 of [286], and also Theorem 19.19 (from [74]). Classifiability is
known to fail for some minimal homeomorphisms, such as those of [93].

Theorem 16.1 (Theorem 4.6 of [157]). Let X be an infinite compact metric
space with finite covering dimension, and let h: X — X be a minimal homeomor-
phism. Suppose that p(Ko(C*(Z,X,h))) is dense in Aff(T(C*(Z, X,h))). Then
C*(Z,X,h) is a simple unital C*-algebra with tracial rank zero which satisfies the
Universal Coeflicient Theorem.

There is machinery available to compute the range of p in the above theorem
without computing C*(Z, X, h). See, for example, [80].

Corollary 16.2 (Corollary 4.7 of [157]). Let X be an infinite compact metric
space with finite covering dimension, and let h: X — X be a minimal homeomor-
phism. Suppose that p(Ko(C*(Z, X, h))) is dense in Aff(T(C*(Z,X,h))). Then
C*(Z,X,h) is a simple AH algebra with no dimension growth and with real rank
Zero.

We give a brief explanation of dimension for compact spaces, with definitions
but without proofs, to put the finite dimensionality hypothesis of Theorem 16.1 in
context. This material is also background for the discussion of the mean dimension
of a homeomorphism (Definition 23.3).

Dimension theory attempts to assign a dimension to each topological space (usu-
ally in some restricted class) in such a way as to generalize the dimension of a man-
ifold, in particular, the relation dim(R™) = n, and to preserve expected properties
of the dimension. There are a number of books on dimension theory; the one I have
so far found most useful is [197]. (A warning on terminology there: “bicompact” is
used for “compact Hausdorfl”. See Definition 1.5.4 of [197].) The mean dimension
of a homeomorphism h of a space X should perhaps be thought of as saying how
much more of the space X one sees with every iteration of h, with “how much one
sees” being measured in some sense by dimension.

There are at least two quite different general approaches to the problem of as-
signing dimensions to spaces. One assumes the existence of a metric, and attempts
to quantify how the “size” of a ball in the space shrinks with its radius. This ap-
proach leads to the Hausdorff dimension and its relatives. The result depends on
the metric, need not be an integer, and can be strictly positive for the Cantor set
(depending on the metric one uses). Such dimensions have so far played no role in
the structure theory of C*-algebras, which is not surprising since C'(X) does not
depend on the metric on X.

The approach more useful here relies entirely on topological properties of X,
takes integer values, and is zero on the Cantor set, regardless of the metric. The
three most well known dimension theories of this kind are the covering dimension
dim(X) (Section 3.1 of [197]), the small inductive dimension ind(X) (Section 4.1
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of [197]), and the large inductive dimension Ind(X) (Section 4.2 of [197]). There
are three others that should be mentioned: for compact X, the topological stable
rank tsr(C(X,R)) of the algebra C(X,R) of continuous real valued functions on X
(topological stable rank is discussed briefly after Definition 11.1 but for complex C*-
algebras); for metrizable X the infimum, over all metrics p defining the topology, of
the Hausdorff dimension of (X, p); and for compact metrizable X the cohomological
dimension as described in [61] (with integer coefficients). For nonempty compact
metrizable X, these all agree (except that one must use tsr(C(X,R)) — 1, and in
the case of cohomological dimension with integer coefficients require that dim(X) <
00), and for specific pairs of dimension theories, it is often known that they agree
under much weaker conditions. For dim(X), ind(X), and Ind(X) see Corollary
4.5.10 of [197]. Agreement with tsr(C(X,R)) — 1 is essentially Proposition 3.3.2
of [197] (not stated in that language). Agreement with the infimum of the Hausdorff
dimensions of (X, p) is in Section 7.4 of [117]. When dim(X) < oo, agreement with
cohomological dimension with integer coefficients is Theorem 1.4 of [61]; without
the condition dim(X) < oo, Theorem 7.1 of [61] shows that agreement can fail.

We give a two warnings about dimension theories. First, they find the dimension
of the highest dimensional part of the space. A space like R™ is homogeneous (in
a very strong sense: the diffeomorphism group acts transitively), as is a connected
compact manifold without boundary. Even for a connected compact manifold with
boundary, it seems intuitively clear that the dimension as seen at any point should
be the same. However, a finite complex or a disconnected compact manifold may
well have parts which should be considered to have different dimensions. All di-
mension theories I know of assign to a finite simplicial complex the dimension given
by the largest standard (combinatorial) dimension of any of its simplices, even if
there are other simplices of much lower dimension which are not contained in any
higher dimensional simplex. There are at least some notions of “local dimension”
at a point, which attempt to account for this kind of behavior, but the theory seems
to be much less well developed.

We will primarily be interested in spaces X which admit minimal homeomor-
phisms, or minimal actions of other countable groups. Such spaces clearly have
at least a weak form of homogeneity, since each orbit is dense and the action is
transitive on orbits. We know little about what one can really get from this, but
Example 2.26 shows that it does not imply that the local dimension is the same at
every point.

Second, they do not necessarily have the properties one expects, or the properties
they have are weaker than what one expects. Some such examples are presented
or at least mentioned [197]. We list just a few. The notes to Chapter 8 of [197]
mention an example due to Filippov: if 1 < m < n < 2m — 1, there is a compact
Hausdorff space X such that

dim(X) =1, ind(X) =m, and Ind(X) =n.
The conventions usually take dim(&) = —1, so that the standard inequality
(16.1) dim(X x Y) < dim(X) + dim(Y)

fails if X = @ or Y = &. However, this inequality can fail even if X # & and
Y # @. See Example 9.3.7 of [197]. If X and Y are nonempty compact Hausdorff
spaces, then (16.1) does hold (Proposition 3.2.6 of [197]; see Section 9.3 of [197] for
an assortment of weaker conditions under which (16.1) holds). There are nonempty
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compact metric spaces X and Y such that dim(X xY) < dim(X) +dim(Y); in [61]
combine Example 1.3(1), Example 1.9, and the example after Corollary 3.8. There
is even a nonempty compact metric space X such that dim(X x X) < 2dim(X);
for example, combine [170] and [147].

Two expected properties that are true are given in Proposition 16.10 and Propo-
sition 16.11.

The dimension theory most useful so far for minimal homeomorphisms is the
covering dimension, which is defined using open covers. We thus start by stating the
basic concepts used to define the covering dimension. We make all our definitions
for finite open covers of compact Hausdorff spaces, although the earlier ones make
sense in much greater generality (for more general spaces, not requiring that the
covers be open, and sometimes not even requiring that the covers be finite).

By a finite open cover U of a compact Hausdorff space X, we mean a finite
collection U of open subsets of X such that X = (J;,U. (This convention fol-
lows [164].) Possibly (following Section 3.1 of [197]) one should instead use indexed
families (U;);er of open subsets, for a finite index set I; this formulation allows
repetitions among the sets. We will not need this refinement. (It is easy to check
that it makes no difference in the definition of covering dimension, since one can
simply delete repeated sets.)

Notation 16.3. Let X be a compact Hausdorff space. We write Cov(X) for the
set of all finite open covers of X.

Definition 16.4. Let X be a compact Hausdorff space, and let I/ be a finite open
cover of X. The order ord(U) of U is the least number n € Z-o such that the
intersection of any n + 2 distinct elements of U is empty.

That is, ord(Y) is the largest n € Z~ such that there are n+1 distinct sets in U
whose intersection is not empty. An alternative formulation is

ord(U) = -1+ sgg Z xu(z).
et Ueu

The normalization is chosen so that if I/ is cover of X by disjoint open sets, and
X # @, then ord(U) = 0: the intersection of any two distinct sets in U is empty,
but the sets themselves need not be empty.

Definition 16.5. Let X be a compact Hausdorff space, and let &/ and V be finite
open covers of X. Then V refines U (written V < U) if for every V € V there is
U € U such that V C U.

That is, every set in V is contained in some set in U.

Definition 16.6. Let X be a compact Hausdorff space, and let I/ be a finite open
cover of X. We define the dimension D(U) of U by

DU) = inf ({ ord(V): V € Cov(X) and V < U}).
That is, D(U) is the least possible order of a finite open cover which refines U.

Definition 16.7 (Definition 3.1.1 of [197]). Let X be a nonempty compact Haus-
dorff space. The covering dimension dim(X) is

dim(X) = sup ({DPU): U € Cov(X)}).
By convention, dim(&) = —1.
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That is, dim(X) is the supremum of D(U) over all finite open covers U of X.

We will say that a compact Hausdorff space X is totally disconnected if there is
a base for the topology of X consisting of compact open sets. (This seems to be the
standard definition for this class of spaces. In [197], a different definition is used,
but for compact Hausdorff spaces it is equivalent. See Proposition 3.1.3 of [197].)

Exercise 16.8 (Proposition 3.1.3 of [197]). Let X be a nonempty compact Haus-
dorff space. Prove that dim(X) = 0 if and only if X is totally disconnected.

Exercise 16.9. Prove that dim([0, 1]) = 1.

We have dim([0, 1]) # 0 by Exercise 16.8. To show dim([0, 1]) < 1, consider open
covers of [0,1] consisting of intervals

[0, 80), (o1, B1), (a2, B2), ..., (@n_1,Bn-1), (an,1]

such that a; < ;-1 but 8;_1 < oj4+1, and B; — o is small, for all j. The intervals
this cover [0, 1], but [0, Bp) is disjoint from (ag, B2), ete.

One sees that dim([0,1]?) < 2 by using open covers consisting of small neigh-
borhoods of the tiles in a fine hexagonal tiling. In general, one has dim(R") = n
(Theorem 3.2.7 of [197]), but proving this is nontrivial. Most proofs rely on some
version of the Brouwer Fixed Point Theorem, and thus, in effect, on algebraic
topology.

Proposition 16.10 (Proposition 3.1.5 of [197]). Let X be a topological space and
let Y C X be closed. Them dim(Y) < dim(X).

Proposition 16.11 (Special case of Theorem 3.2.5 of [197]). Let X be a com-
pact Hausdorff space and let Y7, Ys,...,Y,, C X be closed subsets such that X =
Ur—; Y. Them dim(X) < maxi<p<,, dim(Yy).

We now give the definitions related to the map p which appears in the statement
of Theorem 16.1. Recall from Definition 11.23 that a tracial state on A is a state 7
on A such that 7(ba) = 7(ab) for all a,b € A, and that T(A) is the set of all tracial
states on A, equipped with the relative weak* topology inherited from the Banach
space dual of A.

Remark 16.12. Let A be a unital C*-algebra. Then T(A) is a compact convex
subset of the Banach space dual of A (with the weak® topology). Convexity is
immediate, and compactness follows from the fact that T(A) is closed in the set of
all states on A.

If A is not unital, then compactness can fail.

Definition 16.13. Let E be a topological vector space, and let A C E be a compact
convex set. We let Aff(A) be the real Banach space of real valued continuous affine
functions on A, with the supremum norm.

We will need a condition which is normally expressed using the following map
involving the Ky-group of a C*-algebra. However, the condition can be stated
without using K-theory, and we give the explanation afterwards.

Definition 16.14. Let A be a unital C*-algebra. We let p4: Ko(A) — Aff(T(A4))
be the homomorphism determined by p([p])(7) = 7(p) for 7 € T(A) and p a projec-
tion in some matrix algebra over A. The trace 7 is taken to be defined on M,,(A)
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via the unnormalized version of the tracial state in Example 11.25. That is, we
define 7 on M,,(A) by

ail1 ai2 -+ Qin
a1 Q22 - G2n n
T . . . = Z T(Ck,k)-
: : " : =1
an,1  Qp2 e Ann

The map p is well defined by Lemma 11.33(1) (extended with the same proof to
traces which don’t necessarily have norm 1).

When A is clear from the context, we often abbreviate p4 to p.

Remark 16.15. We will often use the hypothesis that the map pa: Ko(4) —
Aff(T(A)) of Definition 16.14 have dense range. This hypothesis can be stated
without using K-theory as follows. Let R C Aff(T(A)) be the set all functions
7 +— 7(p), as p runs through all the projections in M, (A) for all n (using the
notation of Definition 16.14). Then the condition is that the additive subgroup of
Aff(T(A)) generated by R be dense in Aff(T(A)).

In the rest of this section, we give the proof of Theorem 16.1 in the special
case in which dim(X') = 0, following the method of [157]. Since X is assumed to be
infinite and to admit a minimal homeomorphism, it can have no isolated points, and
therefore must be the Cantor set. This restriction simplifies the argument greatly.
In particular, one need not deal with recursive subhomogeneous C*-algebras, KK-
theory, or subsets of X with “small boundary”. We will give some parts of the proof
of the general case in the next section, but we will have to cite several theorems
without giving proofs.

It is implicit in Section 8 of [107], with the main step having been done in [230],
that these transformation group C*-algebras are AT algebras (direct limits of circle
algebras) with real rank zero. The result we prove is weaker and the proof is longer.
General theory (Lin’s classification theorem for C*-algebras with tracial rank zero,
Theorem 5.2 of [153], a K-theory calculation using the Pimsner-Voiculescu exact
sequence [221], and results on the range of the Elliott invariant) shows that the
AT algebra result follows from the theorem we prove here. Our reason for giving
this proof is to illustrate a technical method.

Lemma 16.16. Let A be a simple unital C*-algebra. Suppose that for every finite
subset F' C A, every € > 0, and every nonzero positive element ¢ € A, there exists
a nonzero projection p € A and a unital AF subalgebra B C A with p € B such
that:

(1) [/la,p]]| < ¢ for all a € F.
(2) dist(pap, pBp) < € for all a € F. L
(3) 1 —pis Murray-von Neumann equivalent to a projection in cAec.

Then A has tracial rank zero (Definition 11.35).

Proof. Let F' C A be a finite subset, let € > 0, and let ¢ € A be a nonzero positive
element. Choose p and B as in the hypotheses, with F' and c¢ as given and with
%5 in place of e. Let Fy C pBp be a finite set such that dist(pap, Fp) < %E for all
a € F. Since p € B, the algebra pBp is also AF. Choose a unital finite dimensional
subalgebra D C pBp such that dist(b, D) < ie for all b € Fyy. Then dist(pap, D) < &
forall a € F. [
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Exercise 16.17. Let A be a unital C*-algebra, and let S C A be a subset which
generates A as a C*-algebra. Assume that the condition of Lemma 16.16 holds for
all finite subsets F' C S. Prove that A has tracial rank zero.

Definition 16.18. Let X be a compact metric space, and let h: X — X be a
homeomorphism. In the transformation group C*-algebra C*(Z, X, h), we normally
write u for the standard unitary representing the generator of Z. (This unitary is
called u; in Notation 8.7.) For a closed subset Y C X, we define the C*-subalgebra
C*(Z,X,h)y to be

C*(Z,X,h)y =C*(C(X), Co(X\Y)u) C C*(Z, X, h).
We call it the Y-orbit breaking subalgebra of C*(Z, X, h).

This subalgebra was introduced by Putnam in Section 3 of [229], specifically
in the case that X is the Cantor set. There, and in all subsequent papers, the
definition

C*(Z, X, h)y = C*(C(X), uCo(X \ Y)) € C*(Z, X, h).

was used. As will be seen in the course of the proof of Lemma 16.20, and later,
the analysis of the structure of C*(Z, X, h)y for int(Y) # & depends on Rokhlin
towers constructed from Y. When Y is compact and open, the Rokhlin towers take
a standard form, given in (16.2) below: there are positive integers n(0) < n(1) <
-+- < n(l) and subsets Yy, Y1,...,Y; C Y such that

1 1 n(k)—1
Y=][% and Xx=]] [ WM.
k=0

k=0 ;=0

The sequences Yy, h(Y3), ..., h"®)=1(Y}) are called Rokhlin towers. The sets Y}
are the bases of the towers, and the numbers n(k) are their heights. The reason for
changing the convention in the definition of C*(Z, X, h)y is that the old convention
leads to Rokhlin towers with bases h(Yy), h(Y1),...,h(Y]) instead of Yy, Y1, ...,Y],
so that the useful partition of X becomes

1 n(k)
x =11 I ¥ .

k=0 j=1
We do not need groupoids at this stage, but they do seem to be needed for useful
analogs of C*(Z, X, h)y in more general situations. They are also used in the usual
computation of the K-theory of C*(Z, X, h)y,3 for y € X; see the discussion of the
proof of Theorem 17.25 (after the proof of Lemma 17.22). We therefore describe
briefly how to realize C*(Z, X, h)y in terms of groupoids. Readers not familiar with

groupoids should skip this description.

Remark 16.19. The algebra C*(Z, X, h)y is the C*-algebra of a subgroupoid of
the transformation group groupoid Z x X made from the action of Z on X generated
by h. Informally, we “break” every orbit each time it goes through Y.

Here is a more formal description. The notation here differs slightly from the
most common notation. We take Z x X to be the set

{(h*(z),n,z): € X andn € Z} C X xZ x X,
with the groupoid operation determined by
(™" (@), m, " (2)) - (R (2), n, 2) = (A", m+n, z)
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and with other products undefined. This is the transformation group groupoid
made from the action of Z on X generated by h. See Example 1.2a of [238],
which, as well as having different notation, uses a right action instead of a left
action. With this notation, C*(Z, X, h)y is the C*-algebra of the open subgroupoid
G C Z x X which contains (z,0,z) for all x € X, and such that for n € Z~( and
x € X we have (h"(z), n, x) € G if and only if h(x), h*(z),...,h"(z) € X \ Y and
(h—"(z), —n, =) € G if and only if z,h"!(z),...,h " (z) € X \ Y.

If Y has nonempty interior, then all the orbits are finite, and the orbit of z € X
is as follows. Let jo < 0 be the greatest nonpositive integer such that h'o(z) € Y,
and let j; > 0 be the least strictly positive integer such that h7!(z) € Y. Then the
orbit of x is

B (), ot (@), . W2 (), b ().

The following lemma is a special case of Theorem 3.3 of [229]. Note the standing
assumption of minimality throughout [229], stated in Section 1 there. (Theorem 3.3
of [229] does not assume that Y is open. The requirement that Y be open is
easily removed by choosing compact open sets Y1 D Y5 D --- in X such that
N2, Y, = Y, and observing that C*(Z, X,h)y is the closure of the increasing

n=1

union of the subalgebras C*(Z, X, h)y, . Compare with Remark 17.20 below.)
Lemma 16.20. Let X be the Cantor set, and let A: X — X be a minimal home-

omorphism. Let ¥ C X be a nonempty compact open subset. Then C*(Z, X, h)y
is an AF algebra.

Proof. The proof depends on the construction of Rokhlin towers, which is a cru-
cial element of many structure results for crossed products. (For the construction
in more general spaces X, see Definition 17.2, Lemma 17.3, Definition 17.4, and
Lemma 17.5.)

We first claim that there is N € Zs¢ such that Uf:[:l h~™(Y) = X. (This is
Lemma 17.3 in the general case.) Set U = |Jo—, h~"(Y), which is a nonempty
open subset of X such that U C h(U). Then Z = X \ J,—, A~ "(Y) is a closed
subset of X such that h(Z) C Z, and Z # X. Therefore Z = @ by Lemma 15.3.
So U = X, and the claim now follows from compactness of X.

It follows that for each fixed y € Y, the sequence of iterates h(y), h?(y),... of y
under h must return to Y in at most N steps. Define the first return time r(y) to
be

r(y) =min ({n > 1: A"(y) € Y}) < N.

(This is Definition 17.2 in the general case.) Let n(0) < n(1) < --- < n(l) < N be
the distinct values of r. Set

Vi ={yeY:r(y) =nk)}.
Then the sets Y, are compact, open, and partition Y, and the sets h’(Y}), for
1 < j < n(k), partition X:

1 1 n(k)—1
(16.2) Y=][v% and X=]] [ "M
k=0 k=0 j=0

Further set Xj = U?gf))_l h3(Y). The sets X}, then also partition X. (This part
is much messier in the general case; see Definition 17.4 and Lemma 17.5.)
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Define p, € C(X) C C*(Z,X,h)y by pr = xx,- We claim that p; commutes
with all elements of C*(Z,X,h)y. It suffices to prove that py commutes with
all elements of C'(X) and with all elements fu with f € Co(X \Y). Clearly pg
commutes with every element of C(X). Next, for any compact open subset Z C X,
we have uxzu™ = xp(z)- In particular,

n(k)—1 n(k)
upgu” = Z UXni (v U = Z Xni(Yy) = Pk — XY T Xnnt0)(v3,)-
j=0 Jj=1
So
(16.3) upk = (P + Xvi = Xnnoo () ) -

Now let f € C'(X) vanish on Y. Multiply (16.3) on the left by f. Since Y, C Y
and h"*)(V}) C Y, we get fxy, = fXunto(vy) = 0, whence fupy = fpru = ppfu.
The claim is proved.

We now have
l

Ccr (Z7 X7 h’)Y = @ka*(Z7 X7 h)ka~
k=0
It therefore suffices to prove that pyC*(Z, X, h)ypi is AF for each k.
It is easy to see that C*(Z, X, h)y is the C*-algebra generated by C(X) and
(xx\v)u. Therefore p,C*(Z, X, h)yps. is the C*-algebra generated by C'(Xj) and
(using (16.3) at the first step of the calculation)

)

n(k)—1

Pe(Xx\v)upk = (Xx\vi ) (X x\hr () (v,) )8 = (Xhi (vi))u

fivg

n

—~
5

y—1

= (Xni+1 (vi)) U (Xni (v3))-
J

I
—

One can now check, although it is a bit tedious to write out the details (see Exer-
cise 16.21), that there is an isomorphism

(16.4) Vi peC*(Z, X, h)ypr — My @ C(Yy)
such that for f € C'(X}) we have

Vi(f) = diag(flye, fohlyys .oy foh"M7 )

’I-’L(k?)*l

and (using matrix units in M,,x) labelled as (e; ;); ;= ) for 1 < j < n(k) — 1 we

have
Ui (Xni (Vi) UXni-1(vi)) = €5,j-1 @ L.

(Theorem 17.19 below gives the much messier statement needed when the space X
is not totally disconnected, and its proof is given in full.) The algebra M,, ) @C(Y%)
is AF because Y}, is totally disconnected. [

Exercise 16.21. Prove that t; as in (16.4) in the proof above is in fact an iso-
morphism.

This exercise is preparation for reading the proof of Theorem 17.19.
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The proof of Lemma 16.20 shows, in the notation used in it, that

l
k=0

via an isomorphism constructed from the system of Rokhlin towers associated
with Y. See Theorem 17.19 for what happens for more general spaces X.

Lemma 16.22. Let X be the Cantor set, and let A: X — X be a minimal home-
omorphism. Let Y C X be a nonempty compact open subset. Let N € Z~q, and
suppose that Y, h(Y), ..., A" ~1(Y) are disjoint. Then the projections xj,-1(y) and
Xn~-1(y) are Murray-von Neumann equivalent in C*(Z, X, h)y.

The proof is short, but we explain in terms of the Rokhlin towers and the de-

composition
1
C*(Z, X, h)y = @D M1y ® C(Vy)
k=0

why one should expect it to be true. First, all the towers have height at least N. So
passing from xy to x;~-1(y) amounts to replacing, in each summand M1y @C (Yi)
and using the indexing in the proof of Lemma 16.20, the projection ego ® 1 with
en—1,N—1® 1. These are certainly Murray-von Neumann equivalent. Passing from
Xy to xp-1(y) corresponds to going off the bottoms of the Rokhlin towers. This need
not send Y} to (¥ ~1(Y}), so need not send €0,0 01 10 en(k)—1, n(k)—1 ®1. But Y is
also equal to [[L_, h"*)(Yy), so it does send Y = [[4_, Vi to [[_y h"*)~1(Y;) =
h=1(Y). The projection corresponding to xy is

l

(c00®1, e00®1, ..., e00®1) € @Mn(k) ® C(Yk)
k=0

and the identification of h=1(Y) shows that projection corresponding to Xh-1(v) is

(en(o)—l,n(o)—l ®1 en)-1,n)=1®@ L, ..oy en)—1,n()—1 ® 1)~

These clearly are Murray-von Neumann equivalent.

Proof of Lemma 16.22. We use the notation for Murray-von Neumann equivalence
in Notation 11.5. First, observe that if Z C X is a compact open subset such that
YNZ = @, thenv = xzu € C*(Z, X, h)y and satisfies vv* = xz and v*v = xp-1(z).
Thus XzZ ~ Xh=1(2)-

An induction argument, taking successively

Z=hY), Z=1(Y), Z=h"({),

now shows that xy ~ xp~v-1(yy. Also, taking Z = X \Y gives xx\y ~ Xx\h-1(v)-
Since C*(Z, X, h)y is an AF algebra, it follows that xy ~ xp-1(y). The result
follows by transitivity. O

The proof of the next lemma is closely related to the first part of the proof of
Theorem 15.10 (which is at the end of Section 15) and especially to the proof of
Theorem 14.23. Indeed, we could get the result from Theorem 14.23 by proving
that « satisfies Kishimoto’s condition (Definition 14.20).
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Lemma 16.23. Let X be the Cantor set, and let h: X — X be a minimal home-
omorphism. Let ¢ € C*(Z, X, h) be a nonzero positive element. Then there exists
a nonzero projection p € C(X) such that p is Murray-von Neumann equivalent in
C*(Z, X, h) to a projection in cC*(Z, X, h)c.

Proof. Let E: C*(Z, X,h) — C(X) be the standard conditional expectation (Def-
inition 9.18). It follows from Proposition 9.16(4) and Exercise 9.17(3) that E(c)
is a nonzero positive element of C'(X). Choose a nonempty compact open sub-
set Ko C X and ¢ > 0 such that the function E(c) satisfies E(c)(x) > 44 for all
x € Ky. Choose a finite sum b = Zngzv bpu™ € C*(Z, X, h) such that ||b—c|| < 9.
Since the action of Z induced by h is free, there is a nonempty compact open sub-
set K C K such that the sets h~N(K), h~N*Y(K), ..., hN(K) are disjoint. Set
p=xk € C(X). Forne {—-N, —N+1, ..., N} \ {0}, the disjointness condition
implies that pu”p = 0. Therefore pbp = pbop = pE(b)p. Using this equation at the
first step and Exercise 9.17(4) at the second step, we get

(16.6)  |[|pep — pE(c)pll < ||pep — pbpl| + [[pE(b)p — pE(c)p|| < 2[jc — b]| < 20.

Since K C Kj, the function pE(c)p is invertible in pC(X)p. In the following
calculation, inverses are taken in pC*(Z, X, h)p. With this convention, [pE(c)p]~*
exists and satisfies ||[pE(c)p] || < 6. The estimate (16.6) now implies that pcp
is invertible in pC*(Z, X, h)p. Let a = (pcp)~1/2, calculated in pC*(Z, X, h)p. Set
v = apc'/2. Then

71/2( —1/2

v* = apepa = (pep) pep) (pep) =p

and
v o = ¢/ ?pa’pet/? € cC*(Z,X,h)c.
This completes the proof. [

Most of the proof of the following lemma is taken from [157]. The definition of
C*(Z,X,h)y is different, as explained after Definition 16.18, and the notation in
the proof has been changed accordingly.

Lemma 16.24. Let X be the Cantor set, and let h: X — X be a minimal home-
omorphism. Let y € X. Then for any € > 0, any nonempty open set U C X, and
any finite subset F' C C(X), there is a compact open set Y C X containing y and
a projection p € C*(Z, X, h)y such that:

(1) |lpa — ap|| < € for all @ € F U {u}.

(2) pap € pC*(Z, X, h)yp for all a € F U {u}.

(3) There is a compact open set Z C U such that 1 —p X xz in C*(Z, X, h).

The key point in the proof of Lemma 16.24 is the estimate (16.14) below. We
outline the method. For a suitable small compact open set Y C X which con-
tains y, set ¢, = Xpn(y). There will be a large number N € Z-o such that
Y, h(Y), ..., WN"Y(Y) are disjoint, and such that k™ (y) is close to y. The pro-
jection 1 — p will be called e in the proof. The naive choice for e will turn out to be
f= Zg:_ol @n- This projection commutes exactly with all elements of C'(X). Also,
it is easy to check that fC*(Z,X,h)f C C*(Z,X,h)y. If we had RN(Y) =Y, it
would also commute with u. It is of course not possible to have h'¥ (Y) =Y, since
then Uflvfol h™(Y") would be a nontrivial h-invariant closed set. The main idea of the
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proof is to modify this naive choice to get a projection e which approximately com-
mutes with u but which still has approximate versions of the other good properties
of f.

There is a big difference between what we need to do and what would happen if
we were working in von Neumann algebras. In the von Neumann algebra setting,
we would be given an ergodic probability measure p on X, and it would be enough
to ask that gy — go be small in trace derived from p. Thus it would be sufficient to
have p(Y) small, which is extremely easy to arrange. The analog of Lemma 16.24
would be essentially trivial: just take Y small enough, pay no attention to how
close h™V (y) is to y, and take e = Zg;ol qn. In the C* setting, unless AV (Y) is
exactly equal to Y, we get ||gn — qo|| = 1. Therefore we must work much harder.

Proof of Lemma 16.24. We abbreviate A = C*(Z,X,h) and Ay = C*(Z,X,h)y.
Let d be the metric on X. Choose Ny € Zs¢ so large that 47/Ny < e. Choose
8o > 0 with 6y < 1c and so small that d(z1, z2) < 46 implies |f(z1) — f(z2)| < 1e
for all f € F. Choose 6 > 0 with 0 < Jp and such that whenever d(z1,2z2) < ¢ and
0 < k < Ny, then d(h_k(l‘l), h_k(IQ)) < dp.

Since h is minimal, there is N > Ny + 1 such that d(h™(y), y) < J. Choose
N + Ny + 1 disjoint nonempty open subsets U_n,, U_ny+1,---,Un C U. Using

minimality again, choose r_n,,"—Ny+1,--.,7N € Z such that A" (y) € U; for [ =
—Ny, —Ng+ 1, ..., N. Since h is has no periodic points, there is a compact open
set Y C X such that:

(1) yev.

(2) The sets
R=No(Y), h=NotL(Y), ... Y, h(Y), ..., AN(Y)

are disjoint.
(3) The sets

h=No(y), ANt (Y, LY, R(Y), ..., BN(Y)

all have diameter less than §.
(4) h(Y)c U forl=—Ny, —Nog+1, ..., N.

Set gqg = xy. Forn=—Ny, —Ng+1, ..., N set
T,=hr"(Y) and g, =u"qou " = Xpn(yv) = XT,-

We now have a sequence of projections, in principle going to infinity in both
directions:

vy q—Ngs -5 4-1,490, 915 -+ 3y N—Ngs + -+ qN—1, AN, - - -

The ones shown are orthogonal, and conjugation by wu is the shift on this sequence.
The projections gg and gy are the characteristic functions of compact open sets
which are disjoint but close to each other, and similarly for the projections ¢_; and
gn -1, for the projections g_s and gy_2, down to the projections q_pn, and gn_n-
We are now going to use Berg’s technique [19] to splice this sequence along the
pairs of indices (—Ngy, N — Np) through (0, N), obtaining a loop of length N on
which conjugation by w is approximately the cyclic shift.

Lemma 16.22 provides a partial isometry w € Ay such that w*w = ¢_; and
ww* = qN_1.
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For t € [0, 1] define
(16.7) v(t) = cos(mt/2)(q-1 + gn—1) + sin(7t/2)(w — w*) € Ay.
Then v(t) is a unitary in the corner
(g-1+an-1)Ay(g-1 + gn-1).

To see what is happening, we write elements of this corner in 2 x 2 matrix form, with
the (1,1) entry corresponding to g_1 Ay q_1. That is, there is a homomorphism

0: My — (-1 +qn-1)Ay(g-1 +qn—1)
such that
plern) =q-1,  plerg) =w",  @lez1)=w, and  @(e22) =qn-1.
If we identify My with its image under ¢, we get

(10 (00 . (00
qd—1 = 0 03 w = 1 0, an qN-1 = 0 1

(these are just the definitions), and

v w = (0 —1) and  o(t) = <cos(mt/2) —sin(m/z))

1 0 sin(wt/2)  cos(mwt/2)
For £k =0,1,..., Ny define
(16.8) 2p = u " o(k/No)uh~1,
which is in

(q—k +an—1)A(q—k + qN—k)
and is a unitary in this corner.
We claim that z, € Ay for k =0,1,...,Ny. We have zp = qo + gqv € C(X) C
Ay. Also, z; € Ay by construction. For k = 2,3..., Ny, set ar, = g_1u*~1 and

br = qn_1uF"1. Since ug,u* = ¢, 41 for all n, we can write these as
(16.9) ar = q_1(ug_ou™ M) (ulq_su=?) - - (W 2q_ppuT )k
= (¢—1u)(g—2u) -+ (g—pt1u)
and
(16.10) b = qn—1(ugn—_ou” V) (uPqn_su™?) - (W gy ppru PP
= (qn-1u)(gn—2u) - (N —k+1).
Since Ny < N, the projections
q-1,4-25---34—No+1,dN—-1,dN—-25 - - - ; {N—No+1

are all characteristic functions of sets disjoint from Y. The factorizations in (16.9)
and (16.10) therefore show that ay, b, € Ay. Now one checks that

z = (ak + bx)"v(k/No)(ak + b),
which is in Ay. This is the claim. Thus
2 € (q—k + av—k) Ay (q—k + an—k)

and is a unitary in this corner.
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From (16.7), it is easy to get |[v(t1) — v(t2)|| < 2m|t1 — to| for t1,t2 € [0,1].

Using (16.8), for k =0,1,..., Ng we therefore get
* 2r €

(16.11) uzps1u® =zl = ||o((k + 1)/No) — v(k/No)|| < ¥ <7

Now define e,, = g, forn =0,1,..., N—Ny. Forn = N—Ny, N—No+1, ..., N,
define k by n = N — k, and set e, = zpq_rz;. These are clearly all elements of
Ay. The two definitions for n = N — Ny agree because, in the obvious block
decomposition (similar to that used above) of

(q—no + an—no ) Ay (g—Ny + aN—nNy),

(0 -1
Mo=l1 0 )
so that zn,q- N, 2N, = qN—N,- (One can check this formula by a direct calculation.)
Moreover, zy = qg + qn, SO ey = €g.
Putting things together, we have
(16.12) ue,_1u" = e,

forn=1,2,...,N — Ny, and also ueyu* = e;. For N — Ny < n < N we define k
by n =N — k and use (16.11) and ug_g_1u* = q_x to get

we get

(16.13) luep—1u™ — ey = “u2k+1q_k_12k+1u* — ZkCI—kaH
= ||(wzkg1u”) gk (uzpru) — |
< 2||uzk+1u* — Zk” < e.
Set

N
e:Zen and p=1—e,
n=1

both of which are in Ay. We verify that p satisfies (1), (2), and (3).
We verify (1) and (2). Consider u first. Since eny = eg, we have
N
ueu" —e = Z(uen_lu* —en).
n=1
For n =1,2,..., N — Ny, equation (16.12) applies, so that in fact
N
ueu" —e = Z (uep—1u™ — ey).
n=N-—Np+1

For the indices used in this sum, the inequality (16.13) applies, so the terms in
the sum have norm less than €. They are orthogonal since, with k determined by
n=N —k,

uen—1u" — ey € (q—p + qN—k) Ay (q—r + aN—k)-

Therefore
(16.14) |lueu™ — el < e.
So |lupu* — p|| = ||—ueu* + ¢|| < . Furthermore, since p € Ay and p < 1—¢qg =

1 — xy, we get
pup = p(1 — xy)up € Ay.
This is (1) and (2) for the element u € F U {u}.
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Next, let f € F. Define sets S, forn=1,2,..., N by
S1=T1, So="Ts, ..., SN-No—1 =TN_Ny-1
and
SN-nNo =TN-No UT_ Ny, SN—No+1 =TN-No+1UT-_Ny415 --., Sy =TnUTp.

These sets are disjoint. The sets Ty, 11, ..., Tn all have diameter less than 6. We
have d(h™ (y), y) < d, so the choice of & implies that d(h"(y), h" N (y)) < o for
n = —Ng, —No+1,..., N. Also, T,_y = h" N(Tp) has diameter less than 4.
Therefore T,,_n U T, has diameter less than 26 + g < 3dg. It follows that S,, has
diameter less than 3y for n =1,2,..., N. Since f varies by at most %E on any set
with diameter less than 49y, and since the sets S1, S5, ..., Sy are disjoint, there is
g € C(X) which is constant on each of these sets and satisfies || f — g < 3e.

Let the values of g on these sets be A\; on S; through Ay on Sy. Then ge,, =
eng = Apey for 0 <n < N — Ny. For N — Ny <n < N we use

en € (anN + qn)AY(qan + qn)

to get, using the same calculations as above at the third and fourth steps,

gen = 9(Gn-~ + @n)en = M(Gn-n~ + @n)en = en(qn-n + qn)g = €eng.
Since || f — g|| < 3¢ and ge = eg, it follows that

Ipf — foll =l fe—efll <e.

This is (1) for f. That pfp € Ay follows from the fact that f and p are in this
subalgebra. So we also have (2) for f.

It remains only to verify (3). Using A" (Y) C U; for I = —Ng, —No + 1, ..., N
and disjointness of the sets U_n,, U_N,+1, --., Un at the third step, and defining
Z = Uf\;7 ~, P1(Y) C U, we get (with Murray-von Neumann equivalence in A)

N N
l—p=e< > @~ > X)) =Xz
I=—No I=—N,

This completes the proof. (Il

Proof of Theorem 16.1 when X is the Cantor set. We use Exercise 16.17. Let u €
C*(Z,X,h) be the standard unitary (called u; in Notation 8.7). Take the set S
in Exercise 16.17 to be S = C(X) U {u}. We verify the conditions (1), (2), and
(3) in Lemma 16.16 for finite sets F C S. We may clearly assume that u is in our
finite subset, so let Fy C C(X) be finite, let ¢ € A4 \ {0}, let € > 0, and take
F = Fy U{u}. Use Lemma 16.23 to find a nonempty compact open set U C X
such that xy is Murray-von Neumann equivalent to a projection ¢ € ¢C*(Z, X, h)c.
Choose any y € X. Apply Lemma 16.24 with U, ¢, and y as given, and with Fy
in place of F. Let p and Y be the resulting projection and compact open set. Let
Z be as in part (3) of Lemma 16.24. Then |ap — pal| < € for all @ € F, which
is (1) of Lemma 16.16. Also, C*(Z, X, h)y is an AF algebra by Lemma 16.20, so
pC*(Z,X,h)yp is a corner of an AF algebra, hence AF. For a € F, part (2) of
Lemma 16.24 gives dist(a, pC*(Z, X, h)yp) = 0 < €, which is (1) of Lemma 16.16.
Finally, using part (3) of Lemma 16.24 at the first step, we get

1-pZxz<xv~q€cC(Z,X, h)c.
This is (3) of Lemma 16.16. 0
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17. MINIMAL HOMEOMORPHISMS OF FINITE DIMENSIONAL SPACES

In this section, we describe what needs to be done to prove the general case of
Theorem 16.1. We do not give full details, since to do so would require substantial
excursions into parts of C*-algebras which have little to do with dynamics, namely
the structure of direct limits of subhomogeneous C*-algebras and K-theory. We do
give proofs of some the parts which are related to dynamics.

In this section, we need to assume some familiarity with K-theory. We don’t
discuss K-theory here. Instead, we refer to [290] for a gentle introduction and [23]
for a more extensive treatment.

For applications to classification, the following generalization of Theorem 16.1 is
useful. See [286]; the statement is essentially Proposition 4.6 of [286]. Since some
parts of the proof involve essentially no extra work, we describe parts of the proof
of the generalization.

Theorem 17.1 ([286]). Let X be an infinite compact metric space with finite
covering dimension, and let h: X — X be a minimal homeomorphism. Let D be C
or a UHF algebra of the form ®,Z°=1 M for some prime [. Suppose that, following
the notation of Definition 16.14, p(Ko(D @ C*(Z,X,h))) is dense in Aff(T(D @
C*(Z,X,h))). Then D& C*(Z, X, h) is a simple unital C*-algebra with tracial rank
zero which satisfies the Universal Coefficient Theorem.

In the description we give of the proof, presumably D can be any UHF algebra.

If X is an odd sphere of dimension at least 3 and h is uniquely ergodic (see
Theorem 2.42), then h satisfies the hypotheses of Theorem 17.1 when D is any
UHF algebra but not when D = C. More generally, it follows from Proposition
3.12(b) of [27] that the hypotheses of Theorem 17.1 are satisfied whenever D is a
UHF algebra and the projections in |J)-; M,(C*(Z, X, h)) distinguish the traces
on C*(Z,X,h).

The first complication involves the construction of Rokhlin towers, as in the
proof of Lemma 16.20 and the discussion after Definition 16.18. The sets Y and
Y}, used there can’t be chosen to be compact and open (indeed, if X is connected,
there will be no nontrivial compact open sets), so that the projections xy, are not
in C(X) (and not in C*(Z, X, h) either). It turns out that one must take Y to
be closed with nonempty interior, and replace the sets Y; by their closures. Then
they are no longer disjoint. The algebra C*(Z, X, h)y is now a very complicated
subalgebra of @2:0 My ® C(Yy). It is what is known as a recursive subhomoge-
neous algebra. See Definition 17.10 and Theorem 17.14 below. We give a complete
proof of Theorem 17.14 since, as far as we know, no complete proof has yet been
published. It is taken with little change from the unpublished paper [162].

This modification will lead to further difficulties. Such algebras are generally
not AF, and may have few or no nontrivial projections. The hypothesis on the
range of p (which was not used in Section 16, although it is automatic when X is
the Cantor set) must be used to produce sufficiently many nonzero projections and
approximating finite dimensional subalgebras.

The following definition and lemma formalize the first return time used in the
proof of Lemma 16.20.

Definition 17.2. Let X be an infinite compact metric space and let h: X — X be
a minimal homeomorphism. Let Y C X, and let x € Y. The first return time ry (x)
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of z to Y is the smallest integer n > 1 such that h"(z) € Y. We set ry(z) = oo if
no such n exists. If Y is understood, we may simply write r(x).

Lemma 17.3. Let X be an infinite compact metric space, let h: X — X be a
minimal homeomorphism, and let Y C X. If int(Y") # @, then sup,cy 1y (z) < 0.

Proof. Set U = Jo—; h™"(int(Y)). Clearly h='(U) C U. Applying Lemma 15.3(4)
to h~!, and using U # @, we get U = X. Therefore the sets h="(int(Y")), for n > 1,
form an open cover of the compact set Y. Choose a finite subcover. The largest
value of n used is an upper bound for {ry(z): z € Y}. O

Definition 17.4. Let Y C X be closed with int(Y) # 0. The modified Rokhlin
tower associated with Y consists of the subsets and numbers

Yo, Y1,....,,CY, Y7, Y5,V CY, and 1<n(0)<n(l)<---<n(l),

defined as follows. We let n(0) < n(1) < --- < n(l) be the distinct values of the
first return time to Y (there are only finitely many, by Lemma 17.3), and we define

Yi={zeY:r(z)=nk)} and Ve =int({z € Y: r(z) =n(k)})
for k=0,1,...,1.

We warn that there is no reason to expect Y;? to be dense in Y, or even that
Y = int(Yy).
Lemma 17.5. Let Y C X be closed with int(Y) # @. Then (following the notation
of Definition 17.4):
(1) Suppose 0 <k, k¥’ <land 0<j, j <n(k)—1, with (k,j) # (k,5’). Then
A Nh™ (Vi) =@

(2) X = Ui Uiy ™" 1 (V).

() X =UiGn ).

(4) Y =Upo Vi
()Fork:O,l,...,landyEYk,ifr(y)<n(k)thenyGYk\Yk’.

Proof. We begin with an argument from the proof of Lemma 17.3. Set U =
Uj=, A (int(Y)). Clearly (U) C U. Since U # &, Lemma 15.3(4) implies U = X.
In particular, [ J72, h/ (V) = X.

It is now essentially immediate from the construction that

(k)—
X:H H T{zeY:r(x)=n(k)}).

k=0 j=

[}

Part (2) follows since
{z eY:r(z)=n(k)} C Y.
Part (3) follows by applying h~"() to part (2), since n(l) is the largest of the
n(k).
| 1301" part (1), apply the disjointness part of the above together with the observa-
tion that RN .S = @ implies int(R) N S = @.
In part (4), the inclusion Y C UZ:O Y}, is immediate from

{zeY:r(x)=nlk)} C Yy



190 N. CHRISTOPHER PHILLIPS

for k = 0,1,...,l. The reverse inclusion follows from continuity of A™(¥), the fact
that Y is closed, and the relation

{zeY:r(x)=n(k)} CY.
Part (5) follows from the relations
yZ{xeY:r(x)=n(k)} and Y c{xeY:r(z)=n(k)}
This completes the proof. ([l

There is a homomorphism from C*(Z,X,h)y to @2:0 C(Yi, My(ry), like the
isomorphism of (16.5), but in general it is not surjective. To describe it, we need
a description of C*(Z, X, h)y, which we provide in the following proposition. It is
valid whether or not int(Y') = @.

Proposition 17.6 (Proposition 7.5 of [213]). Let X be a compact Hausdorff space
and let h: X — X be a homeomorphism. Let u € C*(Z, X, h) be the standard
unitary generator (u; in Notation 8.7), and let E: C*(Z,X,h) — C(X) be the
standard conditional expectation (E; in Definition 9.18). Let Y C X be a nonempty
closed subset. For n € Z, set

Uiz (V) n>0
Zn =10 n=>0
U2 hi(Y) n < 0.

Then
(17.1) C*(Z,X,h)y = {a € C*(Z,X,h): E(au™") € Co(X \ Z,) for all n € Z}
and
(17.2) C*(Z,X,h)y NC(X)[Z] =C*(Z,X,h)y.
Proof. Define
B={aeC*(Z,X,h): E(au™) € Co(X \ Z,) for all n € Z}

and
By =BnNnC(X)[Z].
We claim that By is dense in B. We would like to write an element of B as
S bpu® with by € Co(X \ Zy,) for k € Z. Unfortunately, in general, such series
need not converge. (See Remark 9.19. If int(T") # @, then the series is necessarily

finite and therefore does converge.) Instead, we use the Cesaro means. Solet b € B
and for k € Z define by, = E(bu=*) € Cy(X \ Z). Then for n € Z~, the element

n—1
ap = Z 1-— m bpuk.
" n

k=—n+1

is clearly in By, and Theorem VIIL.2.2 of [52] implies that lim, o, a, = b. The
claim follows. In particular, (17.2) will now follow from (17.1), so we need only
prove (17.1).

For 0 <m <n and 0 > m > n, we clearly have Z,, C Z,.

We claim that for all n € Z, we have

(17.3) h="(Zn) = Z_n.
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The case n = 0 is trivial, the case n > 0 is easy, and the case n < 0 follows from
the case n > 0.
We next claim that for all m,n € Z, we have

Zm—i—n - Zm U hm(Zn)-

The case m = 0 or n = 0 is trivial. For m,n > 0 and also for m,n < 0, it is easy
to check that Z,,1n C Zpy = h™(Z,).
Now suppose m > 0 and —m <n < 0. Then 0 < m+n <m, so

Znin C Zom, C Zyy UR™(Z,).

If m > 0 and n < —m, then

1 m—1 m—1 m—1
Zmin= |J W) |J W)= |JWXUu | W) =ZnUh™(Z).
j=0

j=m-+n j=m-+n j=m+n

Finally, suppose m < 0 and n > 0. Then, using (17.3) at the first and third
steps, and the already done case m > 0 and n < 0 at the second step, we get

Zmn =W (Z ) C R (Z_py URT™(Z20)) = W' (Z) U Zi.

This completes the proof of the claim.

We now claim that By is a *-algebra. It is enough to prove that if f € Co(X\ Z,,)
and g € Co(X\ Zy,), then (fu™)(gu™) € By and (fu™)* € By. For the first, we have
(fu™)(gu™) = f-(goh™™)-u™*". Now f-(goh™™) vanishes on Z,, Uh™(Z,), so the
previous claim implies that f-(goh™™) € Co(X \ Zymin). Also, (fu™)* =u""f =
(f o hm)u, and, using (17.3), the function f o h™ vanishes on h™"(Z,,) = Z_.,, so
(fu™)* € By. This proves the claim.

Since C(X) C By and Co(X \Y)u C By, it follows that C*(Z, X, h)y C By = B.

We next claim that for all n € Z, we have Co(X\ Z,,) C C*(Z,X,h)y. Forn=0
this is trivial. Let n > 0, and let f € Co(X \ Z,,). Define fo = (sgno f)|f|*/™ and
for j = 1,2,...,n — 1 define f; = |f o B[/, Then fo, f1,..., fa_1 € Co(X \Y).
Therefore the element

a = (fou)(fiu) - (fa—1u)

is in C*(Z, X, h)y. Moreover, we can write
a= folufiu )W fou?) - (W frogum D)
= folfroh™)(fao h™2) - (far o h™ " D)um = (sgno f)(If]'/") " u" = fu.

Finally, suppose n < 0, and let f € Co(X \ Z,). It follows from (17.3) that
foh™e Co(X \ Z_,), whence also foh™ € Co(X \ Z_,). Since —n > 0, we
therefore get

fu = ()" = ((Fohm)u™)" € C*(Z, X, h)y.

The claim is proved. o
It now follows that By C C*(Z, X, h)y. Combining this result with By = B and
C*(Z,X,h)y C B, we get C*(Z,X,h)y = B. O

Corollary 17.7. Let X be an infinite compact Hausdorff space and let h: X — X
be a minimal homeomorphism. As in Proposition 17.6, let v € C*(Z, X, h) be the
standard unitary generator. Let Y C X be a closed subset such that int(Y') # @.
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Let Z,, be as in Proposition 17.6. Then there exists N € Zx> such that C*(Z, X, h)y
has the Banach space direct sum decomposition

N
C*(Z, X, h)y = € Co(X\ Zy)u".
n=—N

Proof. Define N = sup,cy ry(z). Then N is finite by Lemma 17.3. Proposi-
tion 17.6 implies that

N
C*(Z, X, h)y = > Co(X\ Zy)u".
n=—N

The sum on the right is algebraically a direct sum, the subspaces are closed, and
there are finitely many of them, so it is a Banach space direct sum by the Open
Mapping Theorem. (I

Notation 17.8. Assume n(0), n(1), ..., n(l) are positive integers. (They will be
the first return times associated with a minimal homeomorphism h: X — X and a

closed subset Y C X with nonempty interior.) Define SI(CO) and sy in My, or in
C(Z, My 1) for any Z, by

0 0 0 0 O 0 0 0 0 1

1 0 0 0 O 1 0 0 0O

0 1 0 0 O 0 1 0 0 0
s,(ﬂo): and sp =

00 -+ -~ 100 00 «--- -~ 100

00 --- --- 01 0 00 --- --- 010

The only difference is in the upper right corner, where s; has the entry 1.

The formula for v in the following proposition is based on a formula for the
Cantor set case in [229]. Recall that our definition of C*(Z, X, h)y differs from
that in [229]. If we took

C*(Z, X, h)y = C*(C(X), uCo(X \ Y)) C C*(Z, X, h),

as in [229], the correct formulas would use Z,, = U;n:_ol h=3(Y) for m € Z>o, and
would be

y(u™ f) = sitdiag(f o hlyi, f o RPly,, .., fo "y,
and
Ye(fu™™) = diag(f o hlyi, foh?lyy, ooy FOR™]y,) - sp™
for f € Co(X \ Z,n,).
This proposition and its proof are based on [162].

Proposition 17.9. Let X be an infinite compact Hausdorff space and let h: X —
X be a minimal homeomorphism. Let Y C X be closed with int(Y') # @. Adopt the
notation of Definition 17.4 and Notation 17.8, and let Z,,, be as in Proposition 17.6.
For k= 0,1,...,1 there a unique linear map v : C*(Z, X, h)y — C (Y, My (1)) such
that

’Yk(fum) = diag(.ﬂym fo h|Yk7 sy fo hn(k)ilh’k) : SZL
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and
Ye(u™™f) = s;™ - diag(flvi, f o hlyg, - oy fo "R 75
for f € Co(X \ Zp,). Moreover, the map

l

v: CH(Z, X, h)y = @D C(Yi, M)
k=0

given by
v(a) = (vo(a), v1(a), ..., n(a)).
is a homomorphism of C*-algebras.

Proof. We first claim that if f € C(X) and m € Z>, then u=™f € C*(Z, X, h)y
if and only if f € Co(X \ Zp,). Since u=™f = (f o h™)u™, the claim follows from
Proposition 17.6 and the fact that Z_,, = h=™(Z,,) (so that f vanishes on Z,, if
and only if f o h"™ vanishes on Z_,,).

Existence and uniqueness of the linear map 7, now follows from the Banach
space direct sum decomposition of Corollary 17.7.

It remains to check that v is a homomorphism. We check that 4 is a homomor-
phism for £ =0,1,...,1.

It is obvious that yx(a*) = yx(a)* for a € C*(Z,X,h)y. So we only need to
prove multiplicativity.

Define oy : C(X) — C(Yk, Mn(k)) by

Jk(f) = diag(f|yk, fo h|ch’ sy fo hn(k)_l|yk)'
Let Z,, be as in Proposition 17.6. We claim that if f € C(X \ Z,,,) and g € C(X),
then
(17.4) spor(foh™)or(g) =o(f)si'on(g) = o(flor(ge h™™)si!
Define
by = dlag((f © hn(k) ‘Yk)(g © hn(k)—mlyk)7 (f © hn(k)+1‘yk)(g © hn(k)—m+1|yk)7 sy

(f o hBFm=1ly Y (g o AR =1y ),

by = diag((fh/k)(g o hn(k)_mh/k)a (f o h|Yk)(g o hn(k)—m-{-l'yk)’ B
(f o h™ Yy )(g o h"® Y y)),

by = diag((flvi)(g o h™™Ivi), (f o hlvi)(g o h™ ™ y,), ..o,
(foh™ Hy)g o h™ ),
and
¢ =diag((f o h"™[v;,)(glv): (f o R v ) (g 0 hlyi)s - -
(f o k™7 gy ) (g 0 AP =M y)).

Carrying out the matrix multiplications gives, for any f, g € C(X), the block matrix
forms (in which the off diagonal blocks are square, m X m in the upper right and
(n(k) —m) x (n(k) —m) in the lower left):

sgatorma@= (0 W) onsalm= (0 ).

C c
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and
_ 0 b
o(f)orlgoh™™)si = ( g) :
Now we recall that f is required to vanish on
Zm =Y URWY)U---UR™ (Y.

Since h"™(*) (Yy) C Y, it follows that by = by = b3 = 0. Thus, all three products
agree. This proves the claim.
Now let p, ¢ € Z>o, let f € C(X\ Z,), and let g € C(X \ Z,;). We claim that

(17.5) e ((fuP)(gu?)) = e (fuP)yr(gu?)
for any such p and ¢, that

(17.6) (WP F)(gu?)) = v (u™P f)re(gu?)
whenever p < ¢, and that

(17.7) e ((fuP)(u™9)) = e (ful )y (u™g)

whenever ¢ < p. Given the claim, to prove multiplicativity it suffices to prove (17.6)
when p > ¢, (17.7) when ¢ > p, and
e (™ f)(w™9)) = y(u™fy(u9)
for arbitrary p, ¢ € Z>¢. The first can be deduced by taking adjoints in (17.6), the
second can be deduced by taking adjoints in (17.7), and the third can be deduced
by taking adjoints in (17.5).
Using the first part of (17.4) with m = p at the second step, we get
Y (fuP) v (gu?) = ok (f)shor(9)st = on(f)or(go h™P)sp
=7k (f(g o h7P)ul*) = i ((fu?)(gu)),
which is (17.5).
Assume that p < ¢. Then g vanishes on Z, since Z, C Z,. Applying (17.4) with
m = p at the third step, we get
(U™ F)v(gu?) = s ok (for(g)sh = [or(@or(F)sh] st
— [sfon(go h)on(F o k)]sl = on(f o h)onlg o hP)s] P
= :((f o hP)(g 0 WP )ut™) = 3. ((u™P f)(gu?)),
which is (17.6).
Now assume that ¢ < p. Since p — ¢ < p, we have Z,_, C Z,. So f vanishes on
Zp—q, and we can apply (17.4) with m = p — g at the second step to get

Vi (fuP)ye(u™9) = o (f)sh, ‘or(g) = on(f)or(go hT7P)s) 1
= (f(go hIP)uP~9) = v ((fuP)(ug)).

This is (17.7). The proof of the claim, and therefore of the proposition, is complete.
O

What does the range of the homomorphism v of Proposition 17.9 look like? To
give a good answer, we start with the definition of a recursive subhomogeneous alge-
bra. Essentially, it is a generalization of an algebra of the form EBL:O C( Xk, M),
in which one is allowed to glue the summands together along the “boundaries” of
the spaces X;. As a very simple example, let M3 & M, C M; be the subalgebra
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consisting of all block diagonal matrices a®b with a € M3 and b € My, and consider
the C*-algebra

{fecC(-1,1], M7): f(t) € M3 ® My for t € [-1, 0]},
which is made by gluing together the algebras
C([_lv O]’ M3)a O([_la 0]7 M4)v and O([O7 1]5 M7)

at the point 0. Here is an example with no nontrivial projections, using the same
direct sum notation:

{fe€C(0,1], M7): f(0) € M3 My and f(1) € My & Ms}.

Definition 17.10 (Definition 1.1 of [203]). The class of recursive subhomogeneous
algebras is the smallest class R of C*-algebras such that:

(1) If X is a compact Hausdorff space and n € Z~, then C(X, M,) € R.

(2) R is closed under the following pullback construction. Let A € R, let X be a
compact Hausdorff space, let X(©) ¢ X be closed, let p: A — C(X(O), Mn)
be any unital homomorphism, and let p: C(X, M,,) — C’(X(O)7 M,,) be the
restriction homomorphism. Then the pullback

A 69C(X(O),Mn) C(X7 Mn) = {(a7 f) EAD C(X’ MTL): 90(04) = p(f)}
(compare with Definition 2.1 of [199]) is in R.

In (2) the choice X(©) = & is allowed (in which case ¢ = 0 is allowed). Thus the
pullback could be an ordinary direct sum.

Remark 17.11. From the definition, it is clear that any recursive subhomogeneous
algebra can be written in the form

R= |: [[CO @Cio) Cl] @Céo) CQ] ] @C;O) Cl,

with Cy, = C(Xg, My )) for compact Hausdorff spaces X} and positive integers
n(k), with C,E,O) = C(X,go), Mn(k)) for compact subsets X,io) C X}, (possibly empty),

and where the maps Cj — C,io) are always the restriction maps. An expression
of this type will be referred to as a recursive subhomogeneous decomposition of R.
(The decomposition is very far from unique.)

We give parts of Definition 1.2 of [203].

Definition 17.12. Let R be a recursive subhomogeneous algebra, with a decom-
position as in Remark 17.11. We associate with this decomposition:

(1) For £k =0,1,...,1, the k-th stage algebra
R(k) = [ .- HCO @Cio) Cl} EBCéO) Cz} . } @CI(CO) Cyg,

obtained by using only the first k + 1 algebras Cy, C1, ..., Cy.

(2) Tts base spaces Xo, X1,...,X; and total space X = ]_[2:0 Xi.

(3) Tts topological dimension dim(X) (following Definition 16.7; here equal to
maxy, dim(Xy)).

(4) Tts matriz sizes n(0),...,n(l).

(5) Its minimum matriz size ming n(k).
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(6) Its standard representation o = og: R — @2:0 C(Xk, My(yy), defined by
forgetting the restriction to a subalgebra in each of the pullbacks in the
decomposition.

By abuse of language, we will often refer to the base spaces, topological dimen-
sion, etc. of a recursive subhomogeneous algebra A, when they in fact apply to
a particular recursive subhomogeneous decomposition. The minimum matrix size
actually does not depend on the decomposition, since it is the smallest dimension
of an irreducible representation of A. The base spaces certainly do, and even their
dimensions do, as can be seen by considering the following example.

Example 17.13. Let X be an arbitrary compact Hausdorff space, set X(© = X,
and define ¢: C — C(X) by p(A) = A-1for A € C. Let p: C(X) — C(X) be
p = id¢(x). Then C &¢(x) C(X) = C, so we have a recursive subhomogeneous
decomposition for C whose topological dimension is dim(X).

Theorem 17.14. Let X be an infinite compact metric space, let h: X — X be
a minimal homeomorphism, and let ¥ C X be a closed subset with int(Y) # .
Then the algebra C*(Z, X, h)y of Definition 16.18 is a recursive subhomogeneous
algebra with topological dimension equal to dim(X), and whose base spaces are
closed subsets of X.

The proof of this theorem is based on [162]; also see Section 2 of the survey [161].
It proceeds via several further lemmas.

Lemma 17.15. Let X be an infinite compact Hausdorff space and let h: X — X
be a minimal homeomorphism. Let Y C M be closed with int(Y) # @&. Then the
homomorphism v of Proposition 17.9 is unchanged if, for £k = 0,1,...,[, we replace

Sk by s,(fo) and slzl by (sio))* in the definition. That is, in the notation there, for

k=0,1,...,1, m € Z>g, and f € Co(M \ Z,,), we have

’Yk(fum) = diag(ﬂym fo h|Yk7 sy fo hn(k)il‘yk)(sgcm)m
and o
Y f) = ((s7)") "diag(fly,, £ o hlyy -, foh" M7 y,).

Proof. This follows by matrix multiplication from the fact that f vanishes on the
sets Yk, h(Yk), ceey hmil(Yk). O

Corollary 17.16. Let X be an infinite compact Hausdorff space and let h: X —
X be a minimal homeomorphism. Let ¥ C X be closed with int(Y) # @.
Let El(cm): C(Yi, My (iy) — C (Y, My (1)) be the projection on the m-th subdiago-
nal, that is, identifying C(Yx, My, x)) with M) (C(Y)), we have E,(fm)(b)mﬂ-’j =
byyjj for j=1,2,...,n(k)—m (if m >0) and for j = —m+1, —-m+2, ..., n(k)
(if m < 0), while E,(cm)(b)w = 0 for all other pairs (4, ). (In particular, if m > n(k),
then E™ =0.) Set
l
Dy = @D E™ (C(Yi, Mugry).-
k=0
Let
l

Vi C*(ZaX7 h’)Y — C(YkaMn(k)) and v C*(Z7X7 h)y - @C(YkaMn(k))
k=0
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be as in Proposition 17.9. Then:

(1) There is a Banach space direct sum decomposition

n(l)

P, Mypy) = P D

l
k=0 m=—n(l)

(2) For k=0,1,...,l, m € Z>g, f € Co(M \ Z,,), and x € Yy, the expression
Yie(fu™)(x) is given by the following matrix, in which the first nonzero
entry is in row m + 1.

0 0 0
0 0
Ye(fu™)(x) = | fohm(z) 0
0 th77L+1(LL')
(j forM®=l(z) 0 ... 0

(3) Form >0 and f € Co(X \ Zn),
W(fu™) € By (C(Ve, Myy))  and  y(fu™) € Dy,
and
(" f) € B (C(Ye, Myy))  and A(u™™f) € Doy,

(4) The homomorphism + is compatible with the vector space direct sum de-
composition of Proposition 17.9 on its domain and the vector space direct
sum decomposition of part (1) on its codomain.

Proof. The direct sum decomposition of part (1) is easy. The rest is all essentially
immediate from Proposition 17.9 and Lemma 17.15. O

Lemma 17.17. Let X be an infinite compact Hausdorff space and let h: X — X
be a minimal homeomorphism. Let Y C X be closed with int(Y) # @. Then the
homomorphism « of Proposition 17.9 is injective.

Proof. By Corollary 17.16 and Corollary 17.7, it suffices to show that if v(fu™) = 0,
with m > 0 and f € Co(X \ Z,,,), then f = 0. By the definition of v, if v(fu™) =0
then f vanishes on all sets h/(Yy) for k = 0,1,...,l and j = 0,1,...,n(k) — 1.
These sets cover X by Lemma 17.5(2), so f = 0. (]

Lemma 17.18. Let X be an infinite compact Hausdorff space and let h: X — X
be a minimal homeomorphism. Let ¥ C X be closed with int(Y') # @. Adopt the
notation of Definition 17.4, and let v be as in Proposition 17.9. An element

l
b= (b()vbla ce 'abl) € @C(YkaMn(k))
k=0

is in y(C*(Z, X, h)y) if and only if, whenever
T€Z>0, katlat27"',t’r‘6{0,17"'al}7 n(t1)+n(t2)++n(t’f):n(k)7
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and

re (Yk \Yk.) N thl N h—n(tl)(YiQ) A---N h—[n(t1)—&-n(tz).|_....|_n(t7~71)](Y;t )7

r

then by (z) is given by the block diagonal matrix

(17.8) bi(z) = diag(bs, (2), by, (R (2)),
big (BT () by, (TR ) (),
Proof. For b, r, k, t1,to,...,t., and x as in the statement, let
Qg vkttt (00,01, -0 bE—1)

denote the block diagonal matrix on the right hand side of (17.8). We write
b= = (bo, by, ..., bp_1).

Let Elgm) be as in Corollary 17.16. By Corollary 17.16, it suffices to verify, for each
fixed m, the statement of the lemma for elements (bo, b1, ..., b;) such that by is in

the range of E,im) for k =0,1,...,l. Using the adjoint, we may in fact restrict to
the case m > 0.
We verify that elements of the range of  satisfy the required relations. Let

r€Zvo,  tite,..te€{0,1,..01},  n(t)+n(t)+ - +n(ty) =n(k),
and
ze (Ve \Y2)NY, nh ") (v, )N ... 0p~PE)Fnl)ttnlt—ly, )
Let f € Co(X \ Z,,) and define

l
(b0, b1, - br) € @D C(Ya, M)
k=0

by (bo, b1,...,b) =~(fu™). By Corollary 17.16(2), the m-th subdiagonal of by (z)
is
(17.9) (foh™@), foh™ (z), ..., foh"® ! (x)).
Similarly, the m-th subdiagonal of ag r ¢, ... ¢, (b(k’l)) is given by the following
formula (explanations afterwards):
(17.10)

(foh™(x), foh™ ™ (z), ..., foh"™)™z), 0,0,...,0,

foh™t)Fm () fopnltFmalgy o prt)Eni=) =1y 0 0, ... 0,

f ° hn(tl)Jr---+n(t,,.,1)+m(x)’ f o hn(t1)+~»-+n(tr,1)+m+1(1,)

g ey

f ° hn(t1)+~~+n(tr_1)+n(tr)—1(x)) ]

The sequences of zeros all have length m, except that if n(¢;) < m then the subse-
quence
(17.11) fo hn(t1)+~-+n(ti_1)+m($), fo hn(t1)+~--+n(ti_1)+m+l(x)

oy fohmtE =1y 0 0, ... 0

9
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should be read as a sequence of n(t;) zeros. Thus, for i = 1,2,...,7 — 1, the subse-
quence of the form (17.11) has total length n(¢;), while for ¢« = r the corresponding
subsequence (without zeros at the end) has total length n(t.) — m.

The terms in (17.9) which have been replaced by zero in (17.10) are exactly those
containing values of f at points of the form A"+ +nt)+i (1) for i = 1,2,...r—1
and j = 0,1,...m — 1. Since pn(t)++n(t)(z) € Y all these points are in Z,,,
so that f is zero on them anyway. Therefore the sequences (17.9) and (17.10) are
equal. We have show that elements of the range of v satisfy the required relations.

For the converse, let m > 0, let

!
(bo, b1, - ., br) € D C(Vi, M)
k=0

satisfy the relations in the statement of the lemma, and assume that by is in the
range of E,(Cm) for k =0,1,...,1. Define continuous functions f,g]): h?(Yy) — C, for
k=0,1,....,0and j = 0,1,...,n(k) — 1, as follows. When n(k) > m, we specify
that the m-th subdiagonal of by (starting at (bg)m+1,1) be given by

(Fim o pm, fmD o et T g =1y,

That is,
= (b1 om0 h )y,

for j = m,m+1,...,n(k) — 1 We further set f,g]) =0for k=0,1,...,] and
j=0,1,...,min(n(k) — 1, m — 1). We claim that there is a continuous function
f: X — C such that flu vy = f for all j and k, and that f vanishes on Z,.
Given this, it is clear that fu™ € C*(Z, X, h)y and v(fu™) = (bg, b1, ..., b).

Assume that f exists. We claim that f vanishes on Z,,. Recall that (Proposi-
tion 17.6 for the first equality and Lemma 17.5(4) for the second)

m—1 m—1 1
Znm=J W)= W
j=0 j=0 k=0

Let j € {0,1,...,m}, let k € {0,1,...,1}, and let = € h7(Y}). We need to show
that f(z) = 0. If j < n(k) — 1, then f,gj) = 0 is immediate from the definition, so
f(z) = 0. So assume j > n(k) — 1. Let s € Z>( be the least nonnegative integer
such that h=°(z) € Y. Then s < j. Set g = h~*(x). Choose 7 € {0,1,...,1} such
that r(zo) = n(i). Then h(xg), h?(xq), ..., h*(x9) €Y, so
s <min(n(i) — 1, j) <min(n(i) — 1, m — 1) and x = h*(xo) € h*(Y(s))-

So f(x) = 0 by the case considered first. This proves the claim.

It remains only to prove that f exists and is continuous. Since the sets h/(Y%)
are closed, it suffices to prove that if

0<ki,ka <1, 0 <1 <n(k)—1, 0 <jo <n(kz)—1,
and _ _
r € h't (Ykl) N hm(Ykz),

then flgl)(x) = flgf)(x) Without loss of generality j; < jo.

First assume j; = jo. Call this number j. Then without loss of generality ki <
ko. If k1 = ko, there is nothing to prove, so we may assume that k1 < ko. Son(k;) <
n(kz). Let zg = h7(x). Then 2oy € Y, N Y,. Since n(k;) < n(k2) is a return
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time for zo, we have 29 € Yy, \ ;2 by Lemma 17.5(5). Choose t; € {0,1,...,1}
such that n(t;) is the first return time of A™(*1)(z9) to Y. So h"**1)(zg) € V;,. If
n(ki) + n(t1) < n(ks), we can choose t € {0,1,...,1} such that n(t2) is the first
return time of A" 4711 (24) to Y. So h»(F1)+(1) (1) € Y;,. Proceed inductively.
Since the numbers n(t;), n(t;) +n(ts), ... are successive return times of h™*1)(z)
to Y, and since h"(*2)(z4) € Y, there is r such that
n(k1) + n(t1) + n(t2) + - - + n(t,.) = n(ks).
Then
2o €(Yi, \ Yio) N Y, NAT"M)(17))
mh—[n(k1)+n(t1)](yt yN---Nh~- [n(k1)4n(tr)+n(tz)+-+n(tr— 1)]( ),

8O Qg ,r+1,k2,k1,t1,t2,.. (b(kQ_l)) = by, (l‘o) .
Ifo<j<m-1, then f(J)( ) and f(J)( ) are both zero. Otherwise, f,gz)(x) =

(f(j)ohj)(xo) is the (j+1, j—m+1) entry of by, (x¢) and f(j)( )= (f,g)ohj)(xo) is
the (41, j—m-+1) entry of by, (xo). The relations in the statement of the lemma,

with ki,t1,t2,...,t, in place of t1,ts,...,t,, therefore imply that f(j)( )= f,g) (z),
as desired.
Now suppose j; < jo. We split this case in two subcases, the first of which is

(17.12) n(k1) = j1 < n(k2) — ja.
Suppose j» < m. Then also j; < m, so fk“)( ) = f,gz)(a:) =0, as desired.
So we can assume m < jp < n(kg) — 1. Define zg = h=92(x), giving
Xo € Yk2 n hi(jzijl)(ykl).

Now ja — j1 < n(kz) and is a return time of zo to Y, so zg € Y, \ Y}?, by Lemma
17.5(5). Using the same argument as in the previous case, choose

tl,tg,...,t# € {0,1,,1}

such that n(t1), n(t1) + n(tz), ... are successive return times of g to Y, and such
that

’I'L(tl) + n(tg) + -+ n(t#) = jg — jl-
Similarly, using (17.12) to get n(k1) + jo — j1 < n(kz), choose
t,th, ...t €{0,1,...,1}

such that n(t)), n(t) +n(th), ... are successive return times of A™(¥1)+72=31(24) to
Y, and such that

n(ty) +n(ty) + - -+ n(t,) = n(k) = (j2 = 51)-

Then
20 €(Yi, \ Vo) N Yy, N hfn(tl)(yt{z) AN h*[”(“)*'”*”(t“*l)](YtM)
N =)+ Ant)l(y, ) A )+ At +nlk)] (Yy)ne-
A B )+t +nk)+n(t)++n(t, )] (Yy)
and

n(ty) + - +n(t,) +n(k) +n(t)) +--- +n(t,) = n(ks).
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so the hypothesized relations give

(17.13) Qg it 1ta s sttt ot oot (27D = by (0).

We compare the (jo + 1, jo — m + 1) entries of the two sides of (17.13). The
(j2+1, jo—m+1) entry of bg,(z) is (f,giz) o hiz)(zg) = f,gf)(x) We examine the
(jo + 1, jo — m+ 1) entry of the left hand side. By considering the row number
j2 + 1, and using the relations

je=n(t1) +n(t2) +---+nlt,)+5  and  0<j1 <n(k)—1,
we see that the (j2 + 1, jo — m + 1) entry of the left hand side of (17.13) must be
either in the diagonal block
(bk1 o h]é—jl)(xo) — (bk1 ° hn(t1)+n(t2)+--.+n(tu)>(x0)

in the formula for py i1 4u,ka b1 o, ity bn ]t st (b2=1)) or in none of the diag-
onal blocks. If j; < m, then
jo—m+1<jo—ji+1=n(t))+nts) +---+nt,) +1,
so the (j2 + 1, jo — m + 1) entry of the left hand side of (17.13) is in none of the
diagonal blocks. Thus (17.13) implies that f,ggz)(a:) = 0, while f,gil)(x) = 0 by the
definition of f,gl). Thus f,gl)(x) = f,if)(a:), as desired.
If instead m < j; < n(ky) — 1, then

n(t) +n(te) +-+nty) +1 < jo—m+1 < jo < n(ty) +n(t2) +- - +n(ty) +n(tr),
so the (j2 + 1, jo — m + 1) entry of the of the left hand side of (17.13) is in the

diagonal block (bg, o h2791)(xg). In fact, it is the (j; + 1, j1 — m + 1) entry of
(bg, 0 h72791)(zg). So (17.13) implies that

flgz)(x) _ (flgzl) o hit o hjz_jl)(:vo) _ lgl)(x)’
as desired.

Now suppose that n(ki) — j1 > n(ka) — j2, the opposite of (17.12). We reduce
this case to a strictly smaller value of n(k1) 4+ n(kz2) together with instances of the

cases already done, so that the desired equality f,gl)(x) = flif)(a:) follows by a
finite descent argument. Set xg = h7J!(z) € Yj,. Using the same argument as
before, choose
ti,te,...,t. € {0,17...,1}

such that n(ty), n(t1) + n(te), ... are successive return times of zo to Y, and such
that

n(ty) + n(te) + - - + n(t,) = n(ky).
Then

h”(kz)f(]é*jl)(xo) — prk2)—j2 (z) € hn(kz)(YkQ) cY
and n(ke) — (jo — j1) < n(k1), so r > 2. Choose i € {0,1,...,1} such that
’I’L(tl) + n(tg) + -+ ﬂ(ti_l) << n(tl) + n(tg) + -+ n(ti),
and let
ks =1t; and Js =J1 — [n(h) + n(tz) + -+ ’I’L(ti_l)].

Then 0 < j3 < n(ks) — 1. Define

y= hn(t1)+n(t2)+---+n(ti71)(xo) c Yk3~
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Then h’3(y) = x, so
x € h7* (Vi) VA7 (Yy,)  and @ € h¥3(Yy,) N W72 (YVi,).
We have
J3<ji and  n(ks)—jz < n(k) - ji,

so the cases we have already done give f,gz 1)(a:) = f,gf)(a:). Therefore it suffices to
replace k1 and j; by k3 and j3 in the statement to be proved. We have n(ks) < n(k;)
because n(t1)+n(te)+---+n(t,) = n(ki) and r > 2. Meanwhile, n(ks) is the same
as before. This is the required reduction.

The proof that f is well defined and continuous is now complete. O

We now give a more precise statement of Theorem 17.14. It is the generalization
of the isomorphism (16.5) gotten from the proof of Lemma 16.20.
Theorem 17.19. Let Y C X be closed with int(Y) # @. Let

!
v: C*(Z, X, h)y = @D C(Ye, Myr)
k=0
be the homomorphism of Proposition 17.9. Then ~ induces an isomorphism of
C*(Z, X, h)y with the recursive subhomogeneous algebra defined, in the notation
of Remark 17.11 and Definition 17.12, as follows.

(1) 1 and n(0), n(1), ..., n(l) are as in Definition 17.4.
(2) Xk :Yk for k = 1,2,...,[.
3) X =vinUy v fork=1,2,...,L.
or k=0,1,....L, zx e YpyNJ,_, Y; and (bg,b1,...,bx—1) in the image in
4) For k=0,1,...,1 Yi NUSZs Y5 and (bo,b b h
EB?;& C(Yj, M,,(;)) of the k — 1 stage algebra R*=1 whenever
ze YV \ V) NY;, Nh0)(Y,) N n )ttt 0l y, )
with
n(t1) +n(tz) + - +n(ty) = n(k),
then
@k (bo, b1, ..., bg—1)(x) =

btl (.13)
be, (") ()
by, (R0 F72) (1))

b () ()
(5) For k =0,1,...,1, ¥y is the restriction map.
Moreover, the standard representation of v(C*(Z, X, h)y) is the inclusion map in

B'—o C(Yi, Moy

Proof. The main point is to show that the formula in (4) actually gives a well
defined homomorphism

Pk Rk=1 C(Yk(o), Mn(k))~

We do this by induction on k. Once it is known that ¢1,@9,...,¢pr_1 are well
defined, it follows that R(*~1) as described is a recursive subhomogeneous algebra,
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and that its elements are exactly those sequences (bg,b1,...,bx_1) which satisfy
the conditions of Lemma 17.18 up to I = k — 1 (that is, the number k there is
at most the number k& — 1 here). Having R¥=1 it makes sense to consider a
homomorphism ¢y, : R*—1 — C(Y,C(O),Mn(k)). If the one described in (4) is well
defined, it will follow that R*) is a recursive subhomogeneous algebra, and that its
elements are exactly those sequences (bg, b1, ..., br—1) which satisfy the conditions
of Lemma 17.18 up to | = k.

We start by showing that ¢, is well defined. We have Yl(o) =Y NYy For

T € YI(O), let 0 = vg,v1,...,v. = n(l) be the successive return times of x to Y.
We have v1 = n(0) < n(1), sor > 2. For i =0,1,...,r — 1, the first return time
of h¥i(x) is strictly less than n(1), so can only be n(0). Therefore n(1) = rn(0).

Thus, if Yl(o) # &, then n(1) = rn(0) and
VO =vinYonh O (Yy) n 2O (Yp) A -0 A= O] (g,

If YI(O) = @ then ¢ is trivially well defined, and if Yl(o) # &, then ¢ is well defined
by the formula

¢1(b) = diag(bl, @, bo A" [y @, -5 bo pr ) =n(0) lyo)-

Now assume we have R#~1D . Let S be the set of all sequences (t1,t2, ... 1)
such that n(ty) + n(t2) + - - - + n(t,) = n(k), with » > 2. In such a sequence, we
have t; < k fori =1,2,...,r. For 0 = (t1,t2,...,t,.) € S, define

Y = (A Y N Yy DA (¥,) 0 et betnledly, ),

(Note that the intersection is the same if one uses Y} in place of Y; \ Y;?.) By
considering successive return times as in the initial step of the induction, one checks

that
0 o
v = .
c€eS
Showing that ¢y is well defined is therefore equivalent to showing that if o7 € S
and = € Yk(a) N Y,C(T)7 then the corresponding two formulas in (4) agree at z. For
b e R*F=1 call these expressions (p,(f)(b)(x) and wéT)(b)(m).
Given 7 = (t1,t9,...,t,) € S, define
R(7) = {0, n(t1), n(t1) + n(ta), ...,n(t1) + -+ n(tu—1), n(k)},

the set of return times associated with 7. Let o, 7 € S, and let x € Yk(g) N Yk(T).
Let p = (r1,72,...,7,) € S be the sequence using all return times of z. That is,
n(ry) is the first return time of x, n(ry) is the first return time of A™(")(x), etc.
Then z € Yo(p) and R(p) contains both R(o) and R(7). It therefore suffices to prove

agreement of the two formulas when x € Yk(a) N Yk(T) and R(o) C R(7).
Assuming this, write 7 = (t1,t2,...,t,) and

R(o) = {0, n(t1) +--- +n(tjq)), n(tr) + - +ntjz) -, nty) + - +ntjw)l
with

J(1) <j(2) < - <j(pw) and n(ty) +n(tz) + - +n(tj) =n(k).
Then o = (s1,82,...,5,), with

n(si) = n(tji—1+1) + nltja—142) + - +nltjm)
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fori=1,2,...,u. Now cpff)(b)(:z:) is a block diagonal matrix, with blocks
b (), by (WD (), by (WD (), b, (0Tl nlon) (),
The induction hypothesis implies that

btl (y)
bt2 (hn(tl) (y)>
bSl (y) =

Be (B E 41500 )

3(1)
for

y € (Yo, \Y2)NYy, Nh7" (Y, - pm ittt -oly, )
that

bty (V)

b0 (B30 (3))

(1)+2

b, (y) =
by (R0l )
for
Y € (Yo \Y3) MYy, NATHBOR (Y )
NN Ao o)t tnte -y, )

etc. Taking y = x in the first,
y = hn(sl)<.’L‘) — hn(t1)+~~-+n(tj(1))(x)

in the second of these,
y = hn(sl)-‘rn(sz)<x> — h7b(t1)+“‘+n(tj(2))(x)

in the third, etc., we get go,(f)(b)(x) = @,&T)(b)(x), as desired. This completes the
induction, and the proof. (I

Proof of Theorem 17.14. The only part of the statement of Theorem 17.14 which is
not in Theorem 17.19 is the statement that C*(Z, X, h)y has topological dimension
equal to dim(X). That the topological dimension is at most dim(X) follows from
Theorem 17.19 and Proposition 16.10. That it is at least dim(X) follows from
Theorem 17.19, Proposition 16.11, and Lemma 17.5(2). ([l

The subalgebras we really want are of the form C*(Z, X, h), for suitable y € X,
not C*(Z, X, h)y with int(Y) # @.

Remark 17.20. Let X be an infinite compact Hausdorff space and let h: X — X
be a minimal homeomorphism. Let Y C X be closed. The case of immediate
interest is Y = {y} for some y € X, but other choices are important, as for
example in the discussion after Proposition 23.15. We can choose a decreasing
sequence Y7 D Y5 D -+ of closed subsets of X with nonempty interiors such that

(17.14) (Y. =Y.
n=1

Then
C*(Z,X,h)yl C C*(Z,X,h)y2 (@RS
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and
U ¢z, X, h)y, = C*(Z, X, h)y.
n=1

That is,

(17.15) C*(Z, X, h)y = lim C*(Z, X, h)y,.

When dim(X) < oo, by Theorem 17.14 we have expressed C*(Z, X, h)y as the
direct limit of a direct system of recursive subhomogeneous algebras which has no
dimension growth, in the sense of Corollary 1.9 of [204].

Moreover, we have the following result.

Proposition 17.21 (Proposition 2.5 of [157]). Let X be an infinite compact Haus-
dorff space and let h: X — X be a minimal homeomorphism. Let y € X. Then
C*(Z, X, h)yy is infinite dimensional and simple.

Infinite dimensionality is obvious. We refer to [157] for the proof of simplicity.
We point out that a generalization of this result follows from Proposition 20.7,
Proposition 20.10, and Theorem 19.5, whose proofs we give sketches of below.

Direct limits of direct systems of recursive subhomogeneous algebras with no
dimension growth have a number of good properties, originally developed in [204]
and [205]. By now, it is known that all such algebras are classifiable in the sense of
the Elliott classification program. Here, we want to use the density of the range of
the map

(17.16) Ko(C*(Z, X, h) (1) — AE(T(C*(Z, X, h)(yy))

to conclude that C*(Z, X,h),; has tracial rank zero (Definition 11.35). More
generally, if D is a UHF algebra, we want the map

(17.17) Ko(D® C*(Z, X, h)(yy) — Aff(T(D ® C*(Z, X, h){y3))

to have dense range. Our hypotheses state that

(17.18) Ko(C*(Z,X,h)) — AH(T(C*(Z,X, h)))

has dense range, or that

(17.19) Ko(D ® C*(Z,X,h)) = Aff(T(D ® C*(Z, X, h)))

has dense range.

The following results take care of the differences. We need to deal with both
tracial states and K-theory. We state the results, and discuss the proofs of the main
ingredients afterwards.

Lemma 17.22 (Proposition 2.5 of [157]). Let X be an infinite compact metric
space, and let h: X — X be a minimal homeomorphism. Let y € X. Then the
restriction map T(C*(Z,X,h)) — T(C*(Z,X,h)(y}) is a bijection and an affine

homeomorphism.

Corollary 17.23. Let X be an infinite compact metric space, and let h: X — X
be a minimal homeomorphism. Let y € X. Let D is a UHF algebra. Then the
restriction map

T(D ® C*(Z,X,h)) = T(D ® C*(Z, X, h) )

is a bijection and an affine homeomorphism.
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The proof of Corollary 17.23 needs the following well known result.

Exercise 17.24. Let A be a unital C*-algebra, and let D be a unital C*-algebra
with a unique tracial state. Then there is an affine homeomorphism

R: T(D Qmin A) = T(A)
such that for 7 € T(D ®min A), the tracial state R(7) is determined by R(7)(a) =
T(1®a) for a € A.

Proof of Corollary 17.23. The result is immediate from Lemma 17.22 and Exer-
cise 17.24. O

Theorem 17.25 (Theorem 4.1(3) of [204]). Let X be an infinite compact metric
space, and let h: X — X be a minimal homeomorphism. Let y € X. Then the
inclusion map ¢: C*(Z, X, h)yy — C*(Z, X, h) induces an isomorphism
Lyt KO(C'*(Z,X7 h){y}) — KO(C*(Z, X, h))
We won’t use this fact, but it is also true that
Lo K4 (C*(Z,X, h){y}) — K3 (C’*(Z,X7 h))
is injective, with cokernel isomorphic to Z, generated by the image in the cokernel of

the Kj-class of the standard unitary v in C*(Z, X, h). See Theorem 4.1(4) of [204].

Corollary 17.26. Let X be an infinite compact metric space, and let h: X — X
be a minimal homeomorphism. Let y € X. Let D is a UHF algebra. Then the
inclusion map

idp ®¢: D®C*(Z,X,h)qy — D@ C*(Z, X, h)
induces an isomorphism
(idp ® t)s: Ko(D ® C*(Z, X, h)1,y) = Ko(D ® C*(Z, X, h)).
Proof. This result follows from the Kiinneth formula [251] and Theorem 17.25. O

One doesn’t actually need the Kiinneth formula. If D = hﬂn Mgy with
d(1)|d(2)] -, then idp ® ¢ is the direct limit of the maps

ide(%) [ Md(n) & C*(Z,X7 h){y} — Md(n) & C*(Z, X, h),
which are all isomorphisms on Kj.

Corollary 17.27. Let X be an infinite compact metric space, and let h: X —
X be a minimal homeomorphism. Let y € X. Let D be C or a UHF algebra.
Suppose that p(Ko(D ® C*(Z, X, h))) is dense in Aff(T(D ® C*(Z,X,h))). Then
p(Ko(D @ C*(Z, X, h)(yy)) is dense in Aff(T(D @ C*(Z, X, h) ).

Proof. If D = C, combine Lemma 17.22 and Theorem 17.25. If D is a UHF algebra,
combine Corollary 17.23 and Corollary 17.26. O

Lemma 17.22 is originally due to Qing Lin (via the closely related Proposition 16
of [159]), and its proof is sketched in the proof of Theorem 1.2 of [160]. We give
the full proof here. We also point out that a more general result follows from
Theorem 20.12 and Theorem 19.5, whose proofs we give sketches of below. That
route directly uses the properties of C*(Z, X, h)y,; as a subalgebra of C*(Z, X, h),
but the proof we give here instead compares traces on both algebras to the set of
invariant Borel probability measures on X.

The following lemma is a special case of Theorem 15.22.
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Lemma 17.28. Let X be an infinite compact metric space, and let h: X — X be a
minimal homeomorphism. Then the restriction map T(C*(Z, X, h)) — T(C(X)) is
a bijection from T(C*(Z, X, h)) to the set of h-invariant Borel probability measures
on X.

We need the analogous result for C*(Z, X, h) ;-

Lemma 17.29 (Proposition 16 of [159]). Let X be an infinite compact metric
space, and let h: X — X be a minimal homeomorphism. Let y € X. Then the re-
striction map T (C*(Z, X, h)(yy) = T(C(X)) is a bijection from T(C*(Z, X, h){,1)
to the set of h-invariant Borel probability measures on X.

The proof is simpler than the original because we use Proposition 17.6.

Proof of Lemma 17.29. Applying Proposition 17.28 and restricting from C*(Z, X, h)
to C*(Z, X, h){y}, we see that every h-invariant Borel probability measure on X
gives a tracial state on C*(Z, X, h) .

Now let 7 be any tracial state on C*(Z, X, h){,y. Let u be the Borel probability
measure on X determined by 7(f) = fX fdu for f € C(X). The rest of the proof
has two steps. The first step is to show that p is h-invariant. Then Lemma 17.29
provides a tracial state 7, on C*(Z, X, h). The formula, from Example 11.31, is

N
m( ) fu> = [ od
n=—N

for N € Zso and f, f-N+1, .-, fn € C(X). The second step of the proof is to
show that Tulc*(z’x’h){y} =T

For the first step, we show that [, (foh)du = [ fdp for every f € C(X). This
is clearly true for constant functions f. Therefore, it suffices to consider functions f
such that f(y) = 0. For such a function f, write f = f{ fo with f1, fo € C(X) such
that f1(y) = fa(y) = 0. (For example, take f; = |f|'/? and fo = (sgno f)|f|'/2.)
Then fiu, fou € C*(Z, X, h)gyy. So

foh=u"fu=(fiu)"(fou) € C*(Z, X, h) 1y}

We now use the trace property at the second step to get

L/Uomdu:ﬂﬁwf%wb:dUWthﬂ:TU%:/me
X X

Thus p is h-invariant.

For the second step, it follows from Proposition 17.6 that C*(Z, X, h), is the
closed linear span of all elements of the form fu", with f € C(X) and n € Z,
which actually happen to be in C*(Z, X, h){y;. So it suffices to prove that if fu™ €
C*(Z,X,h)yy and n # 0, then 7(fu™) = 0. Since h" has no fixed points, there is
an open cover of X consisting of sets U such that h™(U) NU = @&. Choose

91,92, ,9m € C(X) € C*(Z, X, h) gy

which form a partition of unity subordinate to this cover. In particular, the supports
of g; and g; o h™" are disjoint for all j. For j = 1,2,...,m we have, using the trace
property at the first step and the relation u"gu™" = go h™" for any g € C(X) at
the second step,

T(g; fu™) = T(g;/qu”gjl»/Q) = T(g;/2f(g;/2 oh™")u") =7(0) = 0.



208 N. CHRISTOPHER PHILLIPS

Summing over j gives 7(fu™) = 0. d

Proof of Lemma 17.22. Let M be the set of h-invariant Borel probability measures
on X. Lemma 17.28 shows that the restriction map T(C*(Z,X,h)) — M is a
bijection. Lemma 17.29 shows that the restriction map T(C’*(Z,X, h){y}) - M
is a bijection. So the restriction map T(C*(Z, X,h)) — T(C*(Z,X,h)yy) is a
bijection. The restriction map is clearly affine and continuous. Since its domain
and codomain are compact Hausdorff, it is a homeomorphism. ([

We now say something about the proof of Theorem 17.25. The usual proof uses
Theorem 2.4 of [232], which relates the K-theory of the C*-algebra of a groupoid
to the K-theory of the C*-algebra of a particular kind of subgroupoid, and is based
on KK-theory computations in [231]. Example 2.6 of [232] contains the application
to the K-theory of C*(Z, X, h){,;. Groupoids enter because of the interpretation of
C*(Z,X,h) as the C*-algebra of a transformation group groupoid (called Z x X)
and of C*(Z, X, h)y (for an arbitrary closed subset Y C X) as the C*-algebra of an
open subgroupoid of Z x X. This interpretation is briefly outlined in Remark 16.19.
The philosophy is that Z x X has many more (open) subgroupoids than (Z, X, h)
has subobjects in the category of dynamical systems. The groupoid picture is not
needed for the rest of what we do here, because of the concrete description of
C*(Z,X,h)y, but it is needed for the generalization of the construction to actions
of Z%. Unfortunately, we will not be able to discuss the relevant construction in
these notes. See [202] for the special case in which X is the Cantor set.

We outline (without proofs) an alternate approach to the proof of Theorem 17.25,
using partial actions. It is based on discussions with Ruy Exel. The partial action
approach to this problem seems closely related to the subgroupoid approach. It is
known, but, as far as we know, has not appeared in the literature. We presume it
also generalizes to actions by groups other than Z. For Z, this approach avoids [231]
and puts the K-theory computations in a somewhat more familiar context, namely
a generalization (Theorem 17.31 below) of the Pimsner-Voiculescu exact sequence
for crossed products by Z [221] to crossed products by partial actions.

We will follow [82] until we get to the point where K-theory appears, but we do
not reproduce the definitions and statements of most of the theorems.

Let X be a compact Hausdorff space, let h: X — X be a homeomorphism,
and let Y C X be closed. We start with the topological partial action of Z on X
obtained from the restriction and corestriction of h to a homeomorphism from
X\Y to X\ h(Y). Topological partial actions are defined in Definition 5.1 of [82],
referring back to Definition 2.1 of [82] for partial actions on sets. Following the
notation of [82], we define open subsets D,, C X by, for n € Z>o,

D, =X\[YURY)U---UR" (V)]

and
D_p=X\[n""(Y)URL ™ Y)U---UR™ (Y)].

As a sign of what is to come, we point out that, with Z,, as in Proposition 17.6,
we have D,, = X \ Z, for all n € Z. We further take 6,,: D_,, — D,, to be the
restriction and corestriction of A" to D_,, and D,, for n € Z. One easily checks
that ((Dn)nez, (0n)nez) is in fact a topological partial action of Z on X.

This partial action gives a C* partial action of Z on C(X). Definition 6.4 of [82]
gives the conditions for a partial action on an algebra, Definition 11.4 of [82] gives
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the additional conditions for a C* partial action, and the fact that a topological
partial action on a locally compact Hausdorfl space gives a C* partial action is
Corollary 11.6 of [82].

Now form the algebraic crossed product by this partial action, as in Definition 8.3
of [82], and complete it to a C*-algebra as in Definition 11.11 of [82]. Call this C*-
algebra C*(Z, X,0). (In [82], the notation C'(X) xg Z is used.)

Lemma 17.30. Let X be a compact Hausdorff space, let h: X — X be a home-
omorphism, and let Y C X be closed. Let ((Dy)nez, (0n)nez) and C*(Z, X, ) be
as in the discussion above. Let 7m: C(X) — C*(Z, X, h) be the standard inclusion
of C'(X) in the ordinary C* crossed product (see the discussion after Remark 8.12),
and let n — w, be the map from Z to the unitary group of C*(Z,X,h) (No-
tation 8.7). Then (mw,u) is a covariant representation of ((Dn)nEZa (9n)nez) in
C*(Z,X,h) in the sense of Definition 9.10 of [82], and the associated homomor-
phism v: C*(Z, X,0) — C*(Z, X, h) of Proposition 13.1 of [82] is injective and has
range C*(Z, X, h)y.

Proof. The proof that (7, u) is a covariant representation is immediate.

Let B be the algebraic partial crossed product of C(X) by the partial action
((Dn)nezs (Bn)nez) (see Definition 8.3 of [82]). Following the notation there, write
its elements as formal sums ), a,d,, with a,, € D,, for all n € Z and a,, = 0 for
all but finitely many n € Z. By construction (see Definition 11.11 of [82]), B is dense
in C*(Z,X,0). One checks, again directly from its definition and the definition of
the homomorphism determined by a covariant representation, that the image in
C*(Z,X,h) under v of B is, in the notation in the statement of Proposition 17.6,
exactly

{a € C(X)[Z]: E(au™) € Cy(X \ Z,,) for all n € Z}.
So Proposition 17.6 implies that the range of v is C*(Z, X, h)y.

It remain to prove that v is injective. We construct a dual action of S' on
C*(Z,X,0). This is known, and works for any partial crossed product by Z. For ¢ €
ST, one checks that there is a covariant representation (o, v) of ((Dp)nez, (0n)nez)
in C*(Z, X,0) such that o(a) = ady for a € C(X) and v, = ¢~"J,. (This is
essentially the same formula as that of Remark 9.25 for the dual action of S! on
a crossed product by Z.) Let f.: C*(Z,X,0) — C*(Z, X, 0) be the corresponding
homomorphism (Proposition 13.1 of [82]). Then 81 = id¢«(z x,¢) (this is clear), and
B¢, 0 Bey = Berc, for (o € S1 (this is easily checked by looking at what they do to
elements of B). Therefore 3; is an automorphism for ¢ € S* and ¢ — S, is an action
of S on C*(Z, X,0). Using Lemma 3.14, in the same way as in Example 3.15, one
checks that this action is continuous.

It is clear that v: C*(Z, X,0) — C*(Z, X, h) is equivariant when C*(Z, X, ) is
equipped with the action 8 and C*(Z, X, h) is equipped with the dual action as in
Remark 9.25. The fixed point algebras of both actions are easily checked to be the
standard copies of C'(X), and thus the restriction of v to the fixed point algebra
C*(Z,X,0)" is injective. So 7 is injective by Proposition 2.9 of [81]. O

The dual action argument in the proof of Lemma 17.30 can be replaced, with
appropriate preparation, by Theorem 19.1(c) of [82], which applies to much more
general situations.

The following result is a generalization of the Pimsner-Voiculescu exact sequence
for the K-theory of crossed products by Z [221].
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Theorem 17.31 (Theorem 7.1 of [81]). Let ((Dy)nez, (0n)nez) be a partial action
of Z on a C*-algebra A. Then there is a natural six term exact sequence

Ko(D_y)  —— Ko(A) —=— Ko(C*(Z, A, )

I !

K\(CH(Z,A,0)) «—— Ki(4) «+——  Ki(D_y).

By naturality one gets a commutative diagram with exact rows, in which the
bottom row is the usual Pimsner-Voiculescu exact sequence [221]:

—— K%(X\Y) —— K°%X) —— Ko(C*(Z,X,h)y) — KYX\Y) ——

l l I I

— K%(X) —— K%X) —— KO(C*(Z, X, h)) —  KYX)

Taking Y to be a one point set, it is now not hard to derive Theorem 17.25 and
the corresponding result for K (C* (z,X, h){y}). We omit the details, but point out
that the Five Lemma is not quite enough. One needs to show that the horizontal
maps K°(X\Y) = K% X) and K°(X) — K°(X) shown have the same range, and
that the vertical map K'(X \Y) — K'(X) is an isomorphism.

We return to the description of steps in the proof of Theorem 16.1. The pro-
jections used in the proof when X is the Cantor set (the main part of the proof
being Lemma 16.24) are in C(X), and were gotten from Lemma 16.23. When X
is connected, there are no nontrivial projections in C'(X), and a different approach
is required. The following is a generalization of Lemma 16.23. It is both more
elementary and more general than the corresponding argument in [157] (the main
part of the proof of Theorem 4.5 there).

Lemma 17.32. Let X be an infinite compact metric space, and let h: X — X
be a minimal homeomorphism. Let B C C*(Z, X, h) be a unital subalgebra which
contains C(X) and has property (SP). Let ¢ € C*(Z, X, h) be a nonzero positive
element. Then there exists a nonzero projection p € B such that p is Murray-von
Neumann equivalent in C*(Z, X, h) to a projection in ¢C*(Z, X, h)c.

Proof. Let E: C*(Z,X,h) — C(X) be the standard conditional expectation (Def-
inition 9.18). It follows from Proposition 9.16(4) and Exercise 9.17(3) that E(c)
is a nonzero positive element of C(X). Set 6 = 1[|E(c)|. Let f € C(X) be the
pointwise minimum f(z) = min (68, E(c)(z)). Then

(17.20) If = E(o)| = 9.

Set
Up={x € X: E(c)(x) > 60},
which is a nonempty open set such that f(z) = 64 for all x € Uy.

Choose a finite sum a = Zg:_N apu™ € C*(Z,X,h) with a, € C(X) for n =
—N, =N +1, ..., N such that |la — ¢|| < d. Let p be the metric on X. Choose
e > 0 so small that whenever z1, 29 € X satisfy p(z1,z2) < €, then

1
2N +1
forn=—N, —N+1, ..., N. Using freeness of the action of Z induced by h, choose
open subsets U,V C X such that U # @, such that U C U ¢ V C V C Uy, such

lan (1) — an(z2)] <

_— .
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that the sets h=N(V), h=N*+1(V), ..., (V) are disjoint, and such that V has
diameter less than €. Then there are b_n, b-ny1, ..., by € C(X) such that b, is
constant on U and

b
bn — Un
Ibn = anll < 58757
forn=—N, =N +1,..., N. Set b=S""__b,u". Then |[b—al < d. So
(17.21) Ib—c| < 26.

Choose continuous functions gg, g1: X — [0,1] such that

supp(go) C U, 9091 = 91, and g1 #0.

Use the hypotheses on B to choose a nonzero projection p € g1Bgi. We clearly
have gop = pgg = p. It follows that

(17.22) fp = fgop = 6dgop = 65p,

and similarly

(17.23) pf = 6p.

The same reasoning shows that pb, = b,p for n = —-N, —N +1, ..., N. Also, for

n € {—N, —=N+1, ..., N}\{0}, the disjointness condition implies that gou™gy = 0,
whence pu"p = pgou™gop = 0. It follows that
N N
pbp= > pbyu"p= Y bypu"p=bop = pE(b)p.
n=—N n=—N
Using (17.22) and (17.23) at the first step, this last equation at the second step,
and (17.20), (17.21), and Exercise 9.17(4) at the third step, we get

lpcp — 66p|| = [[pep — pfpll

< |lpep — pbpl| + [pE(b)p — pE(c)p|| + [[pE(c)p — pfp||
<2|le=0b|]|+ ||E(e) — f|| < 56.

It follows that pcp is invertible in pC*(Z, X, h)p. Let d = (pcp)~1/2, calculated in
pC*(Z, X, h)p. Set v = dpc'/?. Then

vo* = dpepd = (pep) /2 (pep) (pep) /2

=D
and
v o = 2 pdPpet/? € cC*(Z, X, h)c.

This completes the proof. ([l

For the full statement of Theorem 17.1. (involving the tensor product with a
UHF algebra D), one needs a generalization of Lemma 17.32, which we omit.

We can now describe the proof of Theorem 17.1. For simplicity, we omit D,
thus really dealing only with Theorem 16.1. The main part is the substitute for
Lemma 16.23, but we also refer to the proof of the Cantor set case of Theorem 16.1,
given at the end of Section 16.

Combining the hypothesis and Corollary 17.27, for any y € X, p(KO(D ®
C*(Z, X, h)(yy)) is dense in Aff(T(D @ C*(Z, X,h)(yy)). Since C*(Z, X, h)yy is
simple and infinite dimensional (Proposition 17.21) and a direct limit of a direct
systems of recursive subhomogeneous algebras with no dimension growth, classifi-
cation results imply it has tracial rank zero (Definition 11.35). (Actually, in [157],
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y € X is chosen with a little care, to allow a direct proof that C*(Z, X, h)(,, has
tracial rank zero.)

This algebra usually isn’t AF, so Lemma 16.16 must be replaced as follows,
allowing a simple subalgebra with tracial rank zero in place of an AF algebra. The
algebra B in the statement takes the place of the AF algebra pBp in Lemma 16.16.

Lemma 17.33 (Lemma 4.4 of [157]). Let A be a simple unital C*-algebra. Suppose
that for every finite subset F' C A, every € > 0, and every nonzero positive element
¢ € A, there exists a nonzero projection p € A and a simple unital subalgebra
B C pAp with tracial rank zero such that:

(1) |l[a,p]|| <€ foralla € F.
(2) dist(pap, B) < ¢ for all a € F. L
(3) 1 —p is Murray-von Neumann equivalent to a projection in cAc.

Then A has tracial rank zero (Definition 11.35).

The word “nonzero” is missing in Lemma 4.4 of [157]. This leads to the same
issue as discussed after Definition 11.35, although this condition is not needed if A
is already known to be finite.

We must therefore verify the hypotheses of Lemma 17.33. This is Lemma 4.2
of [157]. Following the proof of the Cantor set case of Theorem 16.1, and using the
analog of Exercise 16.17, we take the finite set in Lemma 17.33 to be Fy U {u} for
a finite subset Fy C C'(X). The role of the compact open set U used in the proof
of the proof of the Cantor set case of Theorem 16.1 will be played by a nonzero
projection r € C*(Z, X, h){,} gotten from Lemma 17.32, but getting 1 —p 3 r will
require a different argument.

In the replacement for the proof of Lemma 16.23, we will not use C*(Z, X, h)y
(only C*(Z, X, h),3), so we choose Y to be a small open set containing y. (This
set is called U in the proof of Lemma 4.2 of [157].) To specify how small, we choose
Np and N as in the proof of Lemma 16.23, and require that conditions (1), (2),
and (3) in that proof hold, plus a substitute (see below) for condition (4). (This
substitute will depend only on € and the projection r.)

We don’t have anything like yy, so we proceed as follows. Choose continuous
functions go, g1, 92, fo: X — [0, 1] such that

go(y) =1, 9190 = 9o, 9291 = 91, fog2 = 92, and supp(fo) C Y.

Since C*(Z, X, h)(y} has real rank zero (a consequence of tracial rank zero, by
Theorem 11.38), one can find a projection qo € C*(Z, X, h)¢,y such that

9190 = qog1 = g1 and foqo = q0.fo = qo.

(See Lemma 4.1 of [157]; the main part of the proof actually comes from Theo-
rem 1 of [34].) We still get orthogonality for the same list of projections as in
the proof of Lemma 16.23. The projection gy must commute with any function
f € C(X) which is constant on Y, which is good enough for the parts of the proof
of Lemma 16.23 involving commutators with and approximation of functions in Fjp.
The part about commutators with and approximation of u needs little change.
Moreover, the relation qog1 = g1 says, heuristically, that gy dominates the charac-
teristic function of a neighborhood of Y, and this relation is in fact good enough
to prove that the required cutdowns by the new version of the projection e in the
proof of Lemma 16.23 are in fact in C*(Z, X, h)¢,y. Also, pC*(Z, X, h),yp has
tracial rank zero by Lemma 11.40.
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It remains only to show how to arrange to get 1 — p 3 r. Define
B = inf ({T(T): TeT(C*(Z, X, h){y})}).

Then 3 > 0 because T(C*(Z, X, h),y) is weak* compact (Remark 16.12), 7+ 7(r)
is weak™ continuous, and 7(r) can never by zero (Lemma 11.32). Choose R € Zsg
such that N/R < (. In place of condition (4) in the proof of Lemma 16.23, we
require that the sets

Y, h(Y), h2(Y), ..., hE(Y)

be disjoint. It follows that for every h-invariant Borel probability measure p
on X, we have pu(Y) < 1/R, so [ fodp < 1/R. Using Lemma 17.29, we de-
duce that 7(fy) < 1/R for all 7 € T(C*(Z,X,h)gyy), so 7(q) < 1/R for all
T € T(C*(Z,X,h){y). The projection 1 — p is the sum of N projections which
are Murray-von Neumann equivalent to gy in C*(Z, X, h). Every tracial state on
C*(Z, X, h) therefore takes the same value on all of them. By Lemma 17.22, every
tracial state on C*(Z, X, h)(,, takes the same value on all of them. It follows that
for all 7 € T(C*(Z, X, h)gyy) we have 7(1 — p) < N/R < 3. By Theorem 11.38,
tracial rank zero implies that the order on projections is determined by traces as
in Definition 11.34. So 1 —p Z 7 in C*(Z, X, h),, and thus also in C*(Z, X, h).

Part 5. An Introduction to Large Subalgebras and Applications to
Crossed Products

18. THE CUNTZ SEMIGROUP

In this part, we give an introduction to large subalgebras of C*-algebras and some
applications. Much of the text of this part is taken directly from [215], which is a
survey of applications of large subalgebras based on lectures given at the University
of Wyoming in the summer of 2015. That survey assumes much more background
than these notes (it starts with the material here), there are some differences in
the organization, and it contains some open problems and other discussion omitted
here because they are too far off the topic of these notes.

Large subalgebras are an abstraction of the Putnam subalgebras C*(Z, X, h) .3
(see Definition 16.18) used in the proof of Theorem 16.1 (and in other places). This
abstraction was first introduced in [213]. We give some very brief motivation here,
but postpone a more systematic discussion to the beginning of Section 19. The ap-
plications discussed in these notes mostly involve C*(Z, X, h),y and C*(Z, X, h)y
for other subsets Y C X such that h”(Y)NY = & for every n € Z\ {0}. However,
the real motivation for the abstraction (given very short shrift in these notes) is
the construction of analogous subalgebras in C*-algebras such as C*(Z4, X) for a
free minimal action of Z% on X. Such subalgebras are used in a crucial way in [202]
when X is the Cantor set, although with an axiomatization useful only for actions
on the Cantor set. In general, there seems to be no useful concrete formula for such
subalgebras. Instead, one specifies a list of properties and proves the existence of
a subalgebra which has these properties and is otherwise accessible (perhaps being
a direct limit of the recursive subhomogeneous C*-algebras of Definition 17.10).
The two lists of properties which have been most useful so far make up the defi-
nitions of a large subalgebra (Definition 19.1) and of a centrally large subalgebra
(Definition 19.2).
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The definitions and proofs of the theorems make essential use of Cuntz com-
parison, and to a lesser extent of the Cuntz semigroup. We therefore begin with
a summary of what we need to know about Cuntz comparison and the Cuntz
semigroup. The reader is encouraged to just read the introductory discussion and
basic definitions, and then skip to Section 19, referring back to this section later
as needed. (In particular, there is nothing about dynamics in this section.) We
refer to [4] for an extensive introduction (which does not include all the results that
we need). The material we need is either summarized or proved in the first two
sections of [213].

The Cuntz semigroup can be thought of as being a version of the Ky-group based
on positive elements instead of projections. For that reason, we will occasionally
make comparisons with K-theory. The reader not familiar with K-theory can ignore
these remarks.

For a C*-algebra A, we let M, (A) denote the algebraic direct limit of the system
(M,,(A))o2, using the usual embeddings M,,(A) — M,+1(A), given by

a’_>a0
0 0/

If a € M,,(A) and b € M, (A), we write a & b for the diagonal direct sum

a 0
a@b-(o b)'

By abuse of notation, we will also write a @& b when a,b € My, (A) and we do not
care about the precise choice of m and n with a € M,,,(A4) and b € M, (A).

Parts (1) and (2) of the following definition are originally from [47]. Since we
will frequently need to relate Cuntz subequivalence in a C*-algebra B to Cuntz
subequivalence in a C*-algebra A containing B, we include (contrary to the usual
convention) the algebra A in the notation. The notation a ~ 4 b in Definition 18.1(2)
conflicts with the notation p ~ ¢ in Notation 11.5, except that in the context of
Cuntz subequivalence we include the algebra A as a subscript.

Definition 18.1. Let A be a C*-algebra.

(1) Fora,b € (K®A)4, wesay that a is Cuntz subequivalent to b over A, written
a 24 b, if there is a sequence (v,)22; in K ® A such that lim,_, o v,bv) = a.
This relation is transitive: a S4 b and b X4 ¢ imply a =4 c.

(2) We say that a and b are Cuntz equivalent over A, written a ~4 b, if a 34 b
and b S 4 a. This relation is an equivalence relation, and we write (a) 4 for
the equivalence class of a.

(3) The Cuntz semigroup of A is

CU(A) = (K ® A)+/ ~A,
together with the commutative semigroup operation, gotten from an iso-
morphism M3 (K) — K,

(a)a+ (b)a = (a®b)a

(the class does not depend on the choice of the isomorphism) and the partial
order

<a>A < <b>A <:>a;j,4 b.
It is taken to be an object of the category Cu given in Definition 4.1 of [4].
We write 0 for (0) 4.
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(4) We also define the subsemigroup
W(A) = Mao(A)4/ ~a,

with the same operations and order. (It will follow from Remark 18.2 that
the obvious map W(A) — Cu(A) is injective.)

(5) Let A and B be C*-algebras, and let ¢: A — B be a homomorphism. We
use the same letter for the induced maps M, (A) — M, (B) for n € Z-o,
Mo (A) - Mo(B), and K @ A - K ® B. We define Cu(p): Cu(4) —
Cu(B) and W(yp): W(A) — W(B) by (a)a — {(p(a))p for a € (K ® A)+
or Mo (A)y as appropriate.

It is easy to check that the maps Cu(y) and W(y) are well defined homomor-
phisms of ordered semigroups which send 0 to 0. Also, it follows from Lemma
18.4(14) below that if n1,m2, p1, pe € Cu(A) satisfy n1 < pq and 72 < po, then
m+n2 < pa+ pa.

The semigroup Cu(A) generally has better properties than W(A). For example,
certain supremums exist (Theorem 4.19 of [4]), and, when understood as an object
of the category Cu, it behaves properly with respect to direct limits (Theorem 4.35
of [4]). In this exposition, we mainly use W(A) because, when A is unital, the
dimension function d, associated to a normalized quasitrace 7 (Definition 18.7
below) is finite on W(A) but usually not on Cu(A). In particular, the radius of
comparison (Definition 21.2 below) is easier to deal with in terms of W (A).

We will not need the definition of the category Cu.

Remark 18.2. We make the usual identifications
(18.1) AC M, (A) C M(4) C K® A.

It is easy to check, by cutting down to corners, that if a,b € (K ® A)y satisfy
a Za b, then the sequence (v,,)5° ; such that lim, o v,bv} = a (as in Definition

18.1(1)) can be taken to be in the smallest of the algebras in (18.1) which contains
both a and b. See Remark 1.2 of [213] for details.

The Cuntz semigroup of a separable C*-algebra can be very roughly thought of
as K-theory using open projections in matrices over A”, that is, open supports of
positive elements in matrices over A, instead of projections in matrices over A. As
justification for this heuristic, we note that if X is a compact Hausdorff space and
[,9 € C(X)y, then f Ze(x) g if and only if

{zeX: f(z) >0} c{zeX:g()>0}.

A version of this can be made rigorous, at least in the separable case. See [183].

There is a description of Cu(A) using Hilbert modules over A in place of finitely
generated projective modules as for K-theory. See [43].

Unlike K-theory, the Cuntz semigroup is not discrete. If p,q € A are projec-
tions such that ||p — ¢|| < 1, then p and ¢ are Murray-von Neumann equivalent
(Lemma 11.7). However, for a,b € A, the relation ||a — b|| < & says nothing about
the classes of @ and b in Cu(A) or W(A), however small € > 0 is. We can see this in
Cu(C(X)). Even if {x € X: g(x) > 0} is a very small subset of X, for every ¢ >0
the function f = g+ § has (f)c(x) = (1)c(x). What is true when ||f —g[| < e is
that

{reX: fx)>e} Cc{zeX:g(x)>0},
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so that the function max(f — ¢, 0) satisfies max(f — ¢, 0) Z¢(x) g- This motivates
the systematic use of the elements (a — €), defined as follows.

Definition 18.3. Let A be a C*-algebra, let a € A, , andlet e > 0. Let f: [0,00) —
[0,00) be the function

0 0< A<

Then define (a — )4 = f(a) (using continuous functional calculus).

One must still be much more careful than with K-theory. First, a < b does
not imply (@ —€)4 < (b —¢)4 (although one does get (a —e)y Za (b—¢)4; see
Lemma 18.4(17) below). Second, a Za b does not imply any relation between
(a — &)y and (b —€)4. For example, if A = C([0,1]) and a € C([0,1]) is a(t) =t
for t € [0,1], then for any £ € (0,1) the element b = ea satisfies a 34 b. But
(a —€)+ Za (b—e)q, since (a — €)1 has open support (e, 1] while (b — )4 = 0.
The best one can do is in Lemma 18.4(11) below.

We now list a collection of basic results about Cuntz comparison and the Cuntz
semigroup. There are very few such results about projections and the Ky-group,
the main ones being that if ||p — ¢|| < 1, then p and ¢ are Murray-von Neumann
equivalent; that p < ¢ if and only if pg = p; the relations between homotopy, unitary
equivalence, and Murray-von Neumann equivalence; and the fact that addition of
equivalence classes respects orthogonal sums. There are many more for Cuntz
comparison. We will not use all the facts listed below in these notes (although they
are all used in [213]); we include them all so as to give a fuller picture of Cuntz
comparison.

Parts (1) through (14) of Lemma 18.4 are mostly taken from [138], with some
from [46], [75], [195], and [245], and are summarized in Lemma 1.4 of [213]; we refer
to [213] for more on the attributions (although not all the attributions there are to
the original sources). Part (15) is Lemma 1.5 of [213]; part (16) is Corollary 1.6
of [213]; part (17) is Lemma 1.7 of [213]; and part (18) is Lemma 1.9 of [213].

As we have done earlier, we denote by AT the unitization of a C*-algebra A.
(We add a new unit even if A is already unital.)

Lemma 18.4. Let A be a C*-algebra.
(1) Let a,b € A;. Suppose a € bAb. Then a 34 b.
(2) Let a € Ay and let f: [0, ||al|] — [0,00) be a continuous function such that

f(0) =0. Then f(a) 24 a.

(3) Let a € Ay and let f: [0, ||al|] — [0,00) be a continuous function such that
f(0)=0and f(A) >0 for A > 0. Then f(a) ~4 a.

4) Let c € A. Then c*c ~4 cc*.

5) Let a € Ay, and let u € AT be unitary. Then uau* ~4 a.

6) Let c € A and let a > 0. Then (¢*¢ — @)y ~4 (cc* — a)4.

7) Let v € A. Then there is an isomorphism ¢: v*vAv*v — vv* Avv* such
that, for every positive element z € v*vAv*v, we have z ~4 p(z).

(8) Let a € A4 and let e1,e9 > 0. Then

((a — 61)+ — 62)+ = (a — (61 +52))+.
(9) Let a,b € A satisfy a 34 b and let § > 0. Then there is v € A such that
v*'v = (a — §); and vv* € bAb.
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(10) Let a,b € Ay. Then |ja — b|| < € implies (a — &)y Sa b.
(11) Let a,b € A;. Then the following are equivalent:
(a) aZab.
(b) (a—¢e)y+ Zabforalle>0.
(c) For every € > 0 there is 6 > 0 such that (a —e)y Sa (b— ).
(d) For every € > 0 there are § > 0 and v € A such that

(@ =€)y =v[(b—0d)4]o"
(12) Let a,be Ay. Thena+b 4 a®b.
(13) Let a,b € Ay be orthogonal (that is, ab=0). Then a+b~4 a @ b.
(14) Let aj,a9,by,by € Ay, and suppose that a; Sa az and by 34 be. Then
a1 @bl fjA ag @bg
(15) Let a,b € A be positive, and let o, 8 > 0. Then

((a+bd—(a+p), Zala—a)y +(b—PF)s Zala—a)y ®(b—F)4

(16) Let € > 0and A > 0. Let a,b € A satisty |la—b|| <e. Then (a—A—¢)+ 3a
(b—N):.

(17) Let a,b € A satisfy 0 < a <b. Let £ > 0. Then (a —e); 34 (b—¢)4.

(18) Let @ € (K ® A)4. Then for every € > 0 there are n € Z~o and b €
(M, ® A); such that (a —e)4 ~4 b.

The following result is sufficiently closely tied to the ideas behind large subalge-
bras that we include the proof.

Lemma 18.5 (Lemma 1.8 of [213]). Let A be a C*-algebra, let a € A, let g € A4
satisfy 0 < g <1, and let € > 0. Then

(@a—e)t Za[(1-gla(l —g) —¢], @g.

Proof. Set h = 2g — g2, so that (1 — g)2 =1 — h. We claim that h ~4 g. Since 0 <
g < 1, this follows from Lemma 18.4(3), using the continuous function A — 2\ — A2
on [0, 1].

Set b = [(1 — g)a(l — g) — €]+. Using Lemma 18.4(15) at the second step,
Lemma 18.4(6) and Lemma 18.4(4) at the third step, and Lemma 18.4(14) at the
last step, we get

(a—¢e)y = [a1/2(1 — h)a'? + a'?ha'/? — e’:‘]+
/201 _ /2 _ 1/27 1/2
Sa [a'?(1 = h)a e], ©a'’?ha
- _ N 1/2,31/2
A [(1 g)a(l —g) €]+ ® h'“ah
=b@hY2ah? <b@ |al|lh ZAbDg.
This completes the proof. O
The definition of the radius of comparison (Definition 21.2 below) is stated in
terms of quasitraces. We don’t discuss quasitraces here. Instead, we refer to the
fact (Theorem 5.11 of [102]) that all normalized 2-quasitraces on exact C*-algebras
are tracial states. For the purpose of all the applications discussed in these notes,
the reader can therefore substitute tracial states for quasitraces, and the tracial

state space T(A) for the space QT(A) defined below.
It is still open whether every quasitrace on any C*-algebra is a trace.
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Notation 18.6. For a unital C*-algebra A, we denote by QT(A) the set of nor-
malized 2-quasitraces on A (Definition II.1.1 of [25]; Definition 2.31 of [4]).

Definition 18.7. Let A be a stably finite unital C*-algebra, and let 7 € QT (A).
Define d,: Mo (A); — [0,00) by d.(a) = lim,, o 7(a/™) for a € M, (A),. Fur-
ther (the use of the same notation should cause no confusion) define d,: (K®A) —
[0, 00] by the same formula, but now for a € (K ® A);. We also use the same no-
tation for the corresponding functions on Cu(A) and W (A), as in Proposition 18.8
below.

Proposition 18.8. Let A be a stably finite unital C*-algebra, and let 7 € QT (A).
Then d, as in Definition 18.7 is well defined on Cu(A) and W(A). That is, if
a,b e (K ® A); satisfy a ~4 b, then d-(a) = d,(b).

Proof. This is part of Proposition 4.2 of [75]. O

Also see the beginning of Section 2.6 of [4], especially the proof of Theorem
2.32 there. It follows that d, defines a state on W (A). Thus (see Theorem 11.2.2
of [25], which gives the corresponding bijection between 2-quasitraces and dimension
functions which are not necessarily normalized but are finite everywhere), the map
T — d; is a bijection from QT(A) to the set of lower semicontinuous dimension
functions on A.

We now present some results related to Cuntz comparison specifically for simple
C*-algebras.

Lemma 18.9 (Proposition 4.10 of [138]). Let A be a C*-algebra which is not of
type I and let n € Z~y. Then there exists an injective homomorphism from the
cone C M, over M, to A.

The proof uses heavy machinery, namely Glimm’s result that there is a subal-
gebra B C A and an ideal I C B such that the 2> UHF algebra embeds in B/I.
Some of what we use this result for can be proved by more elementary methods,
but for Lemma 18.13 we don’t know such a proof.

Lemma 18.10 (Lemma 2.1 of [213]). Let A be a simple C*-algebra which is not of
type I. Let a € A, \ {0}, and let | € Z~¢. Then there exist by,ba,...,b € A1\ {0}
such that by ~4 by ~4 --- ~4 by, such that b;b, = 0 for j # k, and such that
b1+ by + - + b € ada.

Proof. Replacing A by aAa, we can ignore the requirement by +bs +---+b; € aAa
of the conclusion. Now fix n € Z~¢. For j,k =1,2,...,n, we let ¢;, € M,, be the
standard matrix unit. In

CM, = {f € C([0,1], My,): f(0) = O},
take bj(A) = Xej; for A € [0,1] and j = 1,2,...,n. Use Lemma 18.9 to embed
CM,, in A. O
This lemma has the following corollary.

Corollary 18.11 (Corollary 2.2 of [213]). Let A be a simple unital infinite dimen-
sional C*-algebra. Then for every ¢ > 0 there is a € Ay \ {0} such that for all
7 € QT(A) we have d.(a) < e.
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Lemma 18.12 (Lemma 2.4 of [213]). Let A be a simple C*-algebra, and let B C A
be a nonzero hereditary subalgebra. Let n € Z~, and let a1, aq,...,a, € A\ {0}.
Then there exists b € By \ {0} such that b X4 a; for j =1,2,...,n.

Sketch of proof. The proof is by induction. The case n = 0 is trivial. The induction
step requires that for a, by € A4\ {0} one find b € A1 \ {0} such that b € by Aby (so
that b X4 bp by Lemma 18.4(1)) and b 54 a. Use simplicity to find z € A such that
the element y = byza is nonzero, and take b = yy* € byAby. Using Lemma 18.4(5)
and Lemma 18.4(1), we get b ~4 y*y Z4 a. O

The following lemma says, roughly, that a nonzero element of W(A) can be
approximated arbitrarily well by elements of W (A) which are strictly smaller.

Lemma 18.13 (Lemma 2.3 of [213]). Let A be a simple infinite dimensional C*-
algebra which is not of type I. Let b € A} \ {0}, let £ > 0, and let n € Z~o. Then
there are c € A} and y € A, \ {0} such that, in W(A), we have

mb—e)p)a<(nt+1)(c)a  and  ()a+(ya < (b)a.

Sketch of proof. We divide the proof into two cases. First assume that sp(b) N
(0,e) # @. Then there is a continuous function f: [0,00) — [0,00) which is zero
on {0} U[e,00) and such that f(b) # 0. We take ¢ = (b —¢); and y = f(b).

Now suppose that sp(b) N (0,e) = &. In this case, we might as well assume that
b is a projection, and that ((b—¢)y)a, which is always dominated by (b) 4, is equal
to (b) 4. Cutting down by b, we can assume that b = 1 (in particular, A is unital),
and it is enough to find ¢ € A} and y € A4 \ {0} such that n(1)4 < (n+1){c)a
and (c)a + (y)a < (1)a.

Take the unitized cone over M, 1 to be C = (CM,11)* = [Co((0,1]) ® My 41]T,
and use the usual notation for matrix units. By Lemma 18.9, we can assume that
C C A. Let t € Cy((0,1]) be the function t(A) = A for A € (0, 1]. Choose continuous
functions g1, g2, g3 € C([0,1]) such that

0<gs<g2<g1 <1 g(0)=0, gs(1)=1, g192 =92 and gags=gs.
Define
r=g2®ey1, c=1—u, and y=g3Qe1.
Then zy = y so cy = 0. Tt follows from Lemma 18.4(13) that (c)4 + (y)a < (1) 4.
It remains to prove that n{1)4 < (n+ 1){c)4, and it is enough to prove that in
W(C) we have n(l)c < (n+1)(1 — g2 ® e11)¢, that is, in M, 41(C),
(182) dlag(l, 17 ey 170) /50 dlag‘(l — g2 ® 6171, 1-— gz ® 61,1, ey 1-— g2 [ 6171).

To see why this should be true, view M, 1(C) as a set of functions from [0, 1]
to M, 1)z with restrictions on the value at zero. Since g1g2 = g2, the function
1 — g2 ®eq,1 is constant equal to 1 on a neighborhood U of 0, and at A € U the
right hand side of (18.2) therefore dominates the left hand side. Elsewhere, both
sides of (18.2) are diagonal, with the right hand side being a constant projection of
rank n(n + 1) and the left hand side dominating

dlag(l —€1,1, 1-— €1,1y -+ 1-— 61,1),

which is a (different) constant projection of rank n(n+1). It is not hard to construct
an explicit formula for a unitary v € M,,41(C) such that

diag(1,1,...,1,0) < v~diag(1 —g2®e11,1—g2®e1q, ..., 1 792®61)1) -v*.
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See [213] for the details (arranged a little differently). O

19. LARGE SUBALGEBRAS

Large and centrally large subalgebras are a technical tool which has played a key
role in work on the structure of the C*-algebras of minimal dynamical systems and
some related algebras. In this section, we outline some old and new applications as
motivation. We then give the definitions and several useful reformulations of them.
We next state some general theorems (for some of which we give partial proofs in
Section 20 and Section 21). Finally, we give further information on some recent
applications.

Large subalgebras are a generalization and abstraction of a construction intro-
duced by Putnam in [229] (see Definition 16.18), where it was used to prove that if
h is a minimal homeomorphism of the Cantor set X, then Ko(C*(Z, X, h)) is order
isomorphic to the Ky-group of a simple AF algebra (Theorem 4.1 and Corollary 5.6
of [229]). Putnam’s construction and some generalizations (almost all of which are
centrally large subalgebras in our sense) also played key roles in proofs of other
many other results. We list some of the them, starting with older ones (which in
many cases have been superseded, and which were proved before there was a formal
definition of a large subalgebra). We then give some recent results for which no
proofs not using large subalgebras are known.

Here is a selection of the older results.

e Let h: X — X be a minimal homeomorphism of the Cantor set. Then
C*(Z,X,h) is an AT algebra. (Local approximation by circle algebras
was proved in Section 2 of [230]. Direct limit decomposition follows from
semiprojectivity of circle algebras.)

e Let h: X — X be a minimal homeomorphism of a finite dimensional com-
pact metric space. Then C*(Z,X,h) satisfies the following K-theoretic
version of Definition 11.34 (Blackadar’s Second Fundamental Comparabil-
ity Question): if n € Ko(A) satisfies 7.(n) > 0 for all tracial states 7 on A,
then there is a projection p € M (A) such that n = [p]. (See [160] and
Theorem 4.5(1) of [204]).

e Let X be a finite dimensional infinite compact metric space, and let h: X —
X be a minimal homeomorphism such that the map

p: Ko(C*(Z, X, 1)) — Aff(T(C*(Z, X, h)))

of Definition 16.14 has dense range. Then C*(Z, X, h) has tracial rank
zero (Definition 11.35). This was proved in [157]; much of the method is
described in Section 16 and Section 17.

e Let X be the Cantor set and let h: X x S1 — X x S! be a minimal
homeomorphism. For any x € X, the set Y = {x} x S! intersects each
orbit at most once. The algebra C*(Z, X x S*, h)y (see Definition 16.18
for the notation) is introduced before Proposition 3.3 of [154], where it is
called A,. It is a centrally large subalgebra which plays a key role in the
proofs of some of the results there. For example, the proofs that the crossed
products considered there have stable rank one (as in Definition 11.1; see
Theorem 3.12 of [154]) and order on projections determined by traces (as
in Definition 11.34; see Theorem 3.13 of [154]) rely directly on the use of
this subalgebra.
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A similar construction, with X x S! x S! in place of X x S' and with
Y = {z} x S x S!, appears in Section 1 of [268]. It plays a role in that
paper similar to the role of the algebra C*(Z, X x S*, h)y in the previous
item.

Let h: X — X be a minimal homeomorphism of an infinite compact met-
ric space. The large subalgebras C*(Z, X, h)y of C*(Z,X,h) (as in Defi-
nition 16.18), with several choices of Y (several one point sets as well as
{z1,z2} with 21 and x5 on different orbits), have been used by Toms and
Winter [286] to prove that C*(Z, X, h) has finite decomposition rank.

Here are some newer results. For most of them, we give more information later
in this section.

The extended irrational rotation algebras are AF (Elliott and Niu [73];
Theorem 19.18).

Let X be an infinite compact metric space, and let h: X — X be a minimal
homeomorphism with mean dimension zero. Then C*(Z, X, h) is Z-stable
(Elliott and Niu [74]; Theorem 19.19).

Let X be a compact metric space such that there is a continuous surjec-
tion from X to the Cantor set. Then rc(C*(Z,X,h)) < +mdim(h) ([110];
Theorem 19.15).

Let X be a compact metric space such that there is a continuous surjection
from X to the Cantor set. Then C*(Z,X,h) has stable rank one (Theo-
rem 7.1 of [8]; Theorem 19.17). (There are examples in which this holds
but C*(Z, X, h) does not have strict comparison of positive elements and
is not Z-stable.)

Let X be a compact metric space and let h: X — X be a minimal home-
omorphism. Then rc(C’* (Z,X, h)) <14 2-mdim(h) (Theorem 19.16; this
strengthens Corollary 4.8 in the current version of of [214]).

We give an example involving a crossed product C*(Z, C(X, D), «) in
which D is simple and « “lies over” a minimal homeomorphism of X.
Let F be the free group on generators indexed by Z, and for n € Z
let u,, € C¥(Fy) be the unitary which is the image of the corresponding
generator of F,. Let h: X — X be the restriction of a Denjoy home-
omorphism (a nonminimal homeomorphism of the circle whose rotation
number is irrational) to its unique minimal set. (See [234].) Thus X is
homeomorphic to the Cantor set, and there are # € R\ Q and a sur-
jective map ¢: X — S! such that ((h(x)) = €>™((z) for all z € X.
For © € X let a, € Aut(Cy(Fy)) be determined by g (u,) = ((z)u,
for n € Z. Define a kind of noncommutative Furstenberg transformation
a € Aut(C(X, Cf (Fx))) by a(a)(z) = az(a(z)) for a € C(X, Cf(Fx))
and z € X. Then C*(Z, C(X, Cf (Fx)), a) has stable rank one.

Large subalgebras were also used to give the first proof that if X is a finite dimen-
sional compact metric space with a free minimal action of Z%, then C*(Z?, X) has
strict comparison of positive elements.

Almost all the examples above involve actions of Z (although not necessarily
on an algebra of the form C(X)). In the known applications of this type, there
are explicit formulas for the large subalgebras involved. See Definition 16.18 and
Definition 22.3. The real importance of the abstraction of the idea is in applications
to actions of groups such as Z?, in which there are no known formulas for useful



222 N. CHRISTOPHER PHILLIPS

large subalgebras. Instead, subalgebras with useful properties must be shown to
exist by more abstract methods. These applications are barely touched on in these
notes.

There is a competing approach, the method of Rokhlin dimension of group ac-
tions [114], which can be used for some of the same problems large subalgebras
are good for. When it applies, it often gives stronger results. For example, Szabd
has used this method successfully for free minimal actions of Z¢ on finite dimen-
sional compact metric spaces [273]. For many problems involving crossed products
for which large subalgebras are a plausible approach, Rokhlin dimension methods
should also be considered. Rokhlin dimension has also been successfully applied
to problems involving actions on simple C*-algebras, a context in which no use-
ful large subalgebras are known. (But see [185] and [182], where what might be
called large systems of subalgebras are used effectively.) On the other hand, fi-
nite Rokhlin dimension requires freeness of the action (in a suitable heuristic sense
when the algebra is simple), while some form of essential freeness seems likely to
be good enough for large subalgebra methods. (This is suggested by the examples
in [182].) Finite Rokhlin dimension also requires some form of topological finite
dimensionality.

It seems plausible that there might be a generalization of finite Rokhlin dimension
which captures actions on infinite dimensional spaces which have mean dimension
zero. Such a generalization might be similar to the progression from the study of
simple AH algebras with no dimension growth to those with slow dimension growth.
It looks much less likely that Rokhlin dimension methods can be usefully applied
to minimal homeomorphisms which do not have mean dimension zero. Large sub-
algebras have been used to estimate the radius of comparison of C*(Z, X, h) when
h does not have mean dimension zero (and the radius of comparison is nonzero);
see Theorem 19.15 and Theorem 19.16, both discussed in Section 23. These results
do not seem to be accessible via Rokhlin dimension methods. Rokhlin dimension
methods can also potentially be used to prove regularity properties of crossed prod-
ucts C*(Z, C(X, D), o) when D is simple, the automorphism o € Aut(C(X, D))
“lies over” a minimal homeomorphism of X with large mean dimension, and the
regularity properties of the crossed product come from D rather than from the
action of Z on X. See [38].

Unfortunately, we are not able to discuss Rokhlin dimension here.

In these notes, we mostly limit ourselves to applications to crossed products by
minimal homeomorphisms.

By convention, if we say that B is a unital subalgebra of a C*-algebra A, we
mean that B contains the identity of A.

Definition 19.1 (Definition 4.1 of [213]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B C A is said to be large in A if for every
m € Zso, G41,02,...,0m € A, e >0, x € A with ||z|| =1, and y € By \ {0}, there
are ci,Ca,...,cm € A and g € B such that:

(1) 0<g<1.

(2) For j =1,2,...,m we have ||¢; — qj|| < e.
(3) For j =1,2,...,m we have (1 — g)c; € B.
(4) g Zpyand g Zaw.

©®) [A=glz(l-g)| >1-e
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We emphasize that the Cuntz subequivalence involving y in (4) is relative to B,
not A.

Condition (5) is needed to avoid triviality when A is purely infinite and simple.
With B = C - 1, we could then satisfy all the other conditions by taking g = 1.
In the stably finite case, we can dispense with (5) (see Proposition 20.3 below),
but we still need ¢ 4 = in (4). Otherwise, even if we require that B be simple
and that the restriction maps T(A) — T(B) and QT(A) — QT(B) on traces and
quasitraces be bijective, we can take A to be any UHF algebra and take B = C- 1.
The choice g = 1 would always work.

It is crucial to the usefulness of large subalgebras that g in Definition 19.1 need
not be a projection. Also, one can do a lot without any kind of approximate
commutation condition. Such a condition does seem to be needed for some results.
Here is the relevant definition, although we will not make full use of it in these
notes.

Definition 19.2 (Definition 3.2 of [8]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B C A is said to be centrally large in A if for
every m € Zsq, (1,02, ...,0,m € A, ¢ >0, x € A, with ||z|| =1, and y € B4 \ {0},
there are c1,¢2,...,cn € A and g € B such that:

(1) 0<g<1.

(2) For j =1,2,...,m we have |¢; — a;|| <e.

(3) For j =1,2,...,m we have (1 — g)c; € B.

(4) g Zpyand g Za .

(5) (1= g)a(l—g)| > 1.

(6) For j =1,2,...,m we have ||ga; — a,g| <.

The difference between Definition 19.2 and Definition 19.1 is the approximate
commutation condition in Definition 19.2(6).

The following strengthening of Definition 19.2 will be more important in these
notes.

Definition 19.3 (Definition 5.1 of [213]). Let A be an infinite dimensional simple
unital C*-algebra. A unital subalgebra B C A is said to be stably large in A if
M, (B) is large in M,,(A) for all n € Z~,.

Proposition 19.4 (Proposition 5.6 of [213]). Let A; and As be infinite dimensional
simple unital C*-algebras, and let B; C A; and By C As be large subalgebras.
Assume that A1 @i, Ao is finite. Then By ®uin Bo is a large subalgebra of A1 ®min
As.

In particular, if A is stably finite and B C A is large, then B is stably large. We
will give a direct proof (Proposition 20.11 below). We don’t know whether stable
finiteness of A is needed (Question 24.2 below).

The main example used in these notes is the Y-orbit breaking subalgebra (gen-
eralized Putnam subalgebra)

C*(Z, X, h)y = C*(C(X), Co(X \ Y)u) C C*(Z, X, h).

of Definition 16.18, for a compact metric space X, a minimal homeomorphism
h: X — X, and a “sufficiently small” nonempty closed subset Y C X.

Theorem 19.5. Let X be an infinite compact Hausdorff space and let h: X —
X be a minimal homeomorphism. Let ¥ C X be a compact subset such that
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KM (Y)NY = @ for all n € Z\ {0}. Then C*(Z, X,h)y (as above) is a centrally
large subalgebra of C*(Z, X, h) in the sense of Definition 19.2.

We give a proof in Section 22, along with proofs or sketches of proofs of the
lemmas which go into the proof.

The key fact about C*(Z, X, h)y which makes this theorem useful is that it is a
direct limit of recursive subhomogeneous C*-algebras (as in Definition 1.1 of [203])
whose base spaces are closed subsets of X. This follows from Theorem 17.14 (or
Theorem 17.19) and Remark 17.20. The structure of C*(Z,X,h)y is therefore
much more accessible than the structure of crossed products.

We now state the main known results about large subalgebras and some recent
applications.

Proposition 19.6 (Proposition 5.2 and Proposition 5.5 of [213]). Let A be an
infinite dimensional simple unital C*-algebra, and let B C A be a large subalgebra.
Then B is simple and infinite dimensional.

The special case C*(Z, X, h)(,, is stated without proof as Proposition 17.21. In
the next section, we prove the simplicity statement (see Proposition 20.7 below) and
the stably finite case of the infinite dimensionality statement (see Proposition 20.10
below).

Theorem 19.7 (Theorem 6.2 and Proposition 6.9 of [213]). Let A be an infinite
dimensional simple unital C*-algebra, and let B C A be a large subalgebra. Then
the restriction maps T(A) — T(B) and QT (A4) — QT(B), on traces and quasitraces
(see Definition 11.23 and Notation 18.6), are bijective.

The special case involving T(C’*(Z,X, h){y}) is in Lemma 17.22, but the proof
given for Lemma 17.22 is quite different. The proofs for T(A) and for QT(A) are
very different. We prove that T(A) — T(B) is bijective below (Theorem 20.12).

Let A be a C*-algebra. Recall the Cuntz semigroup Cu(A) from Definition 18.1(3).
Let Cuy (A) denote the set of elements 7 € Cu(A) which are not the classes of pro-
jections. (Such elements are sometimes called purely positive.)

Theorem 19.8 (Theorem 6.8 of [213]). Let A be a stably finite infinite dimensional
simple unital C*-algebra, and let B C A be a large subalgebra. Let :: B — A be
the inclusion map. Then Cu(:) defines an order and semigroup isomorphism from
Cuy(B) U {0} to Cuy(A) U{0}.

It is not true that Cu(¢) defines an isomorphism from Cu(B) to Cu(A). Example
7.13 of [213] shows that Cu(:): Cu(B) — Cu(A) need not be injective. We suppose
this map can also fail to be surjective, but we don’t know an example.

Theorem 19.9 (Theorem 6.14 of [213]). Let A be an infinite dimensional stably
finite simple separable unital C*-algebra. Let B C A be a large subalgebra. Let
rc(—) be the radius of comparison (Definition 21.2 below). Then rc(A4) = rc(B).

We will prove this result in Section 21 when A is exact. See Theorem 21.3 below.

Proposition 19.10 (Proposition 6.15, Corollary 6.16, and Proposition 6.17 of [213]).
Let A be an infinite dimensional simple unital C*-algebra, and let B C A be a large
subalgebra. Then:

(1) A is finite if and only if B is finite.
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(2) If B is stably large in A, then A is stably finite if and only if B is stably
finite.
(3) A is purely infinite if and only if B is purely infinite.

Proposition 19.11 (Theorem 6.18 of [213]). Let A be an infinite dimensional
simple unital C*-algebra, and let B C A be a large subalgebra. Suppose that B
has property (SP) (Definition 11.4). Then A has property (SP).

Theorem 19.12 (Theorem 6.3 and Theorem 6.4 of [8]). Let A be an infinite
dimensional simple unital C*-algebra, and let B C A be a centrally large subalgebra.
Then:

(1) If B has stable rank one (Definition 11.1), then so does A.
(2) If B hasreal rank zero (Definition 11.3) and stable rank one, then so does A.

In the next theorem, Z is the Jiang-Su algebra (briefly described in Exam-
ple 3.33). The condition that a given C*-algebra A tensorially absorb the Jiang-Su
algebra, that is, Z ®@ A = A (A is said to be “Z-stable” or “Z-absorbing”), is one
of the regularity conditions in the Toms-Winter conjecture. For simple separable
nuclear C*-algebras it is hoped, and known in many cases, that Z-stability implies
classifiability in the sense of the Elliott program.

Theorem 19.13 (Theorem 2.3 of [6]). Let A be an infinite dimensional simple
nuclear unital C*-algebra, and let B C A be a centrally large subalgebra. If B
tensorially absorbs the Jiang-Su algebra Z, then so does A.

If A isn’t nuclear, the best we can say so far is that A is tracially Z-absorbing
in the sense of Definition 2.1 of [111].

The following two key technical results are behind many of the theorems stated
above. In particular, they are the basis for proving Theorem 19.8, which is used to
prove many of the other results.

Lemma 19.14 (Lemmas 6.3 and 6.5 of [213]). Let A be an infinite dimensional
simple unital C*-algebra, and let B C A be a stably large subalgebra.

(1) Let a,b,z € (K ® A)4 satisfy  # 0 and a @ X4 b. Then for every € > 0
there are n € Zsq, ¢ € (M,, ® B)4, and § > 0 such that (a —€); Sac3a
(b—5)s.

(2) Let a,b € (K ® B); and ¢,z € (K ® A)4 satisfy ¢ # 0, a S4 ¢, and
c@®x 3a4b. Then a I b.

We state some of the applications. In the following theorem, rc(A) is the radius
of comparison of A (see Definition 21.2 below), and mdim(h) is the mean dimension
of h (see Definition 23.3 below).

Theorem 19.15 ([110]). Let X be a compact metric space. Assume that there is a
continuous surjective map from X to the Cantor set. Let h: X — X be a minimal
homeomorphism. Then rc(C*(Z, X, h)) < imdim(h).

It is conjectured that rc(C*(Z, X,h)) = imdim(h) for all minimal homeomor-
phisms. In [110], we also prove that rc(C*(Z, X,h)) > $mdim(h) for a reasonably
large class of homomorphisms constructed using the methods of Giol and Kerr [93],
including the ones in that paper. For all minimal homeomorphisms of this type,
there is a continuous surjective map from the space to the Cantor set.
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The proof of Theorem 19.15 uses Theorem 19.5, Theorem 19.9, the fact that
we can arrange that C*(Z, X, h)y be the direct limit of an AH system with diag-
onal maps, and methods of [176] (see especially Theorem 6.2 there) to estimate
radius of comparison of simple direct limits of AH systems with diagonal maps.
We would like to use Theorem 6.2 of [176] directly. Unfortunately, the definition
of mean dimension of an AH direct system in [176] requires that the base spaces
be connected. See Definition 3.6 of [176], which refers to the setup described after
Lemma 3.4 of [176].

Theorem 19.16. Let X be a compact metric space. Let h: X — X be a minimal
homeomorphism. Then re(C*(Z, X, h)) < 1+ 2 - mdim(h).

Corollary 4.8 of [214] states that rc(C*(Z, X, h)) < 1+36-mdim(h). A key ingre-
dient is Theorem 5.1 of [163], an embedding result for minimal homeomorphisms
in shifts on cubes, the dimension of the cube depending on the mean dimension
of the homeomorphism. The improvement, to appear in a revised version of [214],
is based on the use of a stronger embedding result for minimal dynamical sys-
tems, Theorem 1.4 of [101]. We really want rc(C*(Z,X,h)) < mdim(h), as in
Theorem 19.15.

Theorem 19.17 (Theorem 7.1 of [8]). Let X be a compact metric space. As-
sume that there is a continuous surjective map from X to the Cantor set. Let
h: X — X be a minimal homeomorphism. Then C*(Z, X, h) has stable rank one
(Definition 11.1).

There is no finite dimensionality assumption on X. We don’t even assume that
h has mean dimension zero. In particular, this theorem holds for the examples of
Giol and Kerr [93], for which the crossed products are known not to be Z-stable
and not to have strict comparison of positive elements. (For such systems, it is
shown in [110] that rc(C*(Z, X,h)) = imdim(h), and in [93] that mdim(h) # 0.
See the discussion in Section 7 of [8] for details.)

The proof uses Theorem 19.5, Theorem 19.12(1), the fact that we can arrange
that C*(Z, X, h)y be the direct limit of an AH system with diagonal maps, and
Theorem 4.1 of [69], according to which simple direct limits of AH systems with
diagonal maps always have stable rank one, without any dimension growth hy-
potheses.

Theorem 19.18 (Elliott and Niu [73]). The “extended” irrational rotation alge-
bras, obtained by “cutting” each of the standard unitary generators at one or more
points in its spectrum, are AF algebras.

We omit the precise descriptions of these algebras.

If one cuts just one of the generators, the resulting algebra is a crossed product
by a minimal homeomorphism of the Cantor set, with the other unitary playing
the role of the image of a generator of the group Z. If both are cut, the algebra is
no longer an obvious crossed product.

Theorem 19.19 (Elliott and Niu [74]). Let X be an infinite compact metric space,
and let h: X — X be a minimal homeomorphism with mean dimension zero. Then
C*(Z,X,h) is Z-stable.



CROSSED PRODUCT C*-ALGEBRAS 227

20. BASIC PROPERTIES OF LARGE SUBALGEBRAS

In this section, we give some equivalent versions of the definition of a large
subalgebra. Then we state some of the basic properties of large subalgebras. Recall
that, by convention, if we say that B is a unital subalgebra of a C*-algebra A, we
mean that B contains the identity of A. The change from the definition in the
following lemma is that we only require the usual conclusions of Definition 19.1 to
hold for ay,as,...,a, in a subset of A whose linear span is dense.

Lemma 20.1. Let A be an infinite dimensional simple unital C*-algebra, let B C A
be a unital subalgebra, and let S C A be a subset whose linear span is dense in A.
Suppose that for every m € Z~q, a1,as2,...,a,m €S, e >0, x € A, with ||z| =1,
and y € By \ {0}, there are ¢, ca,...,¢, € A and g € B such that:

(1) 0<g<1.

(2) For j =1,2,...,m we have ||¢; — q|| < e.

(3) For j= 1,2,.. m we have (1 — g)c; € B.

(4) g Zpyandyg <A x.

5

()Wl—)( gl >1-e

Then B is a large subalgebra of A in the sense of Definition 19.1.
As before, the Cuntz subequivalence involving y in (4) is relative to B, not A.
Exercise 20.2. Prove Lemma 20.1.

Unlike other approximation properties (such as tracial rank), it seems not to be
possible to take S in Lemma 20.1 to be a generating subset, or even a selfadjoint
generating subset. (We can do this for the definition of a centrally large subalgebra,
Definition 19.2. See Proposition 3.10 of [8].)

By Proposition 4.4 of [213], in Definition 19.1 we can omit mention of ¢, ¢, . . . , ¢,
and replace (2) and (3) by the requirement that dist((1 — g)a;, B) < € for j =
1,2,...,m. So far, however, most verifications of Definition 19.1 proceed by con-
structing elements ¢y, co, . .., ¢y as in Definition 19.1.

When A is finite, we do not need condition (5) of Definition 19.1.

Proposition 20.3 (Proposition 4.5 of [213]). Let A be a finite infinite dimensional
simple unital C*-algebra, and let B C A be a unital subalgebra. Suppose that for
m € Zso, a1,a2,...,am € A, e >0, z € Ay \ {0}, and y € By \ {0}, there are
c1,C2,...,cm € A and g € B such that:

(1) 0<g<1.
(2) For j =1,2,...,m we have |¢; — a;|| <e.
(3) For j =1,2,...,m we have (1 — g)¢; € B.

(4) g Zpyand g Zaw.
Then B is large in A.

The proof of Proposition 20.3 needs Lemma 20.5 below, which is a version for
Cuntz comparison of Lemma 1.15 of [208].

We describe the idea of the proof of Proposition 20.3. (Most of the details are
given below.) Given z € A, with ||z| = 1, we want z¢p € A4 \ {0} such that
g 34 xp and otherwise as above implies [|[(1 — ¢g)z(1 — g)|| > 1 —e. (We then use
Zo in place of z in the definition of a large subalgebra.) Choose a sufficiently small
number g9 > 0. (It will be much smaller than €.) Choose f: [0,1] — [0, 1] such
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that f =0on [0, 1 —¢g] and f(1) = 1. Construct a, by, ba, c1,¢a,d1,do € f(x)Af(2)
such that for j = 1,2 we have

0 S dj S Cj S bj S a S 1, abj = bj, bjCj = ¢y, dej = dj, and dj 75 O,

and b1be = 0. Take zg = d;. If ¢ is small enough, g Z4 dy, and ||[(1—g)z(1—g)| <
1 — ¢, this gives

1= ) (b1 +b2) (1 = g)| <12

One then gets ¢1 + c2 34 di. (This is the calculation (20.1) in the proof below.)
Now r = (1—c1—cg)+dy satisfies 7 S 4 1, so there is v € A such that [Jorv*—1]| < 1.
Then vr'/? is right invertible, but vr'/2dy = 0, so vrr'/? is not left invertible. This
contradicts finiteness of A.

We now give a more detailed argument.

Lemma 20.4 (Lemma 2.5 of [213]). Let A be a C*-algebra, let © € A satisfy
[zl = 1, and let € > 0. Then there are positive elements a,b € rAz with ||a| =
Ib]l = 1, such that ab = b, and such that whenever ¢ € bAb satisfies ||c|| < 1, then
lze —c|| < e.

Sketch of proof. Choose continuous functions fo, f1: [0,1] — [0, 1] such that f1(1) =
1, f1 is supported near 1, |fo(A) — A| < € for all A € [0,1], and fo = 1 near 1 (so
that fof1 = f1). Take a = fo(z) and b = fi(x). Then |z —a| <cand ab=b. O

Lemma 20.5 (Lemma 2.6 of [213]). Let A be a finite simple infinite dimensional
unital C*-algebra. Let © € A, satisfy ||z|| = 1. Then for every £ > 0 there is
xo € (m)+ \ {0} such that whenever g € A, satisfies 0 < g <1 and g Z4 =0,
then ||(1 —g)z(1 —g)|| > 1 —e.

Proof. Choose positive elements a,b € z/2Ax1/2 as in Lemma 20.4, with z/2 in
place of  and % in place of e. Then a,b € zAx since x1/2Az'/? = zAz. Since
b # 0, Lemma 18.10 provides nonzero positive orthogonal elements 21,2, € bAb
(with 21 ~4 2z2). We may require ||z1]] = ||22] = 1.

Choose continuous functions fo, f1, f2: [0,00) — [0, 1] such that

fo(0)=0, fofi=fi, fifa=rf and  fo(1) =1.
For j = 1,2 define
bj = fo(z), ¢ =fi(z), and  d; = fa(z).
Then
0<d; <c;<b; <1, abj=0b;, bjc;=c;, c;d;=d;, and d; # 0.

Also b1by = 0. Define xg = dy. Then x( € (ach)+.
Let g € Ay satisfy 0 < g <1 and g 34 x9. We want to show that

[(1-g)z(1-g)[| >1~—¢,

so suppose that ||(1 —g)xz(1 —g)|| < 1 —e. The choice of a and b, and the relations
(by + b2)/? € bAD and | (b1 + b2)1/2|| =1, imply that

||l’1/2(b1 + b2)1/2 — (bl + b2)1/2H < %
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Using this relation and its adjoint at the second step, we get
(1= g)(br + b2) (1 = g)|| = || (b1 + b2)"/2(1 — g)* (b1 + b2)"/?||

< H(bl +b2)1/2x1/2(1 79)2951/2(1)1 Jr62)1/2” + %
o e

=1 - gl -g)ll+ T <1~

Using the equation (b1 +ba)(c1 +¢2) = ¢1 + ¢2 and taking C to be the commutative
C*-algebra generated by by + by and ¢ + ¢o, one easily sees that for every 8 € [0,1)
we have ¢; +cz Zo [(b1 +b2) — f]4. Take 8 =1— £, use this fact and Lemma 18.5
at the first step, use the estimate above at the second step, and use g S z¢o = di
at the third step, to get

(20.1) citerZall-g)bi+b)(1l-9g) -8 dg=0®gZad.

Set r = (1 —¢1 — ¢2) + dy. Use Lemma 18.4(12) at the first step, (20.1) at the
second step, and Lemma 18.4(13) and dy(1 — ¢1 — ¢2) = 0 at the third step, to get

1,5A (1701702)@(01+02)§A (1701702)@611“@4 (1701762)4’(11:7".

Thus there is v € A such that |Jorv* — 1|| < 3. It follows that vr'/2 has a right
inverse. But vr'/2d, = 0, so vr'/? is not invertible. We have contradicted finiteness
of A, and thus proved the lemma. O

W ™

Proof of Proposition 20.3. Let aj,as,...,a, € A, let e >0, let x € A, \ {0}, and
let y € By \ {0}. Without loss of generality x| = 1.

Apply Lemma 20.5, obtaining zy € ($A$)+ \ {0} such that whenever g € A,
satisfies 0 < g < 1 and g 34 o, then ||(1—g)x(1—g)|| > 1—e. Apply the hypothesis

with x¢ in place of x and everything else as given, getting ¢y, ca,...,¢n € A and
g € B. We need only prove that ||(1 — g)z(1 — g)|| > 1 — . But this is immediate
from the choice of xg. ([

The following strengthening of the definition is often convenient. First, we can
always require ||¢j|| < |la;||. Second, if we cut down on both sides instead of on
one side, and the elements a; are positive, then we may take the elements c¢; to be
positive.

Lemma 20.6 (Lemma 4.8 of [213]). Let A be an infinite dimensional simple
unital C*-algebra, and let B C A be a large subalgebra. Let m,n € Zxg, let
a1,a9,...,0, € A, let by, b, ... ,by € Ay, let € > 0, let © € Ay satisty ||z|| = 1,
and let y € By \ {0}. Then there are ¢1,ca,...,¢m € A, dy,da,...,d, € A4, and
g € B such that:

(1) 0<g<1.

(2) For j =1,2,...,m we have ||¢; —a;|| < e, and for j = 1,2,...,n we have
1dj — bjll <e.

(3) For j = 1,2,...,m we have ||¢;|| < ||a;]|, and for j = 1,2,...,n we have
;] < b511-

(4) For j =1,2,...,m we have (1 — g)c; € B, and for j = 1,2,...,n we have
(1-g)d;(1 - g) € B.
(5) g Zpyand g Zaz.
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©6) [T =gzl =gl >1-e.

Sketch of proof. To get ||c|| < |la ]| for j =1,2,...,m, one takes € > 0 to be a bit
smaller in the definition, and scales down ¢; for any j for which ||¢;|| is too big.
Given that one can do this, following the definition, approximate

ai, Gg, - .., Qm, b}/z, bé/27 ey b}/z
sufficiently well by
C1,C2y. -, Cms T1,T2,. .., Tn,
and take d; = r;r; for j =1,2,...,n. |

In Definition 4.9 of [213] we defined a “large subalgebra of crossed product type”,
a strengthening of the definition of a large subalgebra, and in Proposition 4.11
of [213] we gave a convenient way to verify that a subalgebra is a large subalgebra
of crossed product type. The large subalgebras we have constructed in crossed
products are of crossed product type. Theorem 4.6 of [8] shows that a large subal-
gebra of crossed product type is in fact centrally large. We will show directly (proof
of Theorem 19.5, in Section 22 below) that if X is an infinite compact Hausdorff
space, h: X — X is a minimal homeomorphism, and ¥ C X is a compact subset
such that ”™(Y)NY = @ for all n € Z \ {0}, then the orbit breaking subalgebra
C*(Z, X, h)y of Definition 16.18 is centrally large in C*(Z, X, h). This procedure is
easier than using large subalgebras of crossed product type. The abstract version
is more useful for subalgebras of crossed products by more complicated groups, but
we don’t consider these in these notes.

We now give proofs of two of the basic properties of large subalgebras above: if
B is large in A, then B is simple (part of Proposition 19.6) and has the “same”
tracial states as A (part of Theorem 19.7).

We start with the simplicity statement in Proposition 19.6.

Proposition 20.7 (Proposition 5.2 of [213]). Let A be an infinite dimensional
simple unital C*-algebra, and let B C A be a large subalgebra. Then B is simple.

We need some preliminary work.

Lemma 20.8 (Lemma 1.12 of [213]). Let A be a C*-algebra, let n € Z~¢, and let
ar,ag,...,an € A. Set a=>"}_, ay. Then a*a <2137 a}ax.

Proof. We prove this by induction on n. For n = 1, the statement is immediate.
Suppose it is known for n; we prove it for n+1. Set x = 22:1 ag. Then, expanding
and cancelling at the third step, using the induction hypothesis at the fourth step,
and using n > 1 at the fifth step, we get

a*a = (x4 ane1) (@ + any1) < (& + apny1)" (@ + apy1) + (2 — aps1) (2 — any1)

n n+1
=2r"r + 20}, 1 anq1 < 2" Z apag + 2a,  1anp1 <27 Z aza.
k=1 k=1
This completes the induction step and the proof. [

Lemma 20.9 (Lemma 1.13 of [213]). Let A be a C*-algebra and let a € A;. Let
b € AaA be positive. Then for every € > 0 there exist n € Z~q and x1, 22, ..., %, €
A such that ||b— Y} ajaxe| <e.
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This result is used without proof in the proof of Proposition 2.7(v) of [138]. We
prove it when A is unital and b = 1, which is the case needed here. In this case,
we can get Y ,_, rfarg = 1. In particular, we get Corollary 1.14 of [213] this way.
(This result can also be obtained from Proposition 1.10 of [46], as pointed out after
the proof of that proposition.)

Proof of Lemma 20.9 when b =1. Choose
n€Z>O and y17y27"'7y’nuzla227"‘72nGA
such that the element ¢ = Y, _, yrazy satisfies ||c — 1|| < 1. Set

n n
r=Y_zayiykaze, M =max (|yil, vzl .-, llyall), and s=M>> " zia’z.
k=1 k=1

Lemma 20.8 implies that ¢*c € rAr. The relation |jc — 1|| < 1 implies that ¢
is invertible, so r is invertible. Since r < s, it follows that s is invertible. Set

zr = Ma'/?z,s7 Y2 for k=1,2,...,n. Then 22:1 riary = sT2¢5712 =1, O
Sketch of proof of Proposition 20.7. Let b € By \ {0}. We show that there are
n € Zso and r1,73,...,7, € B such that 22:1 ribry, is invertible.
Since A is simple, Lemma 20.9 provides m € Z~¢ and z1,z2,..., T, € A such
that >°,—, zpbzy = 1. Set
1
M = max (1, Hx1||, ||.’l}'2||7 ey ||.’Em||, ||bH) and (5 = min (1, 37’)@]\4(2]\4—'—1)) .

By definition, there are y1,ys2,...,ym € A and g € By such that 0 < g < 1, such
that [|y; — ;|| <6 and (1—g)y; € B for j =1,2,...,m, and such that g Zp b. Set
z =Y 4.y ysby;. The number § has been chosen to ensure that ||z — 1|| < %; the
estimate is carried out in [213]. It follows that ||(1 — g)z(1 — g) — (1 — 9)?|| < 3.
Set h = 2g — ¢g?. Lemma 18.4(3), applied to the function A — 2\ — A2, implies
that b ~p g. Therefore h Zp b. So there is v € B such that [[vbv* — b < 3.
Now take n = m + 1, take r; = (1 — g)y; for j = 1,2,...,m, and take r,,+; =
v. Then 71,79,...,7, € B. One can now check, using (1 — g)? + h = 1, that
|1 =3 F_; ribrill < 2. Therefore _)'_; rpbry is invertible, as desired. O

The following is a special case of the infinite dimensionality statement in Propo-
sition 19.6 (Proposition 5.5 of [213]), which is easier to prove.

Proposition 20.10 (Stably finite case of Proposition 5.5 of [213]). Let A be a
stably finite infinite dimensional simple unital C*-algebra and let B C A be a large
subalgebra. Then B is infinite dimensional.

Proof. Suppose B is finite dimensional. Proposition 20.7 tells us that B is simple,
so there is n € Zsg such that B = M,. It follows from the discussion after
Theorem 3.3 of [29] that there is a quasitrace 7 on A. Apply Corollary 18.11 to get
x € Ay \ {0} such that d.(z) < (n+1)"!. We may assume that ||z|| = 1. Clearly
B # A, so there is a € A such that dist(a, B) > 1. Apply Definition 19.1, getting
g € B and ¢ € A such that

0<g<1, ||afc\|<%, (1-g)ce B, and g3acx.

~

Then ¢ ¢ B, so g # 0. Also, d-(g9) < d,(z) < (n+1)~1. Now o = 7|p is a quasitrace
on B, so must be the normalized trace on B, and 0 < d,(g) = d,(g) < (n+ 1)L
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There are no elements g € (M,); with 0 < d,(g) < (n+ 1)7!, so we have a
contradiction. (]

Proposition 20.11 (Corollary 5.8 of [213]). Let A be a stably finite infinite di-
mensional simple unital C*-algebra, and let B C A be a large subalgebra. Let
n € Zso. Then M, (B) is large in M, (A).

In [213], this result is obtained as a corollary of a more general result (Proposi-
tion 19.4 here). A direct proof is easier, and we give it here.

Proof of Proposition 20.11. Let m € Zo, let a1,as,...,am € M,(A),let e > 0, let
x € M,(A)+\{0}, and let y € M,,(B)4+\{0}. Therearcby; € Afork,l=1,2,...,n
such that

.%'1/2 = Z €k, ®bk,l e M, ®A.
k=1
Choose k,1 € {1,2,...,n} such that by; # 0. Set zg = b} ;b1 € A4 \ {0}. Using
selfadjointness of z'/2, we find that

e11 @z = (€11 ® 1)*x1/2(ek7k ® 1)x1/2(eu @) <(g1®@1)*z(eg1®1) Zax.

Similarly, there is yo € By \ {0} such that e11 ® yo Zp y.

Use Lemma 18.10 and simplicity (Proposition 20.7) and infinite dimensional-
ity (Proposition 20.10) of B to find systems of nonzero mutually orthogonal and
mutually Cuntz equivalent positive elements

T1,%2, ..., Ty € ToAxg and Y1,Y2, - - -, Yn € Yo BYyo-

For j =1,2,...,m, choose elements a;,; € A for k,l =1,2,...,n such that

n
a; = Z €kl R aj k1 € M, ® A.
k=1

Apply Proposition 20.3 with mn? in place of m, with the elements a;j; in place of
ai,as, ..., am, with ¢/n? in place of €, with 1 in place of x, and with y; in place
of y, getting go € Ay and ¢ € Afor j=1,2,...,mand k,l =1,2,...,n. Define
¢ = 22,1:1 ek @ cjpy for j =1,2,...,m and define g = 1 ® go. It is clear that
0 <g<1,that |c; —aj|]| <eand (1 —g)c; € My(B) for j =1,2,...,m. We have
g341®z and g Zp 1 ® y1, so Lemma 18.4(1) and Lemma 18.4(13) imply that
g 24 xp and g ZXp yo. Therefore g 34 x and g Zp . O

We prove the statement about traces in Theorem 19.7, assuming that the alge-
bras are stably finite (the interesting case).

Theorem 20.12 (Stably finite case of Theorem 6.2 of [213]). Let A be an infi-
nite dimensional stably finite simple unital C*-algebra, and let B C A be a large
subalgebra. Then the restriction map T(A) — T(B) is bijective.

Again, we need a lemma.

Lemma 20.13. Let A be an infinite dimensional simple unital C*-algebra, and let
B C A be a large subalgebra. Let 7 € T(B). Then there exists a unique state w
on A such that w|g = 7.
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Proof. Existence of w follows from the Hahn-Banach Theorem.

For uniqueness, let w; and wy be states on A such that wi|p = wa|p = 7, let
a € Ay, and let € > 0. We prove that |w;(a) —w2(a)| < e. Without loss of generality
lal] < 1.

It follows from Proposition 20.7 and Proposition 20.10 that B is simple and
infinite dimensional. So Corollary 18.11 provides y € B\ {0} such that d.(y) < g—z
(for the particular choice of 7 we are using). Use Lemma 20.6 to find ¢ € A} and
g € B4 such that

€
lelf <1, lgll <1, fle—all <7, (1-gle(l-9g)€B, and gIpy.
For j = 1,2, the Cauchy-Schwarz inequality gives

(20.2) |w; (rs)| < wj(rr*) 2w, (s%s)/?

for all r,s € A. Also, by Lemma 18.4(3) we have ¢> ~p g Zp y. Since [|g?|| < 1
and w;|p = 7 is a tracial state, it follows that w;(g?) < d.(y) < g—i. Using ||| <1
and the Cauchy-Schwarz inequality, we then get

w5 (90)| < wy(9%)! 0y ()/2 < ¢
and
1/2 3
lwoj (1 = g)eg)| < w; (1 = 9)*(1 = 9)) s (97)' /% < 2.
So

|wj(e) = (1 = g)e(1 — 9))| = |w;(c) — w;((1 = g)e(1 — g))]

< wj(ge)l + |w; (1 = g)eg)| < Z

Also |w;(c) —w;(a)| < §. So

|wj(a) = 7((1 = g)e(1 - 9))| <
Thus |wy(a) — wa(a)] < e. O

The uniqueness statement in Lemma 20.13 is used to prove that the restriction
map T(A) — T(B) is injective.

One might hope that Lemma 20.13 would enable the following idea for the proof
that T(A) — T(B) is surjective.

We first observe that a state w is tracial whenever w(uau*) = w(u) for all a € A
and all unitaries u € A. Indeed, putting au for a gives w(ua) = w(au) for all a € A
and all unitaries © € A. Since A is the linear span of its unitaries, it follows that
w(ba) = w(ab) for all a,b € A.

Now let A and B be as in Theorem 20.12, let 7 € T(B), and u € A. Let w be
the unique state on A which extends 7 (Lemma 20.13). We would like to argue
that the state p(a) = w(uau*) for a € A is equal to w because it also extends 7.
The first thing which goes wrong is that if b € B and u € A is unitary, then ubu*
need not even be in B. So the is no immediate reason to think that p extends 7.

If the unitary u is actually in B, then p does indeed extend w. Thus, the
uniqueness statement in Lemma 20.13 implies that w(uau*) = w(a) for all a € A
and all unitaries u € B. We can still replace a by au as above, and deduce that
w(ba) = w(ab) for all @ € A and b € B. In particular, w(vb) = w(bv) for all b € B
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and unitaries v € A. But to get w(vbv*) = w(b) from this requires putting bv* in
place of b, and bv* isn’t in B.

Proof of Theorem 20.12. Let 7 € T(B). We show that there is a unique w € T(A)
such that w|p = 7. Lemma 20.13 shows that there is a unique state w on A such
that w|p = 7, and it suffices to show that w is a trace. Thus let a;,ay € A satisfy
la1]] <1 and ||az|| <1, and let € > 0. We show that |w(ajaz) —w(aza1)| < €.

It follows from Proposition 20.7 and Proposition 20.10 (without stable finiteness,
we must appeal to Proposition 5.5 of [213]) that B is simple and infinite dimensional.
So Corollary 18.11 provides y € By \ {0} such that d.(y) < %. Use Lemma 20.6
to find ¢1,co € A and g € B, such that
5
8 )
for j = 1,2, and such that ||g]]| < 1 and ¢ 3 y. By Lemma 18.4(3), we have
g% ~ g 3p y. Since ||g?|| < 1 and w|p = 7 is a tracial state, it follows that
w(g?) <d,(y) < &

We claim that

leill <1, leg —ayll < and  (1-g)c; €B

(1 = g)er(1 = g)ea) — wlcrea)| < 2

Using the Cauchy-Schwarz inequality ((20.2) in the previous proof), we get

g y q y p p g
wigerea)| < wl(g?)Pwlcseierca)” < w(g?)!/? < <.

Similarly, and also at the second step using ||co|| < 1, (1 — g)c19 € B, and the fact

that w|p is a tracial state,

|w((1 = g)erges)| < w((1—g)erg’ci(1—g))
€

» 1/2
<w(gei(l —g)’crg) / <w(gH? < 3

1/2 1/2

w(cse2)

The claim now follows from the estimate

|lw((1 = g)er(1 = g)ez) — w(erez)| < w((1 = g)ergen)| + |w(gerea).
Similarly

|lw((1 = g)ez(1 = g)er) — w(eaer)| < i

Since (1 — g)e1, (1 — g)ea € B and w|p is a tracial state, we get
w((1 = g)er(l = g)ez) = w((1 = g)ea(l = g)er).

Therefore |w(cica) — w(czer)] < §.
One checks that [cica — ajaz|| < § and |cac; — azaq|| < §. It now follows that
lw(araz) — w(azar)| < e. O

21. LARGE SUBALGEBRAS AND THE RADIUS OF COMPARISON

Let A be a simple unital C*-algebra. Recall (Definition 11.34) that the order on
projections over A is determined by traces if, as happens for type II; factors, when-
ever p,q € My (A) are projections such that for all 7 € T(A) we have 7(p) < 7(q),
then p is Murray-von Neumann equivalent to a subprojection of ¢q. Without know-
ing whether every quasitrace is a trace (see the discussion before Notation 18.6), it
is more appropriate to use a condition involving quasitraces. For exact C*-algebras,
every quasitrace is a trace (Theorem 5.11 of [102]), so it makes no difference.
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Simple C*-algebras need not have very many projections, so a more definitive
version of this condition is to ask for the condition in the following definition.

Definition 21.1. Let A be a simple unital C*-algebra. Then A has strict com-
parison of positive elements if whenever a,b € Mo (A) satisty d,(a) < d,(b) for all
7 € QT(A), then a 34 b.

By Proposition 6.12 of [213], one can use K ® A in place of M, (A), but this is
not as easy to see as with projections.

Simple AH algebras with slow dimension growth have strict comparison, but
other simple AH algebras need not. (For example, see [284].) Strict comparison
seems to be necessary for any reasonable hope of classification in the sense of the
Elliott program. According to the Toms-Winter Conjecture, when A is simple,
separable, nuclear, unital, and stably finite, strict comparison should imply Z-
stability, and this is known to hold in a number of cases.

The radius of comparison rc(A) of A (for a C*-algebra which is unital and stably
finite but not necessarily simple) measures the failure of strict comparison. (See
[28] for what to do in more general C*-algebras.) For additional context, we point
out the following special case of Theorem 5.1 of [285] (which will be needed in
Section 23, where it is restated as Theorem 23.28): if X is a compact metric space
and n € Z~q, then
dim(X) —1

2n '
Under some conditions on X (being a finite complex is enough), this inequality is
at least approximately an equality. See [72].

The following definition of the radius of comparison is adapted from Defini-

tion 6.1 of [283].

re(M, ® C(X)) <

Definition 21.2. Let A be a stably finite unital C*-algebra.

(1) Letr € [0,00). We say that A has r-comparison if whenever a,b € My, (A)+
satisfy d,(a) +r < d,(b) for all 7 € QT(A), then a 34 b.
(2) The radius of comparison of A, denoted rc(A4), is

rc(A) = inf ({r € [0,00): A has r-comparison}).
(We take rc(A) = oo if there is no r such that A has r-comparison.)

Definition 6.1 of [283] actually uses lower semicontinuous dimension functions
on A instead of d, for 7 € QT(A), but these are the same functions by Theorem
I1.2.2 of [25]. It is also stated in terms of the order on the Cuntz semigroup W (A)
rather than in terms of Cuntz subequivalence; this is clearly equivalent.

We also note (Proposition 6.3 of [283]) that if every element of QT(A) is faithful,
then the infimum in Definition 21.2(2) is attained, that is, A has rc(A)-comparison.
In particular, this is true when A is simple. (See Lemma 1.23 of [213].)

We warn that r-comparison and rc(A) are sometimes defined using tracial states
rather than quasitraces.

It is equivalent to use K ® A in place of My (A). See Proposition 6.12 of [213].

We prove here the following special case of Theorem 19.9.

Theorem 21.3. Let A be an infinite dimensional stably finite simple separable
unital exact C*-algebra. Let B C A be a large subalgebra. Then rc(A4) = rc(B).
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The extra assumption is that A is exact, so that every quasitrace is a trace by
Theorem 5.11 of [102].

We will give a proof directly from the definition of a large subalgebra. We
describe the heuristic argument, using the following simplifications:

(1) The algebra A, and therefore also B, has a unique tracial state 7.

(2) We consider elements of A, and By instead of elements of M, (A)+ and
My (B).

(3) For a € A4, when applying the definition of a large subalgebra (Defini-
tion 19.1), instead of getting (1 — g)c(1 — g) € B for some ¢ € A, which is
close to a, we can actually get (1 —g)a(l — g) € B. Similarly, for a € A we
can get (1 — g)a € B.

(4) For a,b € Ay with a Z4 b, we can find v € A such that v*bv = a (not just
such that ||[v*bv — a| is small).

(5) None of the elements we encounter are Cuntz equivalent to projections,
that is, we never encounter anything for which 0 is an isolated point of, or
not in, the spectrum.

The most drastic simplification is (3). In the actual proof, to compensate for
the fact that we only get approximation, we will need to make systematic use of
elements (a — )4 for carefully chosen, and varying, values of € > 0. Avoiding this
complication gives a much better view of the idea behind the argument, and the
usefulness of large subalgebras in general.

We first consider the inequality rc(A) < rce(B). So let a,b € AL satisfy d,(a) +
rc(B) < dr(b). The essential idea is to replace b by something slightly smaller which
is in B4, say y, and replace a by something slightly larger which is in By, say =z,
in such a way that we still have d,(z) + rc¢(B) < d-(y). Then use the definition
of rc(B). With g sufficiently small in the sense of Cuntz comparison, we will take
y=(1—-9g)b(1 —g) and (following Lemma 18.5) x = (1 — g)a(l — g) ® g.

Choose § > 0 such that

(21.1) d-(a) +rc(B)+d < d.(b).

Applying (3) of our simplification, we can find g € B with 0 < g < 1, such that
(1-gla(l-g)eB and  (1-g)b(l—g)e€ B,

and so small in W (A) that

(21.2) d-(g9) < g

Using Lemma 18.4(4) at the first step, we get
(1= g)b(1—g) ~a b/2(1 - g)*'/% <,

S0
(21.3) (1= g)b(1 - g) Za b
Similarly, (1 — g)a(l — g) Sa a, and this relation implies
(21.4) a-((1 = g)a(1 — g)) < dr(a).

Also, b 24 (1 —g)b(1 — g) ® g by Lemma 18.5, so
(215) dr((l - g)b(l - g)) + dT(g) Z d‘r(b)
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Using (21.4) at the first step, using (21.1) at the second step, using (21.5) at the
third step, and using (21.2) at the fourth step, we get

4-((1 = g)a(1 —9) @ g) + re(B) + § < d-(a) + do(g) +re(B) + 3

So, by the definition of rc(B),
(1-glal—g)&g s (1-g)b(1—g).
Therefore, using Lemma 18.5 at the first step and (21.3) at the third step, we get
a3a(l=gla(l—g)®gIp (1—9g)b(l—yg)Zab,

that is, a 34 b, as desired.

Now we consider the inequality rc(A) > rc(B). Let a,b € By satisfy d-(a) +
rc(A) < dr(b). Choose 6 > 0 such that d,(a) + rc(4) + ¢ < d,(b). By lower
semicontinuity of d,, we always have

dr(b) = supdr ((b—<)+).

So there is € > 0 such that
(21.6) d-((b—¢)4) > dr(a) +rc(A).

Define a continuous function f: [0,00) — [0,00) by f(\) = max(0, e~ *A(e — )
for A € [0,00). Then f(b) and (b — €)4+ are orthogonal positive elements such that
f(b) #£0 (by (5)) and f(b) + (b —¢€)+ < b. We have a Z4 (b— €)1 by (21.6) and
the definition of rc(A4). Applying (4) of our simplification, we can find v € A such
that v*(b — €)yv = a. Applying (3) of our simplification, we can find g € B with
0 < g <1 such that (1 —g)v* € B and g Zp f(b). Since

v(l-g)eB and  [v(1-g)]"(b—e)+[v(1—g)]=(1—gla(l—g),
we get (1 —g)a(l —g) 2 (b—¢)4. Therefore, using Lemma 18.5 at the first step,
alp(l-gla(l-g)©g3Ip(b—e)r ©gIp (b—2c)r @ f(b) Ip b,

as desired.

The original proof of Theorem 21.3 followed the heuristic arguments above, and
this is the proof we give below. The proof in [213] uses the same basic ideas, but
gives much more. The heuristic arguments above are the basis for the technical
results in Lemma 19.14. In [213], these are used to prove Theorem 19.8, which
states that, after deleting the classes of the nonzero projections from the Cuntz
semigroups Cu(B) and Cu(A), the inclusion of B in A is an order isomorphism
on what remains. (The inclusion need not be an isomorphism if the classes of the
nonzero projections are included. See Example 7.13 of [213].) In Section 3 of [213],
it is shown that, in our situation, the part of the Cuntz semigroup without the
classes of the nonzero projections is enough to determine the quasitraces, so that
the restriction map QT(A4) — QT(B) is bijective. It follows that the radius of
comparison in this part of the Cuntz semigroup is the same for both A and B, and
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it turns out that the radius of comparison in this part of the Cuntz semigroup is
the same as in the entire Cuntz semigroup.

We will use the characterizations of rc(A) in the following theorem, which is a
special case of results in [28]. The difference between (1) and (2) is that (2) has n+1
in one of the places where (1) has n. This result substitutes for the observation
that if a,b € Ay satisfy 7(a) < 7(b) for all 7 € QT(A), then, by compactness
of QT(A) and continuity, we have inf cqp(a)[7(b) — 7(a)] > 0. The difficulty is
that we need an analog using d, instead of 7, and 7 — d.(a) is in general only
lower semicontinuous, so that 7 — d.(b) — d,(a) may be neither upper nor lower
semicontinuous.

Unfortunately, the results in [28] are stated in terms of Cu(A) rather than W(A).

Theorem 21.4. Let A be a stably finite simple unital C*-algebra. Then:

(1) The radius of comparison rc(A) is the least number s € [0, 00| such that
whenever m,n € Zsq satisfy m/n > s, and a,b € M (A) satisfy

n{a)a +m(1)a < nibya

in W(A), then a X4 b.
(2) The radius of comparison rc(A) is the least number ¢t € [0, 00] such that
whenever m,n € Z~ satisfy m/n > t, and a,b € My (A) satisfy

(n+1){a)a +m(1)a < n(b)a
in W(A), then a S4 0.

Proof. It is easy to check that there is in fact a least s € [0,00] satisfying the
condition in (1), and similarly that there is a least ¢ € [0, 00] as in (2).

We will first prove this for K ® A and Cu(A) in place of Mo (A) and W(A).
So let sg and tg be the numbers defined as in (1) and (2), except with K ® A and
Cu(A) in place of My (A) and W(A). Again, it is clear that there are least such
numbers sg and tg. Clearly sg > ¢o. Since A is simple and stably finite and (1) 4 is
a full element of Cu(A), Proposition 3.2.3 of [28], the preceding discussion in [28],
and Definition 3.2.2 of [28] give ty = rc(A4). So we need to show that so < t.

We thus assume m,n € Zso and m/n > to, and that a,b € (K ® A) satisfy
n{a)a + m{1)a < n{b)4 in Cu(A). We must prove that a S4 b. For any func-
tional w on Cu(A) (as at the beginning of Section 2.4 of [28]), we have nw({(a)a) +
mw((1)a) < nw({b)a), so w((a)a) + (m/n)w((1)a) < w((b)a). Since m/n > to,
Proposition 3.2.1 of [28] implies that a S 4 b.

It remains to prove that so = s and tg = t. We prove that sy = s; the proof that
to =t is the same. Let m,n € Z~q. We have to prove the following. Suppose that
m and n have the property that whenever a,b € My, (A)y satisfy

n{a)a +m(l)a < nib)a
in W(A), then a X4 b. Then whenever a,b € (K ® A), satisfy
n{a)kea +m(1)kea < n(b)kea

in Cu(A), we have a Zxga b. We also need to prove the reverse implication.
The reverse implication is easy, so we prove the forwards implication. Let a,b €
(K ® A), satisfy
n{ays +m{1)a < n(b)a
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in Cu(A). Let € > 0; by Lemma 18.4(11), it suffices to prove that (a —¢)y Sxwa b.
We may clearly assume that ¢ < 1. Using an isomorphism K ® K — K, let
x € (K ® A); be the direct sum of n copies of a, let y € (K ® A)+ be the
direct sum of n copies of b, and let ¢ € (K ® A); be the direct sum of m copies
of the identity of A. The relation n{a)kga + m{1)kga < n{b)kga means that
T ®q Srxway. By Lemma 18.4(11c¢), there exists § > 0 such that

(z@q) —¢), Zxea (y—9)4
Since € < 1 and ¢ is a projection, this relation is equivalent to

(x—¢€)+ ®qIkea (y—0)+.
Since (z — ¢)4 is the direct sum of n copies of (a — €)1 and (y — §)4+ is the direct
sum of n copies of (b — J)4, we therefore have

n{(a—e)4)kea + M) kea < n((b—90)+)kea-

It follows from Lemma 1.9 of [213] that ((a—¢)4+) kg4 and ((b—0)+) ke a are actually
classes of elements ¢,d € My, (A)4, and it is easy to check that inequalities among
classes in W(A) which hold in Cu(A) must also hold in W(A). The assumption
therefore implies that ¢ <4 d. Thus

(a—¢e)y ~kgacZad~kgga (b—0)y <b,

whence (a — €)1 Sxga b, as desired. O

~

Lemma 21.5. Let M € (0,00), let f: [0,00) — C be a continuous function such
that f(0) = 0, and let € > 0. Then there is § > 0 such that whenever A is a
C*-algebra and a, b € Ag, satisfy ||a|]| < M and |ja—b|| < §, then || f(a) — f(b)| < e.

This is a standard polynomial approximation argument. We have not found it
written in the literature. There are similar arguments in [213] and many other
places. It is also stated (in a slightly different form) as Lemma 2.5.11(2) of [152];
the proof there is left to the reader (although a related proof is given). We therefore
give it for completeness.

Proof of Lemma 21.5. Choose n € Z~g and oy, s, ..., a, € C such that the poly-

nomial function g(A) = Y_;'_; apA¥ satisfies [g(A) — f(A)| < § for A € [-M—1, M+
1]. Define

5
d =min ( 1 - :
wn ( T35 ol k(M + 1)k—1)
Now let A be a C*-algebra and let a,b € A, satisty |la]] < M and |ja — b|| < 4.
Then ||b]] < M + 1. So for m € Z~ we have

la™ = 6™ < D lla* ] - lla = o] - 1™ < m(M + 1)1,
k=1

Therefore .
lg(a@) = gl < Y ol k(M + )16 < =
So =
1£(a) = ) < [1F(@) = 9@ + llg(a) — g®)]| + lg(b) = FB| < 5 + 5 + 5 ==.

This completes the proof. (I
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Proposition 21.6. Let A be an infinite dimensional stably finite simple separable
unital exact C*-algebra. Let B C A be a large subalgebra. Then rc(A4) < rc(B).

Proof. We use the criterion of Theorem 21.4(1). Thus, let m,n € Zsqo satisfy
m/n > rc(B), and let a,b € Mo (A)4 satisfy n{a)a +m(1)a < n(b) 4 in W(A). We
want to prove that a Z4 b. Without loss of generality ||al|, ||b|] < 1. It suffices to
prove that (a —e)4 Za b for every € > 0.

So let ¢ > 0. We may assume ¢ < 1. Let z € My (A)4+ be the direct sum
of n copies of a, let y € My (A); be the direct sum of n copies of b, and let
q € My (A)+ be the direct sum of m copies of the identity of A. The relation
n{a)a +m(1)a < n(b) 4 means that & ¢ S4 y. By Lemma 18.4(11b), there exists
6 > 0 such that

(r@q) — 5¢), Za (y—9)+
Since € < 3, this is equivalent to

(21.7) (x—%5)+€9qu (y—0)s.

Choose | € Z~ so large that a,b € M;® A. Since m/n > rc(B), thereis k € Zsg

such that
m
B)<——
re(B) -

NN

Set

€p = min (%5, %5)
Using Lemma 21.5, choose €1 > 0 with e; < g9 and so small that whenever D is a
C*-algebra and z € D, satisfies ||z|| < 1, then ||z9 — z|| < &1 implies

1(z0 — €0)4+ — (2 —€0)+ [ <0, |[(20 = 3¢) . — (2= 3¢) .|| < <o,

and
[(z0 = (20 + 3¢)) = (= = (20 + 52)) || < =o-

Since A is infinite dimensional and simple, Lemma 18.10 provides z € A4 \ {0}
such that (k + 1)(z)a < (1)4. Using Proposition 20.11 and Lemma 20.6, choose
g € Mi(B)4+ and ag, by € M;(A)4 satisfying

0<g,a0,b0 <1, llap—al|l<e1, |lbo—0b|<e1, gZaz,
and such that
(1 =gao(l—g), (L =g)bo(1 - g) € M ® B.
From g 24 zand (k4 1)(2)a < (1)4 we get

(21.8) sup d,(g) <
TET(A)

| =

Set
a; = [(1—g)a0(1—g)— (€0+%5)}+ and b = [(l—g)bo(l—g)—ao}+,
which are in M;® B. We claim that ag, a1, by, and by have the following properties:
(a =€)+ Za [ao — (0 + 5¢)] .-
a1 34 (af %5)+.
b—6)+ Za (bo —€0)+-
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We give full details of the proofs for (1), (2), and (3) (involving ag and a;). The
proofs for (4), (5), and (6) (involving by and by) are a bit more sketchy.

We prove (1). Since |lag — a|| < €1, the choice of £, implies

lfao = (52 +20)], = [o = (e +e0)] || <0 < 32
At the last step in the following computation use this inequality and Lemma 18.4(10),
at the first step use g9 < %5, and at the second step use Lemma 18.4(8), to get
(a—e); < [a - (%6 Jrso)h_
= [(a = (e +20)), —5¢], 3a [0 — (35 +20)],-

For (4) (the corresponding argument for by), we use g9 < %6 at the first step;

since

[[(b—¢0)+ — (bo — €0)+]l < €0,
we get
(b—0)4 < (b—2e0)4 = [(b—e0)+ — EOL Za (bo —€0)4-

For (2), we use Lemma 18.5 with ag in place of a and with %5 + &g in place of e.
For (5), we use Lemma 18.5 with by in place of a and with € in place of .
For (3), begin by recalling that |lag — a|| < €1, whence

[(1=g)ao(l—g) = (1 —gla(l —g)[ <er.
Therefore
|| [(1—=g)ao(l—g)— %€]+ - [1=g)a(l—g) - %6]4_” < €o.

Using Lemma 18.4(8) at the first step, this fact and Lemma 18.4(10) at the second
step, Lemma 18.4(6) at the third step, and Lemma 18.4(17) and a'/?(1—g)%a'/? < a
at the last step, we get

a1 = [[(1 = g)aog(1 —g) — %E]+ —50]+

Za [(1=g)a(l —g) — 3e]  ~a [a"P(1—g)%a'? —e]  Za (a—3e),,

as desired.
For (6) (the corresponding part involving b1 ), just use

(1 =9)bo(1 —g) = (1 = g)b(1 —g)[ <e1 <o
to get, using Lemma 18.4(4) at the second step,
b Za (1= 9)b(1 —g) ~a b'/2(1 = g)%"/2 < b,

The claims (1)—(6) are now proved.

Now let 7 € T(A). Recall that  and y are the direct sums of n copies of a and b.

Therefore (z — 3¢)  is the direct sum of n copies of (a — ge) , and (y — ) is the

direct sum of n copies of (b — ). So the relation (21.7) implies

(21.9) n-d-((a—3e),) +m<n-d((b—0)).

Using (4) and (5) at the first step and (21.8) at the third step, we get the estimate
(21.10) dr((b—0)4) <dr(b1) +dr(g) < dr(br) + k"

The relation (3) implies

(21.11) dr(a1) < d-((a - 3¢), ).
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Using (21.11) and (21.8) at the second step, (21.9) at the third step, and (21.10)
at the fourth step, we get
n-d-(a1®g)+m=n-d; (a1)+m+n d.(g)
Sn-d((a )+)+m+nk’_1
<n-d;((b—0)4) +nk™!
<n-d;(b)+2nk™ "
It follows that
dr(ay @ g) + = — % < d;(by).
This holds for all 7 € T(A), and therefore, by Theorem 20.12, for all 7 € T(B).

Subalgebras of exact C*-algebras are exact (by Proposition 7.1(1) of [137]), so

Theorem 5.11 of [102] implies that QT (B) = T(B). Since
2
% -z re(B),

and since ay,b1,9 € M; ® B, it follows that a; & g Xp b1. Using this relation at the
third step, (1) at the first step, (2) at the second step, and (6) at the last step, we
then get

(a—¢e)y Zalao—(0+3e)], Saa®gZpbiZab.
This completes the proof that rc(A) < re(B). d

Proposition 21.7. Let A be an infinite dimensional stably finite simple separable
unital exact C*-algebra. Let B C A be a large subalgebra. Then rc(A4) > rc(B).

Proof. We use Theorem 21.4(2). Thus, let m,n € Zs satisfy m/n > rc(A). Let
l € Zso, and let a,b € (M; ® B); satisfy
(n+1){(a)p +m(1) <n(b)p
in W(B). We must prove that a Zp b. Without loss of generality [la]] < 1.
Moreover, by Lemma 18.4(11), it is enough to show that for every € > 0 we have
(a—¢e)r 3B b. Solet e > 0. Without loss of generality ¢ < 1.
Choose k € Z~¢ such that
km
kn+1

> rc(A).
Then in W(B) we have

(kn+ D{a)g + km{l)g < k(n+1){a)p + km(1)p < kn(b)p

Let € My (B)4 be the direct sum of kn + 1 copies of a, let z € My, (B)4 be the
direct sum of kn copies of b, and let ¢ € M (B)4 be the direct sum of km copies
of 1. Then, by deﬁnition x®q 3p 2. Therefore Lemma 18.4(11) provides § > 0

such that (:z: Gqg— 5 )+ 3B (2 —0)4. Since € < 4, we have

(e@q—7e), = (v—19), @ (1-3), ~B (r—3¢) @0,
s0
(kn+1)((a — i€)+>B +Ekm(l)p < kn((b—9)+)B.
Lemma 18.13 provides ¢ € (M; ® B); and y € (M; ® B)4 \ {0} such that

(21.12) En{((b—90)+)p < (kn+1){c)p and (e)p+{(y)p < (b)B
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in W(B). Then

(kn+1)((a — is) Yg +Em{l)p < (kn+1)(c)p
Applying the map W(A) — W(

(kn+1)((a — ) ) 4T Em(1)a < (kn+1)(c)a.
For 7 € T(A), we apply d, and divide by kn + 1 to get

km

L ({(a=1e),) + 2 <o)
Since QT(A) = T(A) (by Theorem 5.11 of [102]) and

), we get

m
A
1 > re(A4),
it follows that (a — ia)Jr =4 c. In particular, there is v € M; ® A such that
Joer” - (a— 4e)., | < b=
Since B is large in A, we can apply Proposition 20.11 and Lemma 20.6 to find
vg €E M ® A and g € M; ® B with 0 < g <1 and such that

€
93y, vl <ol llvo—vl < =, and (1= g)uo € M; ® B.
Affvllllell +1
It follows that |lvgcvg —v*cv|| < §, so
1(1 = g)vocl(1 = g)vo]* — (1 = g)(a — 3¢) (1 - g)|| < Fe.

Therefore, using Lemma 18.4(10) at the first step,
(21.13) [(1-g)(a— %6)—1-(1 —g) — %€]+ 2B (1 = g)voc[(1 — g)vo]* Zp ¢

Using Lemma 18.5 at the first step, with (a — 15)+ in place of a and %5 in place
of e, as well as Lemma 18.4(8), using (21.13) at the second step, using the choice
of g at the third step, and using the second part of (21.12) at the fourth step, we

get
(a—e) 3 [(1—g)(a—3e) (1—g)— ] . ®gZpc®gZIpcdyIpd
This is the relation we need, and the proof is complete. 0

Proof of Theorem 21.3. Combine Proposition 21.6 and Proposition 21.7. O

22. LARGE SUBALGEBRAS IN CROSSED PRODUCTS BY Z

In this section, we prove that if X is an infinite compact metric space, h: X — X
is a minimal homeomorphism, and Y C X is closed and intersects each orbit of h at
most once, then the Y-orbit breaking subalgebra C*(Z, X, h)y of Definition 16.18
is a centrally large subalgebra of C*(Z, X, h). For easy reference, we summarize the
relevant crossed product notation. This summary combines parts of Definition 1.5,
Notation 8.7, and Definition 9.18.

Notation 22.1. Let X be a compact metric space, and let h: X — X be a
homeomorphism. We take the corresponding automorphism « € Aut(C(X)) to be
given by a(f)(z) = f(h'(x)) for f € C(X) and € X. The crossed product
is C*(Z,X,h). (Since Z is amenable, the full and reduced crossed products are
the same, by Theorem 9.7.) We let u € C*(Z,X,h) be the standard unitary
corresponding to the generator 1 € Z. Thus, ufu* = foh~! for all f € C(X), and
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for n € Z the standard unitary w, (following Notation 8.7) is u, = u™. The dense
subalgebra C'(X)[Z] is the set of all finite sums

(22.1) o= f

k=—n
withn € Zsg and f_,, font1,. .., fn € C(X). We identify C'(X) with a subalgebra
of C*(Z,X,h) in the standard way (as discussed after Remark 8.12): it is all a
as in (22.1) such that fr = 0 for k¥ # 0. The standard conditional expectation
E:C*(Z,X,h) — C(X) is given on C(X)[Z] by E(a) = fo when a is as in (22.1).

In order to state more general results, we generalize the construction of Defini-
tion 16.18. Notation 22.2 and Definition 22.3 below differ from Notation 22.1 and
Definition 16.18 in that they consider Cy(X, D) for a C*-algebra D instead of just

Co(X).

Notation 22.2. For a locally compact Hausdorff space X, a C*-algebra D, and
an open subset U C X, we use the abbreviation

Co(U,D) ={f € Co(X,D): f(z)=0forallz € X \U} C Co(X, D).

This subalgebra is of course canonically isomorphic to the usual algebra Cy(U, D)
when U is considered as a locally compact Hausdorff space in its own right. If
D = C we omit it from the notation.

In particular, if Y C X is closed, then
(22.2) Co(X\Y,D)={fe€Co(X,D): f(x) =0forallz € Y}.

Definition 22.3. Let X be a locally compact Hausdorff space, let D be a unital
C*-algebra, and let h: X — X be a homeomorphism. Let o € Aut(C(X, D)) be
an automorphism which “lies over h”, in the sense that there exists a function
z + a, from X to Aut(D) such that a(a)(z) = ay(a(h™'(z))) for all z € X and
a € Co(X,D). Let Y C X be a nonempty closed subset, and, following (22.2),
define

C*(z, Co(X, D), a)y =C*(Co(X,D), Co(X \Y, D)u) C C*(Z, Co(X, D), a).
We call it the Y -orbit breaking subalgebra of C* (Z, Co(X, D), a).

We describe the proof of Theorem 19.5, namely that if A: X — X is a minimal
homeomorphism and Y C X is a compact subset such that h”(Y)NY = @ for all
n € Z\ {0}, then C*(Z, X, h)y is a centrally large subalgebra of C*(Z, X, h) in the
sense of Definition 19.2. Our presentation differs from that of [213] and [8] in that
we prove the result directly rather than via large subalgebras of crossed product
type.

Under some technical conditions on « and D, similar methods can be used to
prove the analogous result for C*(Z, C(X, D), ),,. The following theorem is a
consequence of results in [7].

v

Theorem 22.4 ([7]). Let X be an infinite compact metric space, let h: X — X
be a minimal homeomorphism, let D be a simple unital C*-algebra which has a
tracial state, and let o € Aut(C(X, D)) lie over h. Assume that D has strict
comparison of positive elements, or that the automorphisms «, in Definition 22.3
are all approximately inner. Let Y C X be a compact subset such that A*(Y)NY =
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@ for all n € Z\ {0}. Then C*(Z, C(X, D), a)y is a centrally large subalgebra of
C* (Z, C(X,D), a) in the sense of Definition 19.2.

The ideas of the proof of Theorem 19.5 are all used in the proof of the general
theorem behind Theorem 22.4, but additional work is needed to deal with the
presence of D.

We now describe the proof of Theorem 19.5, omitting a few details. We will let X
be an infinite compact Hausdorff space with a minimal homeomorphism h: X — X.
We follow Notation 22.1. We will fix a nonempty closed subset Y C X. For n € Z,
set

Ujze (V) n>0
Ly =9 n=>0
U2 h 7 (Y) n < 0.

Recall from Proposition 17.6 that
C*(Z,X,h)y = {a € C*(Z,X,h): E(au™) € Co(X \ Z,) for all n € Z}

and

C*(Z, X, h)y NC(X)[Z] = C*(Z, X, h)y.

Lemma 22.5 (Corollary 7.6 of [213]). Let X be a compact Hausdorff space and let
h: X — X be a homeomorphism. Let Y C X be a nonempty closed subset. Let u €
C*(Z, X, h) be the standard unitary, as in Notation 22.1, and let v € C*(Z, X, h™1)
be the analogous standard unitary in C*(Z, X,h~1). Then there exists a unique
homomorphism ¢: C*(Z, X, h™') — C*(Z, X, h) such that ¢(f) = f for f € C(X)
and ¢(v) = u*, the map ¢ is an isomorphism, and

o(CHZ, X, h ") p-1(vy) = C*(Z, X, h)y.
See [213] for the straightforward proof, based on Proposition 17.6.

Lemma 22.6 (Lemma 7.4 of [213]). Let X be an infinite compact Hausdorff space
and let h: X — X be a minimal homeomorphism. Let K C X be a compact set
such that " (K)NK = & for alln € Z\{0}. Let U C X be a nonempty open subset.
Then there exist | € Zx>q, compact sets Ky, Ka,...,K; C X, and ni,ne,...,n; €
Zy, such that K C U;:1 K; and such that h™ (K7), h™(Ka), ..., h™(K;) are
disjoint subsets of U.

Sketch of proof. Choose a nonempty open subset V' C X such that V is compact
and contained in U. Use minimality of h to cover K with the images of V' under
finitely many negative powers of h, say h="*(V'), h="2(V), ..., h™™ (V). Set K; =
R~ (V)NK for j=1,2,...,1 O

The next lemma is straightforward if one only asks that f Zc-(z x,n) g (Cuntz
subequivalence in the crossed product), and then doing it for one value of n is equiv-
alent to doing it for any other. Getting f ¢+ (z,x,n), ¢ for both positive n and neg-
ative n is a key step in showing C*(Z, X, h)y a large subalgebra of C*(Z, X, h). This
result is related to the statement about equivalence of projections in Lemma 16.22.

Lemma 22.7 (Lemma 7.7 of [213]). Let X be an infinite compact Hausdorff space
and let h: X — X be a minimal homeomorphism. Let Y C X be a compact subset
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such that A"(Y)NY = @ for all n € Z\ {0}. Let U C X be a nonempty open
subset and let n € Z. Then there exist f,g € C(X); such that

flinyy=1, 0< f<1, supp(g) CU, and  f Zcrz.x.n)y 9-

Proof. We first prove this when n = 0.

Apply Lemma 22.6 with Y in place of K, obtaining | € Zx(, compact sets
Y1,Ys,...,Y, C X, and ny,na,...,n; € Zso. Set N = max(ni,ng,...,n;). Choose
disjoint open sets V1,Va,...,V; C U such that h™(Y;) C V; for j = 1,2,...,L
Then Y; C h™"(Vj), so the sets h="*(V1), h="2(Va), ..., h=™(V}) cover Y. For
j=1,2,...,1, define

N
W;=h""(V;)N (X\ U h‘"(Y)) .
n=1

Then Wy, Ws, ..., W, form an open cover of Y. Therefore there are fi, fo,..., f; €
C(X)+ such that for j = 1,2,...,1 we have supp(f;) C W; and 0 < f; <1, and
such that the function f = 22:1 [ satisfies f(z) =1forallz €Y and 0 < f <1.
Further define g = 2321 fjoh™". Then supp(g) C U.

Let u € C*(Z, X, h) be as in Notation 22.1. For j =1,2,...,1,set a; = f}mu_”i.
Since f; vanishes on |J/'" ; h="(Y"), Proposition 17.6 implies that a; € C*(Z, X, h)y.
Therefore, in C*(Z, X, h)y we have

fioh™™ = ajaj ~c-z,x,n)y aja; = fj.
Consequently, using Lemma 18.4(12) at the second step and Lemma 18.4(13) and
disjointness of the supports of the functions f; o h™" at the last step, we have

l l l
F=> fiZcr@exny Pli~c-axmy @ Ffioh™ ~c-@xmy 9-
j=1 j=1 j=1

This completes the proof for n = 0.

Now suppose that n > 0. Choose functions f and g for the case n = 0, and call
them fy and g. Since fo(z) = 1 for all € Y, and since Y NU_, h 1Y) = 2,
there is f1 € C(X) with 0 < f1 < fo, fi(z) = 1 for all z € Y, and fi(z) =0
for z € U_, h7I(Y). Set v = fll/Qu_” and f = fioh™™. Then f(x) = 1 for all
x € h"(Y) and 0 < f < 1. Proposition 17.6 implies that v € C*(Z, X, h)y. We
have

v'o=u"fruT"=fiohT" = f and v* = f1.

Using Lemma 18.4(4), we thus get

[ ~c@zxny 1 < foZe-@zx.ny 9-

This completes the proof for the case n > 0.

Finally, we consider the case n < 0. In this case, we have —n —1 > 0. Apply the
cases already done with h~" in place of h. We get f,g € C*(Z,X,h™"),-1(y) such
that f(z) =1 for all x € (h=1)™""}(A=1(Y)) = h™(Y), such that 0 < f < 1, such
that supp(g) C U, and such that f jc*(Z7X7h—1)h_l(Y) g. Let ¢: C*(Z,X,h™ 1) —
C*(Z, X, h) be the isomorphism of Lemma 22.5. Then

o(fy=1f, »lg) =g, and  @(C*(Z, X,h ")p-1(v)) = C*(Z, X, h)y.
Therefore f Zc+z,x,n)y 9- O
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The following result is a special case of Lemma 7.9 of [213]. The basic idea has
been used frequently; related arguments can be found, for example, in the proofs
of Theorem 3.2 of [67], Lemma 2 and Theorem 1 in [5], Lemma 10 of [144], and
Lemma 3.2 of [195]. (The papers listed are not claimed to be representative or to
be the original sources; they are ones I happen to know of.)

Lemma 22.8. Let X be an infinite compact space, and let A: X — X be a minimal
homeomorphism. Let B C C*(Z, X, h) be a unital subalgebra such that C(X) C B
and BNC(X)[Z] is dense in B. Let a € B1\{0}. Then there exists b € C'(X)\{0}
such that b Zp a.

Sketch of proof. Without loss of generality ||a|| < 1. The conditional expectation
E,: Cr(G,X) — C(X) is faithful. Therefore E,(a) € C(X) is a nonzero positive
element. Set ¢ = ||E,(a)|. Choose ¢ € BN C(X)[Z] such that |lc — a'/?|| < &
and |lc|| < 1. Onme can check that ||E,(c*c)|| > 4e. There are n € Z>( and
G—nsJent1s---,gn € C(X) such that c*c=>"}_  gru®. We have gy = E,(c*c) €
C(X)+ and ||go|| > 4e. Therefore there is & € X such that go(z) > 4e. Choose
f € C(X) such that 0 < f < 1, f(x) = 1, and the sets h¥(supp(f)) are disjoint
for kK = —n, —m + 1, ..., n. One can then check that fc*cf = fgof, so that
[fc*ef|| > 4e. Therefore (fc*cf — 2¢)4 is a nonzero element of C(X). Using
Lemma 18.4(6) at the first step, Lemma 18.4(17) and cf?c* < cc* at the second
step, and Lemma 18.4(10) and ||cc* — a|| < 2¢ at the last step, we then have

(fe*ef = 2¢)1 ~p (cf?c” = 2e)4 Zp (e — 2¢)4 I a.

This completes the proof. (Il

Corollary 22.9. Let X be an infinite compact Hausdorff space, and let h: X — X
be a minimal homeomorphism. Let B C C*(Z, X,h) be a unital subalgebra such
that C(X) C B and BNC(X)[Z] is dense in B. Let a € A;\{0} and let b € B \{0}.
Then there exists f € C(X)y \ {0} such that f Zc«(z x,n) a and f 3p b.

Proof. Applying Lemma 22.8 to both a (with C*(Z, X, h) in place of B) and b (with
B as given), we see that it is enough to prove the corollary for a,b € C(X)4 \ {0}.
Also, without loss of generality ||a| < 1.

Choose z¢ € X such that b(xg) # 0. Since the orbit of xg is dense, there is n € Z
such that a(h™(x0)) # 0. Define f € C(X) by f(z) = b(z)a(h™(z)) for z € X.
Then f # 0 since f(xg) # 0. We have f Zp b because ||a]| < 1 implies f < b. Also,
f=0"2um)a(dum) so f Zowzxn a- O

The next result is a standard type of approximation lemma.

Lemma 22.10. Let A be a C*-algebra, and let S C A be a subset which generates
A as a C*-algebra and such that a € S implies a* € S. Then for every finite subset
F C A and every € > 0 there are a finite subset 7" C S and § > 0 such that
whenever ¢ € A satisfies ||¢|| < 1 and ||eb—bc|| < § for all b € T, then |ca —ac| < &
for all a € F.

Proof. Let B C A be the set of all a € A such that for every € > 0 there are
T(a,e) C S and d(a,e) > 0 as in the statement of the lemma, that is, T'(a,¢) is
finite and whenever ¢ € A satisfies ||c|| < 1 and ||[cb—bc| < d(a,€) for all b € T(a, ¢),
then ||ca — ac| < e.
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We have S C B, as is seen by taking T(a,¢) = {a} and §(a,e) = . If a € B,

then also a* € B, as is seen by taking

T(a*,e)={b*:b€T(a,e)} and  d(a*,e) =6(a,e).
We show that B is closed under addition. So let ai,as € B and let € > 0. Define

T:T(al,g)UT(ag,%) and 0 = min (5(a1,%),5(a2,%)).
Suppose ¢ € A satisfies ||¢|| < 1 and ||cb — be|| < § for all b € T. Then
llcar — axc|| < § and llcaz — asc|| < 5,

SO

llc(ar + az) — (a1 + a2)c|| < |lear — aic|| + ||caz — agc|| < e.

This shows that a; + as € B. To show that if a1,as € B then ajas € B, we use a

similar argument, taking

€
g=——"-"""—
L+ [laa]l + flaz]|

and using the choices
T =T(a1,£0) UT(az,e0) and d = min(d(a1, o), 5(a2,50)),
and the estimate
lcaraz — arazc|| < [lcar — arc|[|az|| + [laxl[|caz — axc].

Finally, we claim that B is closed. So let a € B and let € > 0. Choose ag € B such
that [ja —agl| < §. Define

T:T(ao,%) and (526(@0,%).

Suppose ¢ € A satisfies ||c[| < 1 and [|cb—be|| < § for allb € T Then ||cag—aoc|| < §,
S0

2 €
llea — ac|| < 2[lc[[lla — aoll + llcao — aoc| < o+ 3 =¢

The claim is proved.
Since S generates A as a C*-algebra, we have B = A. Now let F' C A be finite
and let € > 0. The conclusion of the lemma follows by taking
T= U T(a,¢) and 5:m£5(a,5).

ac
a€F

This completes the proof. (I

Proof of Theorem 19.5. Set A = C*(Z,X,h) and B = C*(Z,X,h)y. Since h is
minimal, it is well known that A is simple and finite. Also clearly A is infinite
dimensional.

We claim that the following holds. Let m € Z-g, let ai,a9,...,a, € A, let
e >0, and let f € C(X)4 \ {0}. Then there are ¢, ca,...,¢, € A and g € C(X)
such that:

(1) 0<g<L

(2) For j =1,2,...,m we have ||¢; — a;|| < e.
(3) For j =1,2,...,m we have (1 — g)c; € B.
4) 938 f.

(5) llgu — ugll <e.
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Suppose the claim has been proved; we show that the theorem follows. Let
m € Zso, let ay,a2,...,am € A, let € >0, let r € Ay \ {0}, and let s € B; \ {0}.
(The elements r and s play the roles of  and y in Definition 19.2. Here, we use x and
y for elements of X.) Apply Lemma 20.5 with r in place of z, getting ro € A\ {0}.
In Lemma 22.10, take S = C(X)U{u,u*}, take F = {aj,a2,...,an}, and let € > 0
be as given. Let the finite set 7 C S and § > 0 be as in the conclusion. We may
assume that u,u* € T. Apply Corollary 22.9 with ry in place of a and s in place
of b, getting f € C(X)+ \ {0} such that f Z4 ro and f Zp s. Apply the claim with
a1,asg, . ..,ay, as given, and with min(e, §) in place of .

We can now verify the conditions of Definition 19.2. Conditions (1), (2), and
(3) there are conditions (1), (2), and (3) here. Condition (4) there follows from
condition (4) here and the relations f S4 1o 34 7 and f Zp s. Condition (5) there
follows from g =S4 ro and the choice of ry. It remains only to verify condition (6)
there, namely ||ga; — a;g|| < e for j = 1,2,...,m. It suffices to check that ||gb —
bg|| < ¢ for all b € T. We have ||gu — ug|| < ¢ by construction. Also, gu* — u*g =
—u*(gu — ug)u*, so ||gu* — u*g|| < 4. Finally, if b € T is any element other than u
or u*, then b € C(X), so gb = bg. This completes the proof that the claim implies
the conclusion of the theorem.

We now prove the claim. Choose ¢1, ¢a, ..., ¢y € C(X)[Z] such that ||c;—a;|| < €
for j = 1,2,...,m. (This estimate is condition (2).) Choose N € Z-q such that
there are ¢;; € C(X) for j=1,2,...,mand l=—-N,-N+1,..., N—1, N with

N
Cj = Z chul.

I=—N

Choose Ny € Z~( such that N%) < €. Define

I={-N-Ny, =N —No+1,..., N+ Ny — 1, N+ No}.

Set U = {x € X: f(x) # 0}, and choose nonempty disjoint open sets U; C U
for [ € I. For each such I, use Lemma 22.7 to choose fi,r; € C(X)+ such that
r(z) =1 for all # € h'(Y'), such that 0 < r; < 1, such that supp(f;) C Ui, and such
that r 35 fi.

Choose an open set W containing Y such that the sets h!(W) are disjoint for
I € 1, and choose r € C(X) such that

0<r<1, rly=1, and supp(r) C W.
Set
gozr~Hrthl.
1€l
Set gy =gooh ' forl € I. Then 0 < g; < r; < 1. Define \; for [ € I by
AN-N =0, AN_Not1= L7 A_N-Not2 = i, ciey An-1=1- i7
No No No
AN=A_Nf1= - =AN_1 = AN =1,
/\N+1=1—L )\N+2=1—i >\N+N71:L AN+N, = 0.
Ny’ Ny’ ’ © Ny’ ©

Set g = > ;c; Aigi- The supports of the functions g; are disjoint, so 0 < g < 1.
This is condition (1). Using Lemma 18.4(13) at the first and fourth steps and
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Lemma 18.4(14) at the third step, we get

938@Pa<@Pr 3P fi~cx) Y hiZex |

ler lel lel lel
This is condition (4).
We check condition (5). We have

Z)\lgo oh~l— Z Aigo © Rt

lel lel

lgu — ugll = |lg — ugu*|| = |lg—goh™'| =

In the second sum in the last term, we change variables to get Zl+1e[ Ni—1gooh~t.
Use A_N_N, = AN+N, = 0 and combine terms to get

N+ No

> (M=XM)gooh

l=—N—-No+1

llgu — ugl| =

The expressions gg o h~! are orthogonal and have norm 1, so

1
—ug = M= Net| = — <e.
llgu — ugl| [\ — N1 No €

max

—N—No+1<I<N+No

It remains to verify condition (3). Since 1 — g vanishes on the sets
W), Y)Y, RN,

Proposition 17.6 implies that (1 — g)u' € B for l = —N, -N +1, ..., N —1, N.
For j=1,2,...,m,sincec;; € C(X)C Bforl=—-N,-N+1,...,N—1, N, we

get
N

(1—-g)c; = Z ¢ (1— g)ul € B.
I=—N
This completes the verification of condition (3), and the proof of the theorem. O

23. APPLICATION TO THE RADIUS OF COMPARISON OF CROSSED PRODUCTS BY
MINIMAL HOMEOMORPHISMS

The purpose of this section is to describe some of the ideas involved in Theo-
rem 19.15 and its proof. We describe the mean dimension of a homeomorphism,
and we give proofs of simple special cases or related statements for some of the
steps in its proof.

We will need simplicial complexes. See Section 2.6 of [197] for a presentation of
the basics. Following a common abuse of terminology, we say here that a topological
space is a simplicial complex when, formally, we mean that it is homeomorphic to
the geometric realization of a simplicial complex.

An explanation of mean dimension starts with dimension theory; see the discus-
sion after Corollary 16.2. The mean dimension of a homeomorphism h: X — X
was introduced in [164] For best behavior, i should not have “too many” periodic
points. It is designed so that if K is a sufficiently nice compact metric space (in
particular, dim(K™) should equal n - dim(K) for all n € Zsg), then the shift on
X = K7? should have mean dimension equal to dim(K). Given this heuristic, it
should not be surprising that if dim(X) < oo then mdim(h) = 0.

We recall that Cov(X) is the set of finite open covers of X (Notation 16.3), that
V < U means that V refines ¢ (Definition 16.5), the order ord(i) of a finite open
cover U (Definition 16.4), and that D(Uf) is the least order of a refinement of U.
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Definition 23.1. Let X be a compact Hausdorff space, and let ¢/ and V be two
finite open covers of X. Then the join U V'V of U and V is

UVV={UNV:UelU and V € V}.

Definition 23.2. Let X be a compact Hausdorff space, let U be a finite open cover
of X, and let h: X — X be a homeomorphism. We define

h(U) ={h(U): U eU}.
Definition 23.3 (Definition 2.6 of [164]). Let X be a compact metric space and

let h: X — X be a homeomorphism. Then the mean dimension of h is (see
Corollary 23.6 below for existence of the limit)

DUV UV - VR U
mdim(h) = sup lim ( ©@ ) .
UeCov(X) V70 n

The expression in the definition uses the join of n covers.
Existence of the limit depends on the following result.

Proposition 23.4 (Corollary 2.5 of [164]). Let X be a compact metric space, and
let U and V be two finite open covers of X. Then DU vV V) < D(U) + D(V).

We omit the proof, but the idea is similar to that of the proof of Proposition 3.2.6
of [197] (dim(X x Y) < dim(X) + dim(Y") for nonempty compact Hausdorfl spaces
X and Y"). The point is that an open cover U has ord(U) < m if and only if there
is a finite simplicial complex K of dimension at most m which approximates X “as
seen by U7, and if K and L are finite simplicial complexes which approximate X
as seen by U and by V, then K x L is a finite simplicial complex with dimension
dim(K') + dim(L) which approximates X as seen by U V V.

Lemma 23.5. Let (an)nez., be a sequence in [0,00) which is subadditive, that
is, Aman < am + ay for all myn € Zsg. Then lim,,_, n~la, exists and is equal
to infez. n"tay,.

Proof. We follow part of the proof of Theorem 6.1 of [164]. Define 8 = inf,ez_, n ™ uy.
Let € > 0. Choose Ny € Z~¢ such that No_laNO < B+ 5. Choose N € Z~ so large

that
No()q 9

N > Ny and N 5"

Let n > N. Since N > Ny, there are r € Z~o and s € {0,1,..., Ny — 1} such that
n =1rNg+ s. Then, using subadditivity at the first step,

o, < ray, + sa TON, sa an, n Noog
n - n rNo+ s n Ny n

e €
< 5 + 5 + 5 = ﬂ + €.
This completes the proof. ([

Corollary 23.6. Let X be a compact metric space let U be a finite open cover
of X, and let h: X — X be a homeomorphism. Then the limit

. DUVRTIU)V VAT U))

lim

n—00 n

in Definition 23.3 exists.
Proof. Combine Lemma 23.5 and Proposition 23.4. O

The following result is immediate.
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Proposition 23.7. Let X be a compact metric space with finite covering dimen-
sion, and let h: X — X be a homeomorphism. Then mdim(h) = 0.

Proof. Let U be a finite open cover of X. Then, by definition,
DUVR UV VAT U)) < dim(X),
S0
mdim(h) < lim dim(X)

n—00 n

This completes the proof. [l

=0.

The following result is less obvious, but not difficult (although we refer to [164]
for the proof). In particular, it shows that every uniquely ergodic minimal homeo-
morphism has mean dimension zero.

Proposition 23.8. Let X be a compact metric space, let h: X — X be a homeo-
morphism, and assume that h has at most countably many ergodic invariant Borel
probability measures. Then mdim(h) = 0.

Proof. In [164], see Theorem 5.4 and the discussion after Definition 5.2. O

Proposition 23.7 covers most of the common examples of minimal homeomor-
phisms. However, not all minimal homeomorphisms have mean dimension zero. We
start with the standard nonminimal example. the shift, as in Example 2.20.

Definition 23.9. Let K be a set. The shift hx: KZ — K7 is the bijection given
by hx(2)r = T4 for z = (2)rez € K% and k € Z.

Theorem 23.10 (Proposition 3.1 of [164]). Let K be a compact metric space, and
let hx be as in Definition 23.9. Then mdim(hg) < dim(K).

Theorem 23.11 (Proposition 3.3 of [164]). Let d € Z~o, set K = [0,1]¢, and let
hx be as in Definition 23.9. Then mdim(hg) = d.

We omit the proofs. To understand the result heuristically, in Definition 23.3
consider a finite open cover Uy of K, for n € Z let p,: K — K be the projection
on the nth coordinate, and consider the finite open cover

U= {py " (U): U €lyp}.

Then the cover U V hi' (U) V ---V hi" T (U) sees only n of the coordinates in K%,
so that
DUVR ' U) V- VAT U)) < dim(K™) < ndim(K).
The proof of Theorem 23.10 requires only one modification of this idea, namely that
the original cover & must be allowed to depend on an arbitrary finite number of
coordinates rather than just one. The proof of Theorem 23.11 requires more work.
One does not expect mdim(hg) = dim(K) in general, because of the possibility
of having dim(K") < ndim(K). (This is the possibility of having strict inequality
in (16.1); see the discussion after (16.1).) When dim(K) < oo, by combining
Theorem 1.4 of [61] and Theorem 3.16(b) of [61] and the discussion afterwards, one
sees that dim(K™) is either always ndim(K) or always ndim(K) —n + 1. In the
first case,
lim dim(K™)

n—oo n

= dim(K),
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while in the second case,

lim dim(K™) = dim(K) — 1.

n—oo n
Moreover, the second case actually occurs. (For example, combine [170] and [147].)
A modification of the proof of Theorem 23.10 should easily give the upper bound
mdim(hg) < dim(K) — 1 in the second case. This suggests the following question,
which, as far as we know, has not been addressed.

Question 23.12. Let K be a compact metric space, and let hx be as in Defini-
tion 23.9. Does it follow that mdim(hg) = dim(K) or mdim(hg) = dim(K) — 17

Shifts are not minimal (unless K has at most one point), but one can construct
minimal subshifts with large mean dimension. A basic construction of this type is
given in [164].

Theorem 23.13 (Proposition 3.5 of [164]). There exists a minimal invariant subset
X C ([0, 1]2)Z such that mdim(h[0)1]2|x) > 1.

A related construction is used in [93] to produce many more examples, including
ones with arbitrarily large mean dimension.
We now recall the statement of Theorem 19.15.

Theorem 23.14 ([110]). Let X be a compact metric space. Assume that there is a
continuous surjective map from X to the Cantor set. Let h: X — X be a minimal
homeomorphism. Then rc(C*(Z, X, h)) < imdim(h).

It is hoped that rc(C*(Z, X, h)) = $mdim(h) for any minimal homeomorphism
of an infinite compact metric space X. This has been proved in [110] for some
special systems covered by Theorem 23.14, slightly generalizing the construction
of [93].

The hypothesis on existence of a surjective map to the Cantor set has other
equivalent formulations, one of which is the existence of an equivariant surjective
map to the Cantor set.

Proposition 23.15. Let X be a compact metric space, and let h: X — X be a
minimal homeomorphism. Then the following are equivalent:

(1) There exists a decreasing sequence Yy D Y7 D Yo D -+ of nonempty
compact open subsets of X such that the subset ¥ = ﬂzozo Y,, satisfies
M(Y)NY =@ for all r € Z \ {0}.

(2) There is a minimal homeomorphism of the Cantor set which is a factor of
(X, h) (Definition 2.27).

(3) There is a continuous surjective map from X to the Cantor set.

(4) For every n € Z~( there is a partition P of X into at least n nonempty
compact open subsets.

We omit the proof.
Assume h is minimal and A"(Y)NY = & for n € Z\ {0}. As in Remark 17.20,
write Y = ﬂzozo Y, with Yo DY) D -+ and int(Y,,) # @ for all n € Z>, getting

C*(ZaXv h)Y = hﬂc*(Z7Xa h)Yn-

The algebras C*(Z, X, h)y, are recursive subhomogeneous C*-algebras whose base
spaces are closed subsets of X. (See Theorem 17.14.) The effect of requiring a
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Cantor system factor is that one can choose Y and (Y,,)nez., so that Y,, is both
closed and open for all n € Z>g. Doing so ensures that C*(Z, X, h)y, is a homoge-
neous C*-algebra whose base spaces are closed subsets of X. Thus C*(Z, X, h)y is
a simple AH algebra. We get such a set Y by taking the inverse image of a point
in the Cantor set.

To keep things simple, in these notes we will assume that h has a particular
minimal homeomorphism of the Cantor set as a factor, namely an odometer system
(Definition 2.22). The further simplification of assuming an odometer factor is that
one can arrange C*(Z, X, h)y, = M,, (C(Y,)), that is, there is only one summand.
This simplifies the notation but otherwise makes little difference.

We omit the proof of the following lemma. Some work is required, most of
which consists of keeping notation straight. A more general version (assuming an
arbitrary minimal homeomorphism of the Cantor set as a factor) is in [110].

Lemma 23.16. Let X be a compact metric space, and let h: X — X be a minimal
homeomorphism. We assume that (X, k) has as a factor system the odometer on
Xqa=112,{0,1,2,...,d, — 1} (Definition 2.22) for a sequence d = (dy,)nez., of
integers with d,, > 2 for all n € Z~(. Let Y be the inverse image of (0,0,...) under
the factor map, and let Y,, be the inverse image of

{0} x ﬁ {0,1,2,...,dp — 1}.

k=n+1
For n € Z~q set p, = szl dy. For m,n € Z>q with n > m, define
Unm: C(Yim, My,,) = C(Yn, Mp,)
by
Unm(f) = diag(fly,, fohP|y,, foh® |y, ..., fohEn/Pm=Drm|y )
for f € C(Yim, M,,,). Then
C*(Z,X,h)y = th’(Yn,Mpn).

n

The map ¢, in the statement of the lemma has the particularly suggestive
formula

¥no(f) = diag(flv,, fohlv,, foh?ly,, ..., fohP"Hy,).
The problem is now reduced to showing that if A = lign C(Y,, Mp, ), with maps

Ynm(f) = diag(fly,, fohP|y,, foh®mly,, ..., foh@®s/Pn=brn|y )

then rc(A4) < imdim(h).
We will make a further simplification, and prove instead the following theorem,
also from [110].

Theorem 23.17 ([110]). Let X be an infinite compact metric space. Let d =
(dn)nez-, be a sequence of integers with d,, > 2 for all n € Zso. For n € Zsg
set pp, = [[h_; dk. Let h: X — X be a homeomorphism, and suppose that hP» is
minimal for all n € N. For m,n € Zsq with m < n, define ¢, »,: C(X,M,,,) —
C(X,M,,) by

Ynm(f) = diag(f, fo kP, fohn, .., f o hr/rn=Dpn)
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for f € C(X, M,,,). Using these maps, define
B = %ﬂC(X, Mp,,).

Then re(B) < smdim(h).

1
2

The following lemma (whose easy proof is left as an exercise) ensures that the
direct system in Theorem 23.17 actually makes sense.

Lemma 23.18 ([110]). Let X, h, d, and ¢y, ,, for m,n € Z-o with m < n, be
as in Theorem 23.17, but without any minimality assumptions on h. Then for
k,m,n € Zq with k < m <n, we have 1/Jn,m © wm,k = '(/)n,lv

Exercise 23.19. Prove Lemma 23.18.

The algebra B in Theorem 23.17 is a kind of AH model for the crossed prod-
uct C*(Z, X,h). In particular, it is always an AH algebra, while we needed the
assumption of a Cantor set factor system to find a large subalgebra of C*(Z, X, h)
which is an AH algebra. This model has the defect that we must now assume that
hP» is minimal for all n € Z~(. Otherwise, it turns out that the direct limit isn’t
simple. (This minimality condition on the powers actually excludes systems with
odometer factors.) The proof of the following lemma is a fairly direct consequence
of the simplicity criterion in Proposition 2.1(iii) of [50].

Lemma 23.20 ([110]). Let X, h, d, and vy, ,, for m,n € Zso with m < n, be
as in Theorem 23.17, but without any minimality assumptions on h. Set B =
lim C(X,Mp,). Then B is simple if and only if 47" is minimal for all n € N.

Exercise 23.21. Prove Lemma 23.20.

The main effect of passing to the situation of Theorem 23.17 is to further simplify
the notation. For minimal homeomorphisms without Cantor set factor systems,
the replacement of a direct limit of recursive subhomogeneous algebras with an
AH algebra of the sort appearing in Theorem 23.17 is a much more substantial
simplification. There are difficulties (presumably technical) in the more general
context which we don’t (yet) know how to solve.

We would like to use Theorem 6.2 of [176] to prove Theorem 23.17 (and also
Theorem 23.14). Unfortunately, the definition there of the mean dimension of an
AH direct system requires that the base spaces be connected, or at least have only
finitely many connected components. If (X,h) has a Cantor set factor system,
the base spaces in the AH model (and also in the direct system in Lemma 23.16)
have surjective maps to the Cantor set. So we proceed more directly, although the
arguments are closely related.

Lemma 23.22. Let X be a compact metric space and let h: X — X be a home-
omorphism with no periodic points. Then for every € > 0 and every finite subset
F C C(X) there exists N € Z~( such that for all n > N there is a compact metric
space K and a surjective map i: X — K satisfying:
(1) dim(K) < n[mdim(h) + ¢].
(2) Form=0,1,...,n—1and f € F there is g € C(K) such that ||foh™ —
goil <e.
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The argument depends on nerves of covers and their geometric realizations. See
Section 2.6 of [197], especially Definition 2.6.1, Definition 2.6.2, Definition 2.6.7,
and the proof of Proposition 2.6.8, for more details of the theory than are presented
here.

Definition 23.23. Let X be a topological space, and let V be a finite open cover
of X, with @ ¢ V. The nerve K (V) is the finite simplicial complex with vertices [V]
for V € V, and in which there is a simplex in K (V) with vertices [Vp], [Vi],-- ., [Va]
if and only if VonVin.--NV, # @.

The points z € K(V) (really, points z in its geometric realization) are thus
exactly the formal convex combinations

(23.1) 2= ay[V]

Vev
in which ay >0 for all V € V, 3", o,y =1, and {[V]: ay # 0} is a simplex in
K (V), that is,

N{Veviay#0} #2.

Lemma 23.24. Let X be a topological space, and let V be a finite open cover
of X, with @ ¢ V. Then dim(K(V)) = ord(V).

Proof. Tt is immediate that ord(V) is the largest (combinatorial) dimension of a
simplex occurring in K (V). It follows from standard results in dimension theory
(in [197], see Proposition 3.1.5, Theorem 3.2.5, and Theorem 3.2.7) that this di-
mension is equal to dim(K (V)). O

Lemma 23.25. Let X be a topological space, and let V be a finite open cover of X,
with @ € V. Let (gv)vey be a partition of unity on X such that supp(gy) C V for
all V- € V. Then there is a continuous map i: X — K (V) determined, using (23.1),
by
i@ =3 gv(@)V]
vey
for z € X.

Exercise 23.26. Prove Lemma 23.25.

This exercise is straightforward.
At this point, we leave traditional topology.

Lemma 23.27. Let X be a compact Hausdorfl space, and let V, (gv)vey, and
i: X — K(V) be as in Lemma 23.25. Let (zy)vey be a collection of points in X
such that zy € V for V € V. Then there is a linear map P: C(X) — C(K(V))
(not a homomorphism) defined, following (23.1), by

P(f) (Z avW]) = Z av f(zv)

vevy Vey
for f € C(X). Moreover:
() [Pl < 1.
(2) For all f € C(X), we have

[1P(f)oi—fl < Sup sup [f (@) = f(y)l.

eV z,ycV
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The key point is part (2): if f € C(X) varies by at most § > 0 over each set
V €V, then P(f) is a function on K (V) whose pullback to X is close to f. That is,
if V is sufficiently fine, then we can approximate a finite set of functions on X by
functions on the finite (in particular, finite dimensional) simplicial complex K (V).
Moreover, the dimension of K (V) is controlled by the order of V.

Proof of Lemma 23.27. 1t is easy to check that P(f) is continuous, that P is linear,
and that || P|| < 1.

For (2), let » > 0 and suppose that for all V € V and z,y € V we have
|f(z) = f(y)] <r. Let x € X and estimate:

P(f) (Z gv(ﬂﬂ)W]) — > gv(@)f(@)

|P(f)(i()) = f(=)] =

Vey vey
<Y gv@)|fv) = f@)] <Y gv(a)r=r
vey vevy
This completes the proof. (Il

Proof of Lemma 23.22. Choose a finite open cover U of X such that for all U € U,
z,y €U, and f € F, we have |f(z) — f(y)| < §. By definition, we have

. DUVRTIU)V -V RTHU))
lim
n—00 n

Therefore there exists N € Z~ such that for all n > N we have

DUV R U)V - VR U))

< mdim(h).

< mdim(h) + e.
Let n > N. Then there is a finite open cover V of X which refines
UNVKB YUY V-V AT UY)
and such that
(23.2) ord(V) < n[mdim(h) + ¢].

Since X is a compact metric space, we can choose a partition of unity (gv)vey on X
such that supp(gy) C V for all V € V. Apply Lemma 23.25, getting i: X — K(V),
and let P: C(X) — C(K(V)) be as in Lemma 23.27.

Let f € F and let m € {0,1,...,n— 1}. Since V refines h~™(U), it follows that
forall V € V and z,y € V we have ‘(f oh™)(x)— (fo hm)(y)| < 5. So

||P(f0hm)0i—f0hmH §%<€.

We are done with the proof except for the fact that ¢ might not be surjective. So
define K = i(X) C K (V). Since the dimension of a subspace can’t be larger than
the dimension of the whole space (see Proposition 3.1 5 of [197]),

dim(K) < dim(K(V)) = ord(V) < nimdim(h) + €.
In place of P(f o h™) we use P(f o h™)|k. This completes the proof. O

The proof of Theorem 23.17 requires two further results. For both proofs, we
refer to the original sources. The first is a special case of Theorem 5.1 of [285].
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Theorem 23.28 (see Theorem 5.1 of [285]). Let X be a compact metric space and
let n € Z~g. Then
dim(X) —1

2n ’
Lemma 23.29 (Lemma 6.1 of [176]). Let B be a simple unital exact C*-algebra
and let r € [0,00). Suppose:

re(M, @ C(X)) <

(1) For every finite subset S C B and every € > 0, there is a unital C*-algebra D
such that rc(D) < r + € and an injective unital homomorphism p: D — B
such that dist(a, p(D)) < € for all a € S.

(2) For every s € [0,1] and every € > 0, there exists a projection p € B with
|7(p) — s| < e for all 7 € T(B).

Then re(B) < r.

Proof of Theorem 23.17. We use Lemma 23.29. Certainly B is simple, unital, and
exact. Since C(X,M,,) — B and C(X, M,,) has projections of constant rank k
for any k € {0,1,...,p,p}, condition (2) in Lemma 23.29 is satisfied.

We need to show that for every finite subset S C B and every € > 0, there is
a unital C*-algebra D such that rc(D) < jmdim(h) + ¢ and an injective unital
homomorphism p: D — B such that dist(a, p(D)) < ¢ for all a € S.

For n € Zxq let ¢,,: C(X, M,,) — B be the map obtained from the direct limit
description of B. Let S C B be finite and let ¢ > 0. Choose m € Zs( and a finite
set

So € C(X, M,,,) = M, (C(X))
such that for every a € S there is b € So with |1, (b) —al| < ie. Let F C C(X) be
the set of all matrix entries of elements of Sy. Use Lemma 23.22 to find N € Zx>¢
such that for all [ > N there are a compact metric space K and a surjective map
i: X — K such that dim(K) < ![mdim(h)+¢] and for r =0,1,...,l—1and f € F
there is g € C(K) with
€
2p7,
Choose n > m such that p,, > N. Choose K and 7 for [ = p,, so that
dim(K) < pp[mdim(h) + €]
and for r =0,1,...,p, — 1 and f € F there is g € C(K) with

9
Ifoh" —goill < 5=

[foh" —goil <

2p7,

Define an injective homomorphism pg: C(K) — C(X) by po(f) = foi for

feC(K). Set D= M, (C(K)) and define
p=1no(idy, ®po): D— B.

Then p is also injective.

By Theorem 23.28,
< dim(K) —1 < mdim(h) + ¢ - mdim(h)

2%n 2 2

It remains to prove that dist(a, p(D)) < ¢ for all a € S.

Let a € S. Choose b € Sy such that |[1),,,(b)—a|l < 5. For j,k € {0,1,...,pn—1},

we let ej , € M, be the standard matrix unit (except that we start the indexing
at 0 rather than 1). Then there are b, € F for j, k € {0,1,...,p, — 1} such that

re(D)

+ €.
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b= Z?:E;é €. ®b; . By construction, for r =0,1,...,p,—1 thereis g; s, € C(K)
such that

ng,k,r 01— bj,k o hTH < %
Fort =0,1,...,pn/pm — 1, define
Pm—1
=Y €k ®Gikip, € My, (C(K)).
4,k=0

Then define
c = diag(co, 1, .-, Cp, jp,.—1) € My, (C(K)).
We claim that ||p(c) — al| < e, which will finish the proof. We have, using the
definition of vy, ,,, at the third step,

le(e) = all < lla = Y )l + [ (5) = p(O)]
< 5+ lnm(®) — el

< 5+ |[diag(f, f o kP, foh®n, ..., foh(/ra=ton)
— diag(co, C1,C2y ..., C;Dn/pmfl) H
< ‘4 max IIf o hPm" — ¢|
2 0<t<pn/pm—1

IN

9 Pm
92 ; ) — b r
2 ¥ 0cedhs 1 2o i 08 = biso |

cfap ().

This completes the proof. ([

24. OPEN PROBLEMS ON LARGE SUBALGEBRAS AND THEIR APPLICATIONS TO
CROSSED PRODUCTS

We discuss some open problems related to large subalgebras, some (but not all)
of which have some connection with dynamical systems. We start with some which
are motivated by particular applications, and then give some which are suggested
by results already proved but for which we don’t have immediate applications.

Not all the problems in [215] appear here. In particular, the ones about L? op-
erator crossed products have been omitted.

The first question is motivated by the hope that large subalgebras can be used
to get more information about crossed products than we now know how to get. In
most parts, we expect that positive answers would require special hypotheses, if
they can be gotten at all. We omit definitions of most of the terms.

Question 24.1. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B C A be a large (or centrally large) subalgebra.

(1) Suppose that B has tracial rank zero (Definition 11.35). Does it follow that
A has tracial rank zero?

(2) Suppose that B is quasidiagonal. Does it follow that A is quasidiagonal?

(3) Suppose that B has finite decomposition rank. Does it follow that A has
finite decomposition rank?
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(4) Suppose that B has finite nuclear dimension. Does it follow that A has
finite nuclear dimension?

It seems likely that “tracial” versions of these properties pass from a large sub-
algebra to the containing algebra, at least if the tracial versions are defined using
cutdowns by positive elements rather than by projections. But we don’t know how
useful such properties are. As far as we know, they have not been studied.

Next, we ask whether being stably large is automatic.

Question 24.2. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B C A be a large (or centrally large) subalgebra. Does it follow
that M, (B) is large (or centrally large) in M, (A) for n € Z<o?

We know that this is true if A is stably finite, by Proposition 20.11. Not having
the general statement is a technical annoyance. This result would be helpful when
dealing with large subalgebras of C*(Z, C(X, D), ) when D is simple unital, X is
compact metric, and the homeomorphism of Prim(C(X, D)) = X induced by « is
minimal. Some results on large subalgebras of such crossed products can be found
in [7]; also see Theorem 22.4.

More generally, does Proposition 19.4 still hold without the finiteness assump-
tion?

Question 24.3. Let A be an infinite dimensional simple separable unital C*-
algebra, and let a: Z — Aut(A) have the tracial Rokhlin property. Is there a
useful large or centrally large subalgebra of C*(Z, A, a)?

We want a centrally large subalgebra of C*(Z, A, «) which “locally looks like
matrices over corners of A”. The paper [185] proves that crossed products by
automorphisms with the tracial Rokhlin property preserve the combination of real
rank zero, stable rank one, and order on projections determined by traces. The
methods were inspired by those of [202], which used large subalgebras (without the
name). The proof in [185] does not, however, construct a single large subalgebra.
Instead, it constructs a suitable subalgebra (analogous to C*(Z, X, h)y for a small
closed subset Y C X with int(Y") # &) for every choice of finite set F' C C*(Z, A, «)
and every choice of € > 0. It is far from clear how to choose these subalgebras to
form an increasing sequence so that a direct limit can be built. Similar ideas, under
weaker hypotheses (without projections), are used in [182], and there it is also far
from clear how to choose the subalgebras to form an increasing sequence.

The first intended application is simplification of [185].

Problem 24.4. Let X be a compact metric space, and let G be a countable
amenable group which acts minimally and essentially freely on X. Construct a
(centrally) large subalgebra B C C*(G,X) which is a direct limit of recursive
subhomogeneous C*-algebras as in [203] whose base spaces are closed subsets of X,
and which is the (reduced) C*-algebra of an open subgroupoid of the transformation
group groupoid obtained from the action of G on X.

In a precursor to the theory of large subalgebras, this is in effect done in [202]
when G = Z¢ and X is the Cantor set, following ideas of [88]. The resulting
centrally large subalgebra is used in [202] to prove that C*(Z4, X) has stable rank
one, real rank zero, and order on projections determined by traces. (More is now
known.) We also know how to construct a centrally large subalgebra of this kind
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when G = Z% and X is finite dimensional (unpublished). This gave the first proof
that, in this case, C*(Z¢, X) has stable rank one and strict comparison of positive
elements. (Again, more is now known.)

Unlike for actions of Z, there are no known explicit formulas like that in The-
orem 19.5; instead, centrally large subalgebras must be proved to exist via con-
structions involving many choices. They are direct limits of C*-algebras of open
subgroupoids of the transformation group groupoid as in Problem 24.4. In each
open subgroupoid, there is a finite upper bound on the size of the orbits; this is
why they are recursive subhomogeneous C*-algebras (homogeneous when X is the
Cantor set, as in [204]). In fact, the original motivation for the definition of a
large subalgebras was to describe the essential properties of these subalgebras, as
a substitute for an explicit description.

We presume, as suggested in Problem 24.4, that the construction can be done
in much greater generality.

Problem 24.5. Develop the theory of large subalgebras of not necessarily simple
C*-algebras.

One can’t just copy Definition 19.1. Suppose B is a nontrivial large subalgebra
of A. We surely want B@® B to be a large subalgebra of A® A. Take xg € A4\ {0},
and take the element x € A @ A in Definition 19.1 to be z = (x0,0). Writing
g = (g1, 92), we have forced go = 0. Thus, not only would B @ B not be large in
A& A, but even A @ B would not be large in A @ A.

In this particular case, the solution is to require that = and y be full elements in
A and B. What to do is much less clear if, for example, A is a unital extension of
the form

0—K®D—A—F—0,

even if D and F are simple, to say nothing of the general case.

The following problem goes just a small step away from the simple case, and just
asking that x and y be full might possibly work for it, although stronger hypotheses
may be necessary.

Question 24.6. Let X be an infinite compact metric space and let h: X — X be
a homeomorphism which has a factor system which is a minimal homeomorphism
of an infinite compact metric space (or, stronger, a minimal homeomorphism of the
Cantor set). Can one use large subalgebra methods to relate the mean dimension
of h to the radius of comparison of C*(Z, X, h)?

We point out that Lindenstrauss’s embedding result for systems of finite mean
dimension in shifts built from finite dimensional spaces (Theorem 5.1 of [163]) is
proved for homeomorphisms having a factor system which is a minimal homeomor-
phism of an infinite compact metric space.

Problem 24.7. Develop the theory of large subalgebras of simple but not neces-
sarily unital C*-algebras.

One intended application is to crossed products C* (Z, C(X, D), a) when X is an
infinite compact metric space, D is simple but not unital, and the induced action on
X is given by a minimal homeomorphism. (Compare with Theorem 22.4.) Another
possible application is to the structure of crossed products C*(Z, X, h) when h is
a minimal homeomorphism of a noncompact version of the Cantor set. Minimal
homeomorphisms of noncompact Cantor sets have been studied in [166] and [167],
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but, as far as we know, almost nothing is known about their transformation group
C*-algebras.

For a large subalgebra B C A, the proofs of most of the relations between A and
B do not need B to be centrally large. The exceptions so far are for stable rank
one and Z-stability. Do we really need centrally large for these results?

Question 24.8. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B C A be a large subalgebra (not necessarily centrally large).
If B has stable rank one, does it follow that A has stable rank one?

That is, can Theorem 19.12 be generalized from centrally large subalgebras to
large subalgebras?

Question 24.9. Let A be an infinite dimensional simple separable nuclear unital
C*-algebra, and let B C A be a large subalgebra (not necessarily centrally large).
If B is Z-stable, does it follow that A is Z-stable?

That is, can Theorem 19.13 be generalized from centrally large subalgebras to
large subalgebras?

It is not clear how important these questions are. In all applications so far, with
the single exception of [73] (on the extended irrational rotation algebras), the large
subalgebras used are known to be centrally large. In particular, all known useful
large subalgebras of crossed products are already known to be centrally large.

Question 24.10. Does there exist a large subalgebra which is not centrally large?
Are there natural examples?

The results of [73] depend on large subalgebras which are not proved there to be
centrally large, but it isn’t known that they are not centrally large.

Question 24.11. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B C A be a large subalgebra. If RR(B) = 0, does it follow that
RR(A) = 0?7 What about the converse? Does it help to assume that B is centrally
large in the sense of Definition 19.27

If B has both stable rank one and real rank zero, and is centrally large in A,
then A has real rank zero (as well as stable rank one) by Theorem 19.12. The main
point of Question 24.11 is to ask what happens if B is not assumed to have stable
rank one. The proof in [202] of real rank zero for the crossed product C*(Z%, X) of
a free minimal action of Z¢ on the Cantor set X (see Theorem 6.11(2) of [202]; the
main part is Theorem 4.6 of [202]) gives reason to hope that if B is large in A and
RR(B) = 0, then one does indeed get RR(A) = 0. Proposition 19.11 could also
be considered evidence in favor. Nothing at all is known about conditions under
which RR(A) = 0 implies RR(B) = 0.

Applications to crossed products may be unlikely. It seems possible that C*(G, X)
has stable rank one for every minimal essentially free action of a countable amenable
group G on a compact metric space X.

Question 24.12. Let A be an infinite dimensional simple separable unital C*-
algebra. Let B C A be centrally large in the sense of Definition 19.2. Does it follow
that Ko(B) — Ko(A) is an isomorphism mod infinitesimals?

In other places where this issue occurs (in connection with tracial approximate
innerness; see Proposition 6.2 and Theorem 6.4 of [208]), it seems that everything
in K7 should be considered to be infinitesimal.
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A six term exact sequence for the K-theory of some orbit breaking subalgebras
is given in Example 2.6 of [232]. Related computations for some special more
complicated orbit breaking subalgebras can be found in [233]. See Theorem 17.31
and the discussion afterwards. Theorem 17.25, according to which the inclusion
of C*(Z, X, h)gyy in C*(Z, X, h) is an isomorphism on Ky, is an important conse-
quence.

A positive answer to Question 24.12 would shed some light on both directions
in Question 24.11.

Question 24.13. Let A be an infinite dimensional stably finite simple separable
unital C*-algebra. Let B C A be centrally large in the sense of Definition 19.2. If
A has stable rank one, does it follow that B has stable rank one?

That is, does Theorem 19.12 have a converse? In many other results in Sec-
tion 19, B has an interesting property if and only if A does.

Question 24.14. Let A be an infinite dimensional simple separable unital C*-
algebra, and let B C A be a centrally large subalgebra. Let n € Z<q. If tsr(B) < n,
does it follow that tsr(A) < n? If tsr(B) is finite, does it follow that tsr(A) is finite?

That is, can Theorem 19.12 be generalized to other values of the stable rank?
The proof of Theorem 19.12 uses tsr(B) = 1 in two different places, one of which
is not directly related to tsr(A), so an obvious approach seems unlikely to succeed.

As with Question 24.11, applications to crossed products seem unlikely.
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