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A rough outline of all six lectures

@ The beginning: The C*-algebra of a group.

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.
More examples of actions.

Crossed products by actions of finite groups: Some examples.
The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.
The tracial Rokhlin property for actions of finite groups.
Examples of actions with the tracial Rokhlin property.
Crossed products by actions with the tracial Rokhlin property.
Applications of the tracial Rokhlin property.

Some open problems.
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Crossed products of AF algebras by actions with the Rokhlin property.

The Second Summer School on Operator Algebras
and Noncommutative Geometry 2016

East China Normal University, Shanghai

11-29 July 2016

@ Lecture 1 (11 July 2016): Group C*-algebras and Actions of Finite
Groups on C*-Algebras

@ Lecture 2 (13 July 2016): Introduction to Crossed Products and More
Examples of Actions.

@ Lecture 3 (15 July 2016): Crossed Products by Finite Groups; the
Rokhlin Property.

o Lecture 4 (18 July 2016): Crossed Products by Actions with the
Rokhlin Property.

@ Lecture 5 (19 July 2016): Crossed Products of Tracially AF Algebras
by Actions with the Tracial Rokhlin Property.

@ Lecture 6 (20 July 2016): Applications and Problems.
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Recall: The tracial Rokhlin property
Definition
Let A be an infinite dimensional simple separable unital C*-algebra, and let
a: G — Aut(A) be an action of a finite group G on A. We say that « has
the tracial Rokhlin property if for every finite set F C A, every € > 0, and
every positive element x € A with ||x|| = 1, there are mutually orthogonal
projections eg € A for g € G such that, with e = ¢ &

Q ||ag(en) —egn|| < e forall g,he G.

Q |lega—aeg|| <eforallge Gandallac F.

© 1 — e is Murray-von Neumann equivalent to a projection in xAx.

Q |exe]| >1—e.

Recall the simplifications:
Q If Ais finite, the last condition can be omitted.
@ We need only consider finite subsets F of a fixed generating set.
@ We can require ag(en) = egp for all g, h € G.

Q In good cases, replace (3), (4) by 7(1 — e) < ¢ for all tracial states 7.
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The tracial Rokhlin property is common

We saw some examples of actions with the tracial Rokhlin property, but
mostly without the Rokhlin property or even finite Rokhlin dimension with
commuting towers (its nearly as good generalization):

@ The action of Z; on the 3°° UHF algebra generated by

10 0
y=QAd| [0 1 0
00 —1

@ Actions on Ay from finite subgroups of SLa(Z).

@ The action of Z, on an irrational rotation algebra generated by
urs e®™/"y and v i~ v. (It does have a higher dimensional Rokhlin
property with commuting towers.)

@ The tensor flip on any UHF algebra.

@ Pointwise outer actions of a finite group on a unital Kirchberg algebra.
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Crossed products and the tracial Rokhlin property

Theorem

Let A be a simple separable unital C*-algebra with tracial rank zero. Let
G be a finite group, and let a: G — Aut(A) have the tracial Rokhlin
property. Then C*(G, A, ) has tracial rank zero.

The idea of the proof is essentially the same as for crossed products of
AF algebras by actions with the Rokhlin property. The definitions of both
tracial rank zero and the tracial Rokhlin property allow a “small” (in
trace) error projection. One must show that the sum of two “small” error
projections is again “small”. One must do a little work here, but these
lectures won't address this point.

There is one additional difficulty. The hypotheses give an error which is
“small” relative to A. One must prove that it is also “small” relative to
C*(G, A, ). This uses a theorem of Jeong and Osaka. We give the ideas
of a proof here.
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Recall: tracial rank zero

Recall the definition of tracial rank zero:

Definition

Let A be a simple separable unital C*-algebra. Then A has tracial rank
zero if for every finite subset F C A, every € > 0, and every nonzero
positive element x € A, there exists a nonzero projection p € A and a
unital finite dimensional subalgebra D C pAp such that:

@ ||[a,p]]| <eforallae F.
@ dist(pap, D) < e forallae F.

© 1 — pis Murray-von Neumann equivalent to a projection in xAx.

In both definitions, the strong version (the Rokhlin property, or local
approximation by finite dimensional C*-algebras) is supposed to hold only
after cutting down by a “large” projection which approximately commutes
with all elements of the given finite set.
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“Small” in C*(G,A,«a) vs. “small” in A

The following result implies that one can make the error projection “small”
relative to C*(G, A, «) by requiring that it be “small” relative to A.

Theorem

Let A be an infinite dimensional simple separable unital C*-algebra which
has Property (SP) (every nonzero hereditary subalgebra contains a
nonzero projection), and let a: G — Aut(A) be an action of a finite group
which has the tracial Rokhlin property. Then for every nonzero hereditary
subalgebra D C C*(G, A, ), there is a nonzero projection p € D which is
Murray-von Neumann equivalent to a projection g € A.

v

So, to ensure the error projection 1 — e is Murray-von Neumann equivalent
to a projection in D, it is enough to require that 1 — e < g in A.

Much weaker conditions suffice: provided one uses C(G, A, «), one can
allow any pointwise outer action of a discrete group (Jeong-Osaka).

Tracial rank zero is known to imply Property (SP).
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Kishimoto's condition
We want to show that a nonzero hereditary subalgebra D C C*(G, A, «)
contains a nonzero projection equivalent to a projection in A.

We use what we call Kishimoto's condition (from his paper on simplicity of
reduced crossed products). Here is the version for finite groups:

Definition

Let a: G — Aut(A) be an action of a finite group G on a C*-algebra A.
We say that « satisfies Kishimoto's condition if for every x € Ay with

|| x| = 1, for every finite set S C A, and for every € > 0, there is a € Ay
with ||a]| = 1 such that:

Q |axa|| >1—e.
Q |labag(a)|| <eforallge G\ {1} and be S.

We will get (2) by arranging that:
Q ||ab — bal| is small.
@ a is approximately orthogonal to a,(a) for g # 1.
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Getting Kishimoto's condition

Given x € AL with ||x|| =1, and a finite set S C A, we want:
Q |axa|| >1—e.
Q ||abag(a)|| <eforall ge G\ {1} and b€ S.

For F C A finite and ¢ > 0, the tracial Rokhlin property gives mutually
orthogonal projections e such that (omitting a condition we won't need):

Q oy(ep) =egpforallg,heG.
Q |legb— beg|| <0 forallge Gandall beF.
Q@ With e =3 . eg we have [[exe| > 1—¢.
Apply the tracial Rokhlin property with F = S U {x}. Then
exe & ) ;- enxep (exercise: check this!) so, provided ¢ is small enough,

orthogonality of the sum implies that there is some h € G such that
||lenxen|| > 1 — 6. We will take a = e4. Now g # 1 implies

abag(a) = epbag(ep) ~ bepag(en) = benegy = 0.

This proves Kishimoto's condition. Exercise: Write out the details.
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Kishimoto's condition (continued)

Definition

Let a: G — Aut(A) be an action of a finite group G on a C*-algebra A.
We say that « satisfies Kishimoto's condition if for every x € Ay with

||x|| = 1, for every finite set S C A, and for every € > 0, there is a € Ay
with ||a]| = 1 such that:

Q |axa|| >1—e.
Q |labag(a)|| <eforallge G\ {1} and be S.

For general discrete groups, one uses finite subsets of G \ {1}.

Kishimoto shows that this condition holds for pointwise outer actions on
simple C*-algebras (in fact, under weaker assumptions). We sketch the
(easier) proof that Kishimoto's condition follows from the tracial Rokhlin
property. and show how to use it.

We will get (2) by arranging that ||ab — ba|| is small, and that a is
approximately orthogonal to a4 (a) for g # 1.
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Using Kishimoto's condition

We want to show that a nonzero hereditary subalgebra D C C*(G, A, «)
contains a nonzero projection equivalent to a projection in A. We assume
« satisfies Kishimoto's condition.

Step 1: Choose a nonzero positive element ¢ = deG cglg € D. We
claim ¢; > 0 and we can arrange to have ||c | = 1.

To see this, write ¢ = yy* with y = decygug. Multiply out, getting

€L =D gec YelglzVy = D gec YeVs = 0. (Exercise: Check this!) If
¢y =0, then y, =0 forall g, so y =0, s0 c=0.

Now multiply ¢ by a suitable scalar.

Step 2: Apply Kishimoto's condition, with suitable ¢ > 0, with x = ¢,
and using the finite set of coefficients ¢z for g € G, getting a € AL with
||lall = 1 such that:

Q |acial| >1—¢.
Q |lacgag(a)|| <eforall ge G\ {1}.
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Using Kishimoto's condition (continued)
We want to show that a nonzero hereditary subalgebra D C C*(G, A, «)
contains a nonzero projection equivalent to a projection in A.
We have ¢ =}, cgug € D1 and a € Ay with |laf| = [|af| =1 and
Q |acial| >1—e.
Q |laczag(a)|| <eforall ge G\ {1}.

Step 3: Using ugauy = ag(a) at the second step and (2) at the third step:

aca = E acglga = E acgog(a)ug ~ aciau; = acia.
getG geG

Step 4: Choose f: [0,1] — [0,1] such that f =0 on [0, 1 — 2¢] and
f(1—¢)=1. Then f(acia) # 0 by (1). By Property (SP), there is a
nonzero projection p in the hereditary subalgebra of A generated by
f(ac1a). One can show that pacjap ~ p. Exercise: Do this, giving precise
estimates. (Nothing special to crossed products is needed.)
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An application: Crossed products of rotation algebras by
finite groups
The action of SLy(Z) on the rotation algebra Ay (generated by unitaries u

. : n n .
and v with vu = e>™%uv) sends n = (3} ny2) to the automorphism

ap(u) = exp(ming 12 10)u™v™t ap(v) = exp(ming ang 20)u™2v"2,
The finite cyclic subgroups of orders 2, 3, 4, and 6, are generated by
-10 -1-1 0-1 0 -1
(o 21): (9), (I3 and (27)-
In terms of generators of Ay, and omitting the scalar factors (not needed
when one restricts to these subgroups), the action of Z; is generated by

u+— u* and v — v*, and the action of Z, is generated by u +— v and
v — u*. (An old exercise: Find the analogous formulas for Z3 and Zsg.)

Theorem (Joint with Echterhoff, Liick, and Walters; known previously
for the order 2 case)

Let € R\ Q. Let a: G — Aut(Ap) be the action on Ay of one of the
finite subgroups of SLp(Z). Then C*(G, Ay, @) is an AF algebra.
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Using Kishimoto's condition (continued)

We want to show that a nonzero hereditary subalgebra D C C*(G, A, «)
contains a nonzero projection equivalent to a projection in A.

We have c € Dy, a € A4, and a nonzero projection p € A, all satisfying

aca ~ acia and paciap =~ p.
Step 5: So
pacap = p.
Define
Sp = cl/zap.

Then siso ~ p and is in pC*(G, A, a)p. So we can form s = so(s3s0) /2
(functional calculus in pC*(G, A, a)p), getting

ss* = cl/zap((sgso)_lp)2pac1/2 € cC*(G,A,a)c C D.

Thus ss* is a projection in D equivalent to the nonzero projection p € A.
This is what we want. End of the sketch of the proof.

s's=p and
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Crossed products of rotation algebras by finite groups

Theorem (Joint with Echterhoff, Liick, and Walters)

Let # € R\ Q. Let a: G — Aut(Ap) be the action on Ay of one of the
finite subgroups of SLy(Z) (of order 2, 3, 4, or 6). Then C*(G, Ag, ) is
an AF algebra.

This solved a problem open for some years. The result is initially
unexpected, since Ay itself is not AF. It was suggested by K-theory
computations done for rational 6.

The proof uses the tracial Rokhlin property for the action to show that
C*(G, Ag, @) has tracial rank zero. One then applies classification theory
(specifically, Lin's classification theorem), but one must compute the
K-theory of C*(G, Ag, ) and show that it satisfies the Universal
Coefficient Theorem. This is done using known cases of the Baum-Connes
conjecture.
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Direct proof?

C*(G, Ag, a) is AF for finite subgroups G C SLy(Z). For G = Zy, much
more direct methods are known. For the other cases, our proof, using
several different pieces of heavy machinery (the Elliott classification
program and the Baum-Connes conjecture), is the only one known.

Problem

Prove that C*(G, Ag, «) is AF for G C SLy(Z) of order 3, 4, and 6, by
explicitly writing down a direct system of finite dimensional C*-algebras
and proving directly that its direct limit is C*(G, Ay, ).
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Some directions for further work: Summary

@ Infinite discrete groups. This is a vast area, with little known beyond
elementary amenable groups. (I will say no more here.)

@ Actions of finite dimensional quantum groups (recently started by
Kodaka, Osaka, Teruya).

@ What if there are few or no projections? Some things are known, but
there is still work to do.

@ The nonunital case.

@ The nonsimple case: There are many open questions, including
analogs of facts which in the simple case are easier than the results
we have presented.

For many open problems for actions of finite groups, see the survey article
(now somewhat out of date):

N. C. Phillips, Freeness of actions of finite groups on C*-algebras, pages
217-257 in: Operator structures and dynamical systems, M. de Jeu,

S. Silvestrov, C. Skau, and J. Tomiyama (eds.), Contemporary
Mathematics vol. 503, Amer. Math. Soc., Providence RI, 2009.
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An application: Higher dimensional noncommutative tori

Theorem J

Every simple higher dimensional noncommutative torus is an AT algebra.

A higher dimensional noncommutative torus is a version of the rotation
algebra using more unitaries as generators. An AT algebra is a direct limit
of finite direct sums of C*-algebras of the form C(S!, M,,).

Elliott and Evans proved that Ay is an AT algebra for 0 irrational. A
general simple higher dimensional noncommutative torus can be obtained
from some Ay by taking repeated crossed products by Z. If all the
intermediate crossed products are simple, the theorem follows from a
result of Kishimoto. Using classification theory and the tracial Rokhlin
property for actions generalizing the one on Ag generated by

urs &2y and Vi,

one can reduce the general case to the case proved by Kishimoto.
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Finite dimensional quantum groups

There are versions of the Rokhlin and tracial Rokhlin properties for actions
(coactions?) of finite dimensional quantum groups on (simple) C*-algebras
(Kodaka, Osaka, Teruya), and some theorems. Some of it even generalizes
to inclusions of C*-algebras of “index-finite type”. It is not clear the the
definitions used so far are the right ones. (From a conversation with
Osaka.) In particular, if G is a finite group, the product type action given
as the infinite tensor product of copies of conjugation by the regular
representation has the Rokhlin property. With current definitions,
analogous statement can fail for finite dimensional quantum groups.

There is a great shortage of examples of such actions which don't come
from groups (regardless of whether they have the Rokhlin property or the
tracial Rokhlin property).
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Few or no projections

What if there are few or no projections? There are several competing
suggested conditions generalizing the tracial Rokhlin property, and some
theorems, but there is no known analog of the statement that crossed
products by tracial Rokhlin actions preserve tracial rank zero. (There isn't
a known suitable generalization of tracial rank zero. Recent classification
work might suggest some ideas involving tensoring with UHF algebras.)

The higher dimensional Rokhlin properties (both with and without
“commuting towers” ) of Hirshberg-Winter-Zacharias do not need
projections, and there are examples of such actions on simple C*-algebras
with few projections. The “right” property (which gives results close to
what one gets with the Rokhlin property) is the one with commuting
towers, but there are no actions of nontrivial finite groups on the Jiang-Su
algebra with this property (joint with Hirshberg).
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The tracial Rokhlin property in the nonsimple case

The result on crossed products of AF algebras by Rokhlin actions did not
need simplicity. Lin has a definition of tracial rank zero for unital
nonsimple algebras, but some things go wrong: it no longer implies either
real rank zero or stable rank one. (There are theorems relating tracial rank
zero to tracial quasidiagonality of extensions, which suggest that,
nevertheless, this definition is the “right” one.)

Problem

Find a suitable definition of the tracial Rokhlin property for actions on
nonsimple unital C*-algebras, and possibly a different definition of tracial
rank zero, so that crossed products of C*-algebras with tracial rank zero
by tracially Rokhlin actions again have tracial rank zero.

One can extend the definition of the tracial Rokhlin property to the
nonsimple case by imitating Lin. It looks likely that then crossed products
of C*-algebras with tracial rank zero by tracially Rokhlin actions again have
tracial rank zero. Some partial results are known (using strong hypotheses
on the ideal structure of A), but this has not been proved in general.
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The nonunital case

What should be done in the nonunital case? There is a definition for the
Rokhlin property (and the higher dimensional Rokhlin properties), and
several theorems, but still work to be done. There is at least one
suggested answer for the tracial Rokhlin property, but as far as | know
almost no theorems.

Problem

Find a suitable definition of the tracial Rokhlin property for actions on
nonunital simple C*-algebras, so that crossed products of nonunital simple
C*-algebras with tracial rank zero by tracially Rokhlin actions again have
tracial rank zero.

N. C. Phillips (U of Oregon) Applications and Problems 20 July 2016 22 /33

Open problems with weaker conditions on the action

The rest of the open problems discussed here are not related to the
Rokhlin property or the tracial Rokhlin property. They assume weaker
conditions on the action. Some of them have no condition on the action.

An old problem on stable rank:

Problem

Let A be a simple C*-algebra with stable rank one (in the unital case: the
invertible elements are dense), and let a: G — Aut(A) be an action of a
finite group on A. Does it follow that C*(G, A, a) has stable rank one?

Without simplicity, there is a counterexample (Blackadar).
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Preservation of structure in the nonsimple case: pure
infiniteness

Definition (Kirchberg-Rgrdam)

A not necessarily simple C*-algebra A is purely infinite if there is no
nonzero homomorphism from A to C, and for every a, b € A such that

a € AbA, we have a = b (Cuntz subequivalence; it means that there exists
a sequence (Vp)nen such that lim,_,« vibv, = a).

Direct sums of purely infinite simple C*-algebras are purely infinite.
C([0,1], Oy) is purely infinite.

The following is a corollary of a result of Jeong and Osaka.

Proposition

Let A be a purely infinite simple C*-algebra, let G be a finite group, and
let «: G — Aut(A) be any action. Then C*(G, A, «) is purely infinite
(even if it isn't simple).
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Nonsimple pure infiniteness (continued)

Problem

Let A be a purely infinite C*-algebra, let G be a finite group, and let
a: G — Aut(A) be any action. Does it follow that C*(G, A, a) is purely
infinite?

Something is known for a slightly different condition.

Definition

Let A be a C*-algebra. We say that A is hereditarily infinite if for every
nonzero hereditary subalgebra B C A, there is an infinite positive element
a € B in the sense of Kirchberg-Rgrdam, that is, there is b € A, \ {0}
such that a® b 3 a. We say that A is residually hereditarily infinite if A/l
is hereditarily infinite for every ideal / in A.

Kirchberg and Rgrdam asked whether residual hereditary infiniteness
implies pure infiniteness. This is still open.

N. C. Phillips (U of Oregon) Applications and Problems 20 July 2016 27 / 33

Nonsimple pure infiniteness (continued)

Proposition (Jeong-Osaka)

Let A be a purely infinite simple C*-algebra, let G be a finite group, and
let «: G — Aut(A) be any action. Then C*(G, A, «) is purely infinite
(even if it isn't simple).

Is simplicity of A really needed?

Problem

Let A be a purely infinite C*-algebra, let G be a finite group, and let
a: G — Aut(A) be any action. Does it follow that C*(G, A, «) is purely
infinite?

A later paper of Kirchberg and Rgrdam gives several other versions of pure
infiniteness for nonsimple C*-algebras. It isn't known whether they are all
equivalent, and the problem above is open for all of them as well.
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Nonsimple pure infiniteness (continued)
A C*-algebra A is residually hereditarily infinite if for every ideal / C A and
nonzero hereditary subalgebra B C A/I, B has an infinite positive element.

Theorem (with Pasnicu)

Let A be a residually hereditarily infinite C*-algebra, let G be a finite
group, and let a: G — Aut(A) be an action. If « is strongly pointwise
outer (defined below), or if G is a finite abelian 2-group and « is arbitrary,
then C*(G, A, ) is residually hereditarily infinite.

This is for the wrong condition, and one should get the result for arbitrary
actions of arbitrary finite groups.

Definition

Let A be a C*-algebra and let G be a group. An action a: G — Aut(A) is
said to be strongly pointwise outer if, for every g € G \ {1} and any two
ag-invariant ideals | C J C A with [ # J, the automorphism of J//
induced by oy is outer, that is, not of the form a — Ad(u)(a) = vau* for
any unitary u in the multiplier algebra M(J/1).

v
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Preservation of structure in the nonsimple case: the ideal
property

Definition
A C*-algebra A has the ideal property if every ideal in A is generated, as
an ideal, by the projections it contains.

So all C*-algebras with real rank zero, and all simple unital C*-algebras,
have the ideal property. C([0,1], O4) does not have the ideal property.

Problem

Let A have the ideal property, let G be a finite group, and let
a: G — Aut(A) be any action. Does it follow that C*(G, A, ) has the
ideal property?

There is some progress. It is true (joint with Pasnicu) if « is strongly
pointwise outer. It can probably be proved easily using known results if A
is simple and unital. In general, we don't know.
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Kishimoto's result for the nonsimple case (infinite groups)

Recall that Kishimoto showed that if A is simple and separable, G is
discrete, and a: G — Aut(A) is pointwise outer, then C(G, A, ) is
simple. In the nonsimple case, every invariant ideal of A gives an ideal in
the crossed product, so one should ask for the following property.

Definition
Let A be a C*-algebra and let G be a group. An action a: G — Aut(A) is

said to have only crossed product ideals if every ideal in Cf(G, A, a) has
the form (G, J, «) for some G-invariant ideal J C A.
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By abuse of terminology, we say C(G, A, ) has only crossed product
ideals, with the particular way this algebra is thought of as being a crossed
product left implicit.

Problem

Is there a suitable version of pointwise outerness of an action

a: G — Aut(A) of a discrete group G which guarantees that Cf(G, A, «)
has only crossed product ideals?
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Preservation of structure in the nonsimple case: pure
infiniteness and the ideal property

Theorem (with Pasnicu)

Let A be a purely infinite C*-algebra which also has the ideal property, let
G be a finite group, and let a: G — Aut(A) be an action. If « is strongly
pointwise outer, or if G is a finite abelian 2-group and « is arbitrary, then
C*(G, A, ) is purely infinite and has the ideal property.

Again, it should be true for arbitrary actions of arbitrary finite groups.

The base case for arbitrary actions is G = Z,. We get finite abelian
2-groups by a bootstrap argument. We don't know how to deal with Zs3.

(The proof, and the difficulty with Z3, are the same as for the earlier result
on preservation of residual hereditary infiniteness.)
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Kishimoto without simplicity (continued)

Problem

Is there a suitable version of pointwise outerness of an action
a: G — Aut(A) which guarantees that C(G, A, ) has only crossed
product ideals?

For G abelian, there is a necessary and sufficient condition in terms of the
strong Connes spectrum, but this is hard to compute. There also is an
analog of the strong Connes spectrum for actions of finite groups. But no
related construction is known for actions of general locally compact
groups, not even for general discrete groups.

If instead we ask for something with hypotheses more like pointwise
outerness of « (as in Kishimoto's theorem), one might try strong
pointwise outerness. Recall that an action a: G — Aut(A) is strongly
pointwise outer if, for every g € G \ {1} and any two ag-invariant ideals
I € J C Awith I # J, the automorphism of J// induced by o, is outer.
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Kishimoto without simplicity (continued)

a: G — Aut(A) is strongly pointwise outer if, for every g € G \ {1} and
any two ag-invariant ideals / C J C A with | # J, the automorphism of
J/I induced by ay is outer.

In order to prove that C*(G, A, &) has only crossed product ideals, one
needs at least to know that for every subgroup H C G and every
H-invariant subquotient J// of A, the induced action of H on J/I is
pointwise outer. (There is a finite dimensional counterexample if one
doesn't consider subgroups.)

If G is finite, then strong pointwise outerness is sufficient. If G is exact
and discrete, a condition we call “spectral freeness” seems appropriate and
works. If G is finite, they are equivalent. Exactness of the group (or at
least of the action) is necessary in any case.

Question
If G is exact and discrete, and a.: G — Aut(A) is strongly pointwise outer,
does it follow that C*(G, A, ) has only crossed product ideals?
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