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A rough outline of all six lectures

The beginning: The C*-algebra of a group.

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.

More examples of actions.

Crossed products by actions of finite groups: Some examples.

The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Crossed products of AF algebras by actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.

The tracial Rokhlin property for actions of finite groups.

Examples of actions with the tracial Rokhlin property.

Crossed products by actions with the tracial Rokhlin property.

Applications of the tracial Rokhlin property.
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The Rokhlin property

Recall the Rokhlin property (with exact permutation of the projections):
Let A be a unital C*-algebra, and let α : G → Aut(A) be an action of a
finite group G on A.

Then α has the Rokhlin property if for every finite
set F ⊂ A and every ε > 0, there are mutually orthogonal projections
eg ∈ A for g ∈ G such that:

1 αg (eh) = egh for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Theorem

Let A be a unital AF algebra. Let G be a finite group, and let
α : G → Aut(A) have the Rokhlin property. Then C ∗(G ,A, α) is AF.
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Crossed products of AF algebras by Rokhlin actions
Theorem
Let A be a unital AF algebra. Let G be a finite group, and let
α : G → Aut(A) have the Rokhlin property. Then C ∗(G ,A, α) is AF.

The idea of the proof: We need only consider a finite set S ⊂ C ∗(G ,A, α)
of the form S = F ∪ {ug : g ∈ G}, with F ⊂ A finite and ug ∈ C ∗(G ,A, α)
the standard unitary corresponding to g ∈ G . We chose a family (eg )g∈G
in A of Rokhlin projections for α, F , and δ > 0 (depending on ε). That is,

1 αg (eh) = egh for all g , h ∈ G .
2 ‖ega− aeg‖ < δ for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1. (In particular, the projections eg are orthogonal.)

We took D0 =
⊕

g∈G egAeg ⊂ A, which is a G -invariant unital subalgebra
of A containing F to within ε. Then D = C ∗(G ,D0, α) ⊂ C ∗(G ,A, α) is a
unital subalgebra which contains F to within ε and exactly contains ug for
g ∈ G . Thus D contains S to within ε. Also, D ∼= Mn(e1Ae1), which is
AF. So finite sets in C ∗(G ,A, α) can be approximated by AF subalgebras,
hence by finite dimensional subalgebras. Thus C ∗(G ,A, α) is AF.
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A distillation of the proof

Proposition
Let A be a unital C*-algebra.

Let G be a finite group; set n = card(G ).
Let α : G → Aut(A) have the Rokhlin property. Let S ⊂ C ∗(G ,A, α) be a
finite set and let ε > 0. Then there exist a projection p ∈ A and a unital
subalgebra D ⊂ C ∗(G ,A, α) such that:

1 D ∼= Mn(pAp).

2 dist(b,D) < ε for all b ∈ S .

Proposition
Let B be a unital C*-algebra. Suppose that there is a unital AF algebra A
such that, for every finite set S ⊂ B and every ε > 0, there exist a
projection p ∈ A, n ∈ N, and a unital subalgebra D ⊂ B such that:

1 D ∼= Mn(pAp).

2 dist(b,D) < ε for all b ∈ S .

Then B is AF.
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Other structural consequences of the Rokhlin property

Informally, we have:

1 Let A be a unital C*-algebra. Let G be a finite group, and let
α : G → Aut(A) have the Rokhlin property. Then C ∗(G ,A, α) can be
locally approximated by matrix algebras over corners of A.

2 Let B be a unital C*-algebra which can be locally approximated by
matrix algebras over corners of AF algebras. Then B is AF.

The recognition that the original proof could be interpreted this way is due
to Hiroyuki Osaka.

There are other properties besides “AF” for which (2) works. We list some
results on the next slide.
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to Hiroyuki Osaka.

There are other properties besides “AF” for which (2) works. We list some
results on the next slide.
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Other structural consequences (continued)
Crossed products by actions of finite groups with the Rokhlin property
preserve various other classes of C*-algebras. In many cases, the proofs
follow the idea of the previous slide. Some examples of such classes:

1 Simple unital C*-algebras. (Exercise: Prove this.)
2 Various classes of unital but not necessarily simple countable direct

limit C*-algebras using semiprojective building blocks, such as
AI algebras and AT algebras. (With Osaka.)

3 Simple unital AH algebras with slow dimension growth and real rank
zero. (With Osaka.) (Open problem: Is it true without simplicity?)

4 D-absorbing separable unital C*-algebras for a strongly self-absorbing
C*-algebra D. (Hirshberg-Winter.)

5 Separable nuclear unital C*-algebras whose quotients all satisfy the
Universal Coefficient Theorem. (With Osaka.)

6 Separable unital approximately divisible C*-algebras.
(Hirshberg-Winter.)

7 Unital C*-algebras with the ideal property and unital C*-algebras with
the projection property. (With Pasnicu.)
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Freeness and the Rokhlin property
A free action of a finite group on the Cantor set X has the Rokhlin
property. (That is, the corresponding action on C (X ) has the Rokhlin
property.) This was an exercise in Lecture 3.

A free action on a connected space X doesn’t, since there are no nontrivial
projections in C (X ). (We won’t discuss this further, but such an action
does have a “higher dimensional Rokhlin property” as defined by
Hirshberg, Winter, and Zacharias, or the “X -Rokhlin property”, as in work
with Hirshberg.)

We consider mostly simple C*-algebras with many projections. Recall that
irrational rotation algebras, UHF algebras, and Cuntz algebras all have real
rank zero. (That is, every selfadjoint element is a limit of selfadjoint
elements with finite spectrum: a limit of linear combinations of orthogonal
projections.)

(If there are not enough projections, finite group actions are less well
understood, although there has been significant recent progress. In the
nonsimple case, rather little is known.)
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Tracial states and the Rokhlin property
Motivation: Recall that a tracial state on a C*-algebra A is a state τ on A
such that τ(ab) = τ(ba) for all a, b ∈ A.

Any tracial state τ induces a
homomorphism τ∗ : K0(A)→ R, given by extending τ to Mn(A) for all n,
and setting τ∗([p]) = τ(p) for any projection p ∈ Mn(A). See the K-theory
lectures, but the basic point is that if s∗s = p and ss∗ = q, then the trace
condition implies τ(p) = τ(q).

Suppose A has a unique tracial state. (This is true for both UHF algebras
and irrational rotation algebras.) Let G be finite, and let α : G → Aut(A)
have the Rokhlin property. In the version with exact permutation of the
projections, take ε = 1 and F = ∅. (In fact, ε and F can be arbitrary.)
We get projections eg such that, in particular:

αg (e1) = eg for all g ∈ G .∑
g∈G eg = 1.

Since τ is unique, we have τ ◦ αg = τ for all g ∈ G . So τ(eg ) = τ(e1). It
follows that

τ(e1) =
1

card(G )
.
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The Rokhlin property and Aθ

Let θ ∈ R \Q, and recall that Aθ is generated by unitaries u and v
satisfying vu = e2πiθuv .

This algebra is a noncommutative version of
C (S1 × S1). It is simple (this requires θ ∈ R \Q), and has a unique tracial
state τθ (this also requires θ ∈ R \Q), which should be thought of as the
analog of Lebesgue measure on S1 × S1. The range of τθ on projections in
Aθ is Z + θZ ∩ [0, 1], and the range of (τθ)∗ : K0(Aθ)→ R is Z + θZ. (For
θ ∈ Q, there are many tracial states, but they all satisfy these conditions.)
Also, Aθ has many projections; in fact, Aθ has real rank zero (like C (X )
when X is the Cantor set).

Further recall the action α : Zn → Aut(Aθ) generated by

u 7→ e2πi/nu and v 7→ v .

This is a noncommutative version of the free action of Zn on S1 × S1

given by rotation by e2πi/n in the first coordinate. Since Aθ has real rank
zero, one would hope that α has the Rokhlin property.
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The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property,

then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property.

In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property!

The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property.

(The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z
[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property.

For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 ,

but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property.

(Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



The Rokhlin property and Aθ (continued)
From two slides ago: If A has a unique tracial state τ , and
α : G → Aut(A) has the Rokhlin property, then for any family (eg )g∈G in
A of Rokhlin projections, τ(e1) = 1

card(G) .

From the previous slide: for θ ∈ R \Q, the irrational rotation algebra Aθ
has a unique tracial state τθ, and τθ(p) ∈ Z+ θZ for all projections p ∈ Aθ.

On Aθ, we wanted u 7→ e2πi/nu and v 7→ v to generate an action of Zn

with the Rokhlin property. In fact, no action of any nontrivial finite group
on Aθ has the Rokhlin property! The reason is that there is no projection
e ∈ Aθ with τ(e) = 1

n , for any n ≥ 2.

For similar reasons, no action of Z2 on D =
⊗∞

n=1M3 has the Rokhlin
property. (The tracial state τ defines an isomorphism τ∗ : K0(D)→ Z

[
1
3

]
.)

There are more subtle obstructions to the Rokhlin property. For example,
M2 ⊗

⊗∞
n=1M3 does have projections with trace 1

2 , but there are still no
actions of Z2 with the Rokhlin property. (Often, one at least needs a copy
of M2n for every n. Exercise: Prove this for an action on a UHF algebra.)

N. C. Phillips (U of Oregon) Crossed Products by Tracial Rokhlin Actions 19 July 2016 12 / 38



Consider the Cuntz algebras Od , for d ∈ {2, 3, . . . ,∞}.

There is no tracial
state. But: The group K0(Od) is generated by [1]. Therefore every
automorphism of Od is the identity on K0(Od).

It follows that if card(G ) = n and α : G → Aut(Od) has the Rokhlin
property, then the class of a Rokhlin projection e1 satisfies n[e1] = [1].

K0(O∞) = Z[1], so there is no action of any nontrivial finite group on O∞
with the Rokhlin property.

For card(G ) = d , a Rokhlin action of G on Od was described earlier
(without proof). However, for example, there is no Rokhlin action of Z2

on O3, because [1] ∈ K0(O3) generates K0(O3) ∼= Z2, and so can’t be
written in the form 2[e].

There are stronger cohomological obstructions to the Rokhlin property
(Izumi). In fact, the Rokhlin property is very rare.

Side comment: On Aθ, u 7→ e2πi/nu and v 7→ v gives an action of Zn with
a kind of higher dimensional Rokhlin property (the version with
commuting towers). However, no action of any nontrivial finite group on
O∞ can even have this property (with Hirshberg).
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Pointwise outer actions

For simplicity of the crossed product, a much weaker condition suffices.

Definition

An action α : G → Aut(A) is pointwise outer if, for every g ∈ G \ {1}, the
automorphism αg is outer, that is, not of the form a 7→ Ad(u)(a) = uau∗

for some unitary u in the multiplier algebra M(A) of A.

Theorem (Kishimoto)

Let α : G → Aut(A) be an action of a discrete group G on a simple
separable C*-algebra A. Suppose that α is pointwise outer. Then
C ∗r (G ,A, α) is simple.
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Pointwise outerness is not enough

The product type action of Z2 generated by

∞⊗
n=1

Ad(diag(−1, 1, 1, . . . , 1)) on A =
∞⊗
n=1

M2n+1.

is pointwise outer.

However, its crossed product has “too many” tracial
states. (A has a unique tracial state, but the crossed product has two
extreme tracial states.)

Worse, Elliott has constructed an example of a pointwise outer action α of
Z2 on a simple unital AF algebra A such that C ∗(Z2,A, α) does not have
real rank zero.

Pointwise outerness thus seems not to be enough for proving classifiability
of crossed products. (However, we don’t have an example.)
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Recall the Rokhlin property

Definition

Let A be a unital C*-algebra, and let α : G → Aut(A) be an action of a
finite group G on A. We say that α has the Rokhlin property if for every
finite set F ⊂ A and every ε > 0, there are mutually orthogonal projections
eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Crossed products by actions with the Rokhlin property are very well
behaved, but the Rokhlin property is rare. Pointwise outerness is common,
but not good enough. Therefore we look for an intermediate condition. It
will be the tracial Rokhlin property. There are many actions which have
this property.
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The tracial Rokhlin property

Definition
Let A be an infinite dimensional simple separable unital C*-algebra, and let
α : G → Aut(A) be an action of a finite group G on A. We say that α has
the tracial Rokhlin property if for every finite set F ⊂ A, every ε > 0, and
every positive element x ∈ A with ‖x‖ = 1,

there are mutually orthogonal
projections eg ∈ A for g ∈ G such that, with e =

∑
g∈G eg :

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 1− e is Murray-von Neumann equivalent to a projection in the
hereditary subalgebra xAx of A generated by x .

4 ‖exe‖ > 1− ε.

The Rokhlin property corresponds to e = 1.

If A is finite, the last condition can be omitted. (We omit the proof.)
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Subsets and exactly permuting the projections
The conditions in the definition: with e =

∑
g∈G eg ,

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 1− e is Murray-von Neumann equivalent to a projection in the
hereditary subalgebra generated by x .

4 ‖exe‖ > 1− ε.

As for the Rokhlin property, we need only consider finite subsets of a
generating set for A.

As for the Rokhlin property, we can use equivariant semiprojectivity to
replace

“‖αg (eh)− egh‖ < ε for all g , h ∈ G”

(in (1)) with
“αg (eh) = egh for all g , h ∈ G”.

We do this in these lectures.
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The tracial Rokhlin property (continued)

The conditions in the definition for the finite case:
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2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 With e =
∑

g∈G eg , the projection 1− e is Murray-von Neumann
equivalent to a projection in the hereditary subalgebra of A generated
by x .

The first two conditions are the same as for the Rokhlin property.

If the algebra “has enough tracial states” (for example, for irrational
rotation algebras and simple AF algebras), the element x can be omitted,
and the third condition replaced by:

With e =
∑

g∈G eg , the projection 1− e satisfies τ(1− e) < ε for all
tracial states τ on A.
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Comparison: tracial rank zero

The tracial Rokhlin property was motivated by the definition of tracial
rank zero (originally called “tracially AF”):

Definition

Let A be a simple separable unital C*-algebra. Then A has tracial rank
zero if for every finite subset F ⊂ A, every ε > 0, and every nonzero
positive element x ∈ A, there exists a nonzero projection p ∈ A and a
unital finite dimensional subalgebra D ⊂ pAp such that:

1 ‖[a, p]‖ < ε for all a ∈ F .

2 dist(pap, D) < ε for all a ∈ F .

3 1− p is Murray-von Neumann equivalent to a projection in xAx .

In both definitions, the strong version (the Rokhlin property, or local
approximation by finite dimensional C*-algebras) is supposed to hold only
after cutting down by a “large” projection which approximately commutes
with all elements of the given finite set.
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An example for the tracial Rokhlin property
Here is an example for which it is fairly easy to see that the tracial Rokhlin
property holds but the Rokhlin property doesn’t hold.

Take vk ∈ M3k to be the unitary

vk = diag
(
1, 1, . . . , 1, −1, −1, . . . , −1

)
,

in which the diagonal entry 1 occurs 1
2(3k + 1) times and the diagonal

entry −1 occurs 1
2(3k − 1) times. Let α be the order 2 automorphism

α =
∞⊗
k=1

Ad(vk) of A =
∞⊗
k=1

M3k .

It generates an action of Z2 (also called α). Note that A is just the
3∞ UHF algebra.

We consider the tracial Rokhlin property below, but we can see right away
that α does not have the Rokhlin property: by K-theory, there is no action
at all of Z2 on this algebra which has the Rokhlin property.
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An example for the tracial Rokhlin property (continued)

vk = diag
(
1, 1, . . . , 1, −1, −1, . . . , −1

)
,

with −1 occurring r(k) = 1
2(3k − 1) times and 1 occurring

r(k) + 1 = 1
2(3k + 1) times, and α is the Z2 action on the 3∞ UHF

algebra generated by
⊗∞

n=1 Ad(vk).

vk is unitarily equivalent to the block unitary (in which subscripts indicate
matrix sizes)

wk =

 0 1r(k) 0
1r(k) 0 0

0 0 11

 ∈ M3k .

(This is the direct sum of many copies of the fact, used earlier, that the
matrices (

1 0
0 −1

)
and

(
0 1
1 0

)
are unitarily equivalent.) So α is conjugate to β =

⊗∞
n=1 Ad(wk).
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wk =

 0 1r(k) 0
1r(k) 0 0

0 0 11

 ∈ M3k and β =
∞⊗
n=1

Ad(wk).

For F ⊂ A finite, we have to find two projections e0 and e1 in A such that:

1 The action approximately exchanges e0 and e1.

2 e0 and e1 approximately commute with all elements of F .

3 1− e0 − e1 is “small”, here, the (unique) tracial state τ on A gives
τ(1− e0 − e1) < ε.

We can assume that there is n such that F ⊂ An =
⊗n

k=1M3k . We can
increase n, so also assume 3−n−1 < ε. Set

p0 =

1r(n+1) 0 0
0 0 0
0 0 01

 ∈ M3n+1 and p1 =

0 0 0
0 1r(n+1) 0
0 0 01

 ∈ M3n+1 .

Then wn+1p0w
∗
n+1 = p1, wn+1p1w

∗
n+1 = p0, and the normalized trace of

1− p0 − p1 is
1

2r(n + 1) + 1
= 3−(n+1) < ε.
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An example for the tracial Rokhlin property (continued)
We had, in M3n+1 ,

wn+1p0w
∗
n+1 = p1 and wn+1p1w

∗
n+1 = p0,

and the normalized trace of 1− p0 − p1 is less than ε.

Now we take

e0 = 1An ⊗ p0, e1 = 1An ⊗ p1 ∈ An ⊗M3n+1 = An+1.

Since all elements of F have the form a⊗ 1M3n+1 with a ∈ An, these
projections exactly commute with the elements of F .

Also, τ(1− e0 − e1) < ε because τ(1− e0 − e1) is the normalized trace of
1− p0 − p1.

Finally, on An ⊗M3n+1 , the automorphism β has the form
Ad
(
w (n) ⊗ wn+1

)
(with w (n) = w1 ⊗ w2 ⊗ · · · ⊗ wn), so

β(e0) = e1 and β(e1) = e0.

This proves the tracial Rokhlin property.
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An example for the tracial Rokhlin property (continued)

vk = diag
(
1, 1, . . . , 1, −1, −1, . . . , −1

)
,

and α is the Z2-action on the 3∞ UHF algebra generated by
⊗∞

n=1 Ad(vk).

The matrix size is very large, and the numbers of 1’s and −1’s are very
close. This looks special.

Recall from Lecture 2 the action of Z2 on
⊗∞

n=1M3 generated by
γ =

⊗∞
n=1 Ad(v), with v = diag(1, 1, −1). Rewrite γ as

Ad(v)⊗
[
Ad(v)⊗Ad(v)

]
⊗
[
Ad(v)⊗Ad(v)⊗Ad(v)

]
⊗· · · =

∞⊗
n=1

Ad(v⊗n).

We have v1 = v . On the diagonal of v⊗2 there are 2 · 2 + 1 · 1 = 5 entries
equal to 1 and 2 · 1 + 1 · 2 = 4 entries equal to −1. So v⊗2 is unitarily
equivalent to v2. Inductively, v⊗n is unitarily equivalent to vn. (Exercise:
Prove it.) So the action γ has the tracial Rokhlin property.
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The tracial Rokhlin property is common

The action of Z2 generated by

γ =
∞⊗
n=1

Ad

1 0 0
0 1 0
0 0 −1


has the tracial Rokhlin property.

In fact, it turns out to be hard to write down a product type action of Z2

using conjugation by matrices of the form

diag
(
1, 1, . . . , 1, −1, −1, . . . , −1

)
(1)

which is outer but doesn’t have the tracial Rokhlin property. In particular,
the matrix sizes must go to infinity. (Example below.)

Exercise: Any product type action of Z2 is conjugate to an infinite tensor
product of conjugations by matrices of the form in (1).
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Some other actions with the tracial Rokhlin property
1 The actions on irrational rotation algebras coming from finite

subgroups of SL2(Z) have the tracial Rokhlin property. (Formulas are
recalled when we see this action again in the next lecture.)

2 The action of Zn on an irrational rotation algebra generated by

u 7→ e2πi/nu and v 7→ v

has the tracial Rokhlin property.
3 The tensor flip on any UHF algebra has the tracial Rokhlin property.

(Exercise: Prove this.)
4 An action of a finite group on a unital Kirchberg algebra has the

tracial Rokhlin property if and only if it is pointwise outer (essentially
due to Nakamura).

None of the actions in (1), (2), or (3) has the Rokhlin property. In (4),
most don’t have the Rokhlin property. Some proofs are complicated.

Most actions above don’t even have the right sort of higher dimensional
Rokhlin property (the one with commuting towers). (The action
u 7→ e2πi/nu and v 7→ v does have this property.)
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Some other actions with the tracial Rokhlin property
Actions with the tracial Rokhlin property, but mostly without the Rokhlin
property or even its nearly as good generalization:

Actions on Aθ from finite subgroups of SL2(Z).

The action of Zn on an irrational rotation algebra generated by
u 7→ e2πi/nu and v 7→ v . (It does have a higher dimensional Rokhlin
property with commuting towers.)
The tensor flip on any UHF algebra.
Pointwise outer actions of a finite group on a unital Kirchberg algebra.

It is true (exercise: prove it) that the tracial Rokhlin property implies
pointwise outerness in complete generality, but the converse is false.
Counterexample without proof: The product type action of Z2 generated
by ∞⊗

n=1

Ad(diag(−1, 1, 1, . . . , 1)) on A =
∞⊗
n=1

M2n+1.

Exercise (nontrivial): Give a proof. Hint: If it had the tracial Rokhlin
property, show the crossed product would have a unique tracial state.
Compute the crossed product and show it actually has more than one
tracial state.)
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Crossed products by actions with the tracial Rokhlin
property

The tracial Rokhlin property is good for understanding the structure of
crossed products.

Theorem

Let A be a simple separable unital C*-algebra with tracial rank zero. Let
G be a finite group, and let α : G → Aut(A) have the tracial Rokhlin
property. Then C ∗(G ,A, α) has tracial rank zero.

This is important because tracial rank zero is a hypothesis in a major
classification theorem (due to Lin).

There are examples (such as the one of Elliott mentioned above) which
show that this theorem fails if one weakens the condition on the action to
pointwise outerness.
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Crossed products by actions with the tracial Rokhlin
property (continued)

Theorem

Let A be a simple separable unital C*-algebra with tracial rank zero. Let
G be a finite group, and let α : G → Aut(A) have the tracial Rokhlin
property. Then C ∗(G ,A, α) has tracial rank zero.

The idea of the proof is essentially the same as for crossed products of
AF algebras by actions with the Rokhlin property.

The definitions of both
tracial rank zero and the tracial Rokhlin property allow a “small” (in
trace) error projection. One must show that the sum of two “small” error
projections is again “small”.

There is one additional difficulty. The hypotheses give an error which is
“small” relative to A. One must prove that it is also “small” relative to
C ∗(G ,A, α). This uses a theorem of Jeong and Osaka. We give the ideas
of a proof in the next lecture.
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tracial rank zero and the tracial Rokhlin property allow a “small” (in
trace) error projection. One must show that the sum of two “small” error
projections is again “small”.

There is one additional difficulty. The hypotheses give an error which is
“small” relative to A. One must prove that it is also “small” relative to
C ∗(G ,A, α). This uses a theorem of Jeong and Osaka. We give the ideas
of a proof in the next lecture.
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Appendix: The Rokhlin property and factors of type II1

Let A be a unital C*-algebra, An action α : G → Aut(A) of a finite group
G on a unital C*-algebra A has the Rokhlin property if for every finite set
F ⊂ A and every ε > 0, there are projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .
2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1. (In particular, the eg are orthogonal.)

For II1 factors we need:

Definition

Let A be a C*-algebra with tracial state τ . The trace (semi-)norm on A
associated to τ is ‖a‖2,τ = τ(a∗a)1/2 for a ∈ A.

On a II1 factor with its unique trace, this gives the *-strong operator
topology on bounded sets.

We will get the Rokhlin property for actions of finite groups on factors of
type II1 by replacing the usual norm with ‖ · ‖2,τ .
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The Rokhlin property and factors of type II1

G is finite. α : G → Aut(A) has the Rokhlin property if for every finite set
F ⊂ A and every ε > 0, there are projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .
2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1. (In particular, the eg are orthogonal.)

‖a‖2,τ = τ(a∗a)1/2.

Definition
Let G be a finite group, and let α : G → Aut(M) be an action of G on a
II1 factor M with tracial state τ . Then α has the Rokhlin property if for
every finite set F ⊂ M and every ε > 0, there are mutually orthogonal
projections eg ∈ M for g ∈ G such that:

1 ‖αg (eh)− egh‖2,τ < ε for all g , h ∈ G .

2 ‖ega− aeg‖2,τ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.
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The tracial Rokhlin property and factors of type II1

G is finite, and A is simple, unital, and has “enough” tracial states.
α : G → Aut(A) has the tracial Rokhlin property if for every finite set
F ⊂ A and every ε > 0, there are mutually orthogonal projections eg ∈ A
for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 τ
(

1−
∑

g∈G eg
)
< ε.

‖a‖2,τ = τ(a∗a)1/2.

For the Rokhlin property on II1 factors, we replaced ‖ · ‖ with ‖ · ‖2,τ . The
analog of the tracial Rokhlin property is then the same as the Rokhlin
property. Reason: e = 1−

∑
g∈G eg has the property that ‖e‖2,τ is small.

So we can replace e1 with e1 + e and leave eg alone for other values of g .
Now

∑
g∈G eg = 1, and ‖αg (eh)− egh‖2,τ and ‖ega− aeg‖ < ε are still

small. So α has the Rokhlin property.
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Outer actions on factors of type II1

‖a‖2,τ = τ(a∗a)1/2.

G is finite, and M is a II1 factor with tracial state τ . α : G → Aut(M) has
the Rokhlin property if for every finite set F ⊂ M and every ε > 0, there
are projections eg ∈ M for g ∈ G such that:

1 ‖αg (eh)− egh‖2,τ < ε for all g , h ∈ G .
2 ‖ega− aeg‖2,τ < ε for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1.

Theorem (Jones)

Let M be the hyperfinite factor of type II1, and let α : G → Aut(M) be an
action of a finite group G on M. Then α has the Rokhlin property if and
only if α is pointwise outer (for every g ∈ G \ {1}, αg is not inner).

This is not true for some other II1 factors. (The von Neumann algebras of
free groups have no Rokhlin actions.)

We have also seen that the C* analog is not true even for simple unital
AF algebras.
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Going between C*-algebras and von Neumann algebras
G is finite. C* tracial Rokhlin property for α : G → Aut(A):

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .
2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .
3 τ

(
1−

∑
g∈G eg

)
< ε.

Rokhlin property for α : G → Aut(M) for a II1 factor M:
1 ‖αg (eh)− egh‖2,τ < ε for all g , h ∈ G .
2 ‖ega− aeg‖2,τ < ε for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1.

Theorem (with Echterhoff, Lück, and Walters)

Let A be a simple unital C*-algebra with tracial rank zero and a unique
tracial state τ , and let α : G → Aut(A) be an action of a finite group G
on A. Let πτ be the GNS representation of A obtained from τ . (Thus,
πτ (A)′′ is the hyperfinite II1 factor.) Let α : G → Aut

(
πτ (A)′′

)
be the

induced action. Then α has the C* tracial Rokhlin property if and only if
α has the von Neumann algebraic Rokhlin property.
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Going between C*-algebras and von Neumann algebras

Let A be a simple unital C*-algebra with tracial rank zero and a unique
tracial state τ . Let G be a finite group. Then α : G → Aut(A) has the
C* tracial Rokhlin property if and only if α : G → Aut

(
πτ (A)′′

)
has the

von Neumann algebraic Rokhlin property.

Take G = Zp with p prime. Then there are four possibilities:

1 α has the Rokhlin property.

2 α has the tracial Rokhlin property but not the Rokhlin property.

3 α is pointwise outer but does not have the tracial Rokhlin property.

4 α is inner.

In the first two cases, α is outer and has the Rokhlin property. In the last
two cases, α is inner. All four cases can occur.
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