Math 650, Winter 2003, Homework #2 Problems on Fourier transforms and distributions

Directions: solve at least 8 out of 16 problems.

- 1. Let $1 \leq p \leq 2$ and 1/p + 1/q = 1. Show that if $(a_k)_{k \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$ then there exists $f \in L^q(\mathbb{T})$ such that $a_k = \hat{f}(k)$. What is the estimate between $||f||_q$ and $||(a_k)||_p$. Hint: apply Riesz-Thorin Theorem.
- 2. Show that $F(z) = \sum_{n=1}^{\infty} 2^{-n} [(z+n)^2 + n^{-1}]^{-1}$ is analytic on \mathbb{R} and $F|_{\mathbb{R}} \in L^1 \cap L^{\infty}(\mathbb{R})$, but F is not holomorphic in a strip $\{z \in \mathbb{C} : |\text{Im } z| < a\}$ for any a > 0.
- 3. Show that if $f \in L^1$, $g \in L^p$, $1 \le p \le 2$, then $h = f * g \in L^p$ and $\hat{h}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$. Hint: Minkowski's inequality and $L^p \subset L^1 + L^2$, $1 \le p \le 2$.
- 4. Suppose $\phi \in L^1(\mathbb{R}^n)$ is such that $\int \phi(x)dx = 1$, $|\phi(x)| \leq C(1+|x|)^{-n-\delta}$, $|\hat{\phi}(\xi)| \leq C(1+|\xi|)^{-n-\delta}$ for some $\delta > 0$. Show that for any $f \in L^p(\mathbb{T}^n)$, $\mathbb{T}^n = (-\pi, \pi]^n$, $1 \leq p < \infty$,

$$\frac{1}{(2\pi)^n} \sum_{k \in \mathbb{Z}^n} \hat{\phi}(k/\lambda) \hat{f}(k) e^{i\langle x, k \rangle} \to f(x) \quad \text{as } \lambda \to \infty,$$

where the convergence is in $L^p(\mathbb{T}^n)$. Hint: the Poisson summation formula.

- 5. Under the assumptions of Problem 4, show that if $f: \mathbb{R}^n \to \mathbb{C}$ is continuous and $2\pi\mathbb{Z}^n$ -periodic, then the convergence in Problem 4 is uniform.
- 6. Suppose A is $n \times n$ non-singular real matrix and $b \in \mathbb{R}^n$. Show that for $f \in L^1(\mathbb{R}^n)$

$$f(\widehat{Ax} - b)(\xi) = |\det A|^{-1} \hat{f}((A^{-1})^* \xi) e^{-i\langle \xi, A^{-1}b \rangle}.$$

7. Suppose μ, ν are finite Borel measure on \mathbb{R}^n show that $\mu * \nu$ given by

$$\mu * \nu(A) = \int_{\mathbb{R}^n} \mu(A - x) d\nu(x), \quad \text{for Borel } A \subset \mathbb{R}^n,$$

is also a finite Borel measure. Show also that

$$\widehat{(\mu * \nu)}(\xi) = \widehat{\mu}(\xi)\widehat{\nu}(\xi)$$
 for all $\xi \in \mathbb{R}^n$.

- 8. Show that for any p>2 there exists $f\in L^p$ such that \hat{f} is **not** a regular tempered distribution, i.e., it is not given as an integration against a locally integrable function. Hint: consider $f(x)=(1+i\delta)^{-1/2}e^{-x^2/(1+i\delta)}$ as $\delta\to\infty$ and use the Closed Graph Theorem.
- 9. Show that the Fourier transform does not map $L^1(\mathbb{R})$ onto

$$C_0(\mathbb{R}) = \{ f \in C(\mathbb{R}) : f(x) \to 0 \text{ as } |x| \to \infty \}.$$

10. Show that the Hermite functions $h_k(x) = e^{x^2/2} \frac{d^k}{dx^k} e^{-x^2}$, k = 0, 1, ..., are the eigenvectors of the Fourier transform. Hint: show that $\hat{h}_0 = \sqrt{2\pi}h_0$, $\{h_k\}$ satisfy

$$h'_k - xh_k = h_{k+1}$$
 $k = 0, 1, \dots,$

and $\{(-i)^k h_k\}$ obey the same recursion formula.

11. Show that $\{h_k/||h_k||_2\}_{k=0,1,...}$ forms an orthonormal basis of $L^2(\mathbb{R})$. Hints consider the differential operator $f \mapsto f'' - x^2 f$ and show that

$$h'_k + xh_k = -2kh_{k-1}$$
 $k = 0, 1, \dots$

12. For $f \in \mathcal{S}(\mathbb{R})$ define define its Hilbert transform Hf(x) by

$$Hf(x) = \frac{1}{\pi} \operatorname{p.v.} \int_{-\infty}^{\infty} \frac{f(x-u)}{u} du = \frac{1}{\pi} \lim_{\epsilon \to 0^+} \int_{|u| > \epsilon} \frac{f(x-u)}{u} du.$$

Show that $\widehat{Hf}(\xi) = -i\frac{\xi}{|\xi|}\widehat{f}(\xi)$.

- 13. Use Problem 12 to show that H extends to a unitary operator on $L^2(\mathbb{R})$.
- 14. Show that

$$\mathcal{D}(\mathbb{R}^n) = \{ \varphi \in C^{\infty}(\mathbb{R}^n) : \operatorname{supp} \varphi \text{ is compact} \}$$

is a dense subspace of $\mathcal{S}(\mathbb{R}^n)$.

- 15. Show that the Schwartz class $\mathcal{S}(\mathbb{R}^n)$ as a metrizable vector space is separable. Hint: show that linear combinations of $e^{-|x-a|^2/q}$, $a \in \mathbb{Q}^n$, $0 < q \in \mathbb{Q}$, with rational coefficients are dense.
- 16. Suppose that $\{f_i\}_{i\in\mathbb{N}}$ is a sequence of distributions in $\mathcal{S}'(\mathbb{R}^n)$ and $d\geq 0$ is an integer. Assume that for every multi-index γ with $|\gamma|=d+1$ the sequence of partial derivatives $\{\partial^{\gamma} f_i\}$ converges in \mathcal{S}' as $i\to\infty$. Show that there exists a sequence of polynomials $\{P_i\}_{i\in\mathbb{N}}$ with deg $P_i\leq d$ such that $\{f_i+P_i\}$ converges to some distribution $f\in\mathcal{S}'$ as $i\to\infty$.

REFERENCES

H. Dym, H. McKean, "Fourier series and integrals".

W. Rudin, "Functional analysis".

E. Stein, G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces".