Math 650, Winter 2003, Homework #1 Problems on Fourier series and frames

Directions: solve at least 10 out of 17 problems.

Problem 1. (Vitali) Show that an orthonormal system $\{e_i\}_{i\in I}$ in $L^2[a,b]$ is complete \iff

$$\sum_{i \in I} \left| \int_a^x e_i(t) dt \right|^2 = x - a \quad \text{for a.e. } x \in [a, b].$$

Problem 2. (Dalzell) Show that an orthonormal system $\{e_i\}_{i\in I}$ in $L^2[a,b]$ is complete \iff

$$\sum_{i \in I} \int_a^b \left| \int_a^x e_i(t) dt \right|^2 = \frac{(b-a)^2}{2}.$$

Problem 3. Show that a frame that ceases to be a frame when any of its elements is removed is a Riesz basis.

Problem 4. Let $\{e_k\}_{k\in\mathbb{Z}}$ be the standard orthonormal basis of $\ell^2(\mathbb{Z})$. Determine the values of $c\in\mathbb{C}$ for which $\{f_k\}_{k\in\mathbb{Z}}$, $f_k=e_k+ce_{k+1}$, is a frame for $\ell^2(\mathbb{Z})$.

Problem 5. Prove that for any $(b_n)_{n\in\mathbb{Z}}$ such that $b_n\to 0$ as $|n|\to\infty$ there exists $(a_n)_{n\in\mathbb{Z}}$ such that $a_n\to 0$ as $|n|\to\infty$, $a_n=a_{-n}\geq 0$, $a_{n+1}+a_{n-1}-2a_n\geq 0$ for n>0, and $b_n/a_n\to 0$ as $n\to\infty$.

Problem 6. Show that $f(t) = \sum_{n=2}^{\infty} \frac{\sin(nt)}{\log(n)}$ converges for all $t \in \mathbb{T}$. Hint: use Abel summation method.

Problem 7. Give a rigorous proof that $f(t) = \sum_{n=2}^{\infty} \frac{\sin(nt)}{\log(n)}$ defined in Problem 5 does not belong to $L^1(\mathbb{T})$.

Remark: This problem is more subtle than it may seem. From the lecture, we know that $\sum_{n=2}^{\infty} \frac{\sin(nt)}{\log(n)}$ is not a Fourier series of a function in $L^1(\mathbb{T})$. But, does this imply that $f(t) \notin L^1(\mathbb{T})$? In fact, it turns out that $f(t) \sim (t \ln(1/|t|))^{-1}$ as $t \to 0$.

Problem 8. Suppose that $f \in L^1(\mathbb{T})$ and $\hat{f}(n) = O(|n|^{-k})$ as $|n| \to \infty$. Show that f is m-differentiable with $f^{(m)} \in L^2(\mathbb{T})$ provided k - m > 1/2.

Problem 9. Show that the Lebesgue constants, given by $L_n = \frac{1}{2\pi} \int_0^{2\pi} |D_n(t)| dt$, where $D_n(t)$ is the *n*th Dirichlet kernel, satisfy $L_n = 4/\pi^2 \ln n + O(1)$ as $n \to \infty$. Hint:

$$2\pi L_n = 2\int_0^{\pi} \left| \frac{\sin(n+1/2)t}{\sin(t/2)} \right| dt = 4\sum_{j=1}^{n-1} \int_{\frac{j\pi}{n+1/2}}^{\frac{(j+1)\pi}{n+1/2}} \frac{|\sin(n+1/2)t|}{t} dt + O(1).$$

Problem 10. Suppose that $(a_n)_{n\in\mathbb{Z}}$ satisfies $a_n \to 0$ as $|n| \to \infty$, $a_n = a_{-n} \ge 0$, $a_{n+1} + a_{n-1} - 2a_n \ge 0$ for n > 0. Prove that the partial sums $S_n(f)$ of the Fourier series of $f(t) \sim \sum_{n\in\mathbb{Z}} a_n e^{int}$ are bounded in $L^1(\mathbb{T})$ if and only if $a_n \ln n = O(1)$ as $n \to \infty$.

Problem 11. Suppose that $(a_n)_{n\in\mathbb{Z}}$ is the same as in Problem 9. Prove that the partial sums $S_n(f)$ of the Fourier series of $f(t) \sim \sum_{n\in\mathbb{Z}} a_n e^{int}$ converge in $L^1(\mathbb{T})$ if and only if $\lim_{n\to\infty} a_n \ln n = 0$.

Problem 12. Suppose $f \in L^1(\mathbb{T})$ is Lipschitz at $t_0 \in \mathbb{T}$, i.e., $\exists C > 0$ s.t. $|f(t) - f(t_0)| \leq C|t - t_0|$ for all $t \in \mathbb{T}$. Show that the partial Fourier sums $S_n(f, t_0) \to f(t_0)$ as $n \to \infty$. Hint: for $t_0 = 0$, consider $g(t) = (f(2t) - f(0))/\sin t$.

Problem 13. Suppose $f \in L^1(\mathbb{T})$ satisfies Dini condition at $t_0 \in \mathbb{T}$, i.e.,

$$\int_{-1}^{1} \left| \frac{f(t+t_0) - f(t_0)}{t} \right| dt < \infty.$$

Show that the partial Fourier sums $S_n(f, t_0) \to f(t_0)$ as $n \to \infty$.

Problem 14. Show that for any countable sequence $\{t_i\}_{i=1}^{\infty} \subset \mathbb{T}$, there exists a continuous function f(t) whose Fourier series diverges at each t_i .

Problem 15. Show that each of the systems $\{1/\sqrt{\pi}\}\cup\{\sqrt{2/\pi}\cos(nt)\}_{n=1}^{\infty}$ and $\{\sqrt{2/\pi}\sin(nt)\}_{n=1}^{\infty}$ is an orthonormal basis for $L^2(0,\pi)$.

Problem 16. Show that each of the systems $\{\sqrt{2/\pi}\cos((n+1/2)t)\}_{n=0}^{\infty}$ and $\{\sqrt{2/\pi}\sin((n+1/2)t)\}_{n=0}^{\infty}$ is an orthonormal basis for $L^2(0,\pi)$.

Problem 17. Suppose the sequence $\{\lambda_n\}_{n=1}^{\infty}$ is lacunary and $f(t) \sim \sum a_n \cos(\lambda_n t)$ satisfies Lip_{α} condition with $0 < \alpha < 1$ at $t_0 \in \mathbb{T}$, i.e., $\exists C > 0$ s.t. $|f(t) - f(t_0)| \le C|t - t_0|^{\alpha}$ for all $t \in \mathbb{T}$. Show that $a_n = O(\lambda_n^{-\alpha})$ as $n \to \infty$. Next, deduce that f satisfies Lip_{α} for every $t_0 \in \mathbb{T}$.

REFERENCES

- Y. Katznelson "An introduction to harmonic analysis"
- R. Young "An introduction to nonharmonic Fourier series"
- A. Zygmund "Trigonometric series"