Math 650, Winter 2001, Homework \# 2 solve at least 7 out of 12 problems

1. Let $1 \leq p \leq 2$ and $1 / p+1 / q=1$. Show that if $\left(a_{n}\right)_{n \in \mathbb{Z}} \in l^{p}(\mathbb{Z})$ then there exists $f \in L^{q}(\mathbb{T})$ such that $a_{n}=\hat{f}(n)$. What is the estimate between $\|f\|_{q}$ and $\left\|\left(a_{n}\right)\right\|_{p}$. Hint: the Riesz-Thorin Theorem.
2. Show that $F(z)=\sum_{n=1}^{\infty} 2^{-n}\left[(z+n)^{2}+n^{-1}\right]^{-1}$ is analytic on \mathbb{R} and $\left.F\right|_{\mathbb{R}} \in$ $L^{1} \cap L^{\infty}(\mathbb{R})$, but F is not holomorphic in any strip $\{z \in \mathbb{C}:|\Im z|<a\}, a>0$.
3. Show that if $f \in L^{1}, g \in L^{p}, 1 \leq p \leq 2$, then $h=f * g \in L^{p}$ and $\hat{h}(\xi)=\hat{f}(\xi) \hat{g}(\xi)$. Hint: Minkowski's inequality and $L^{p} \subset L^{1}+L^{2}, 1 \leq p \leq 2$.
4. Suppose $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ is such that $\int \phi(x) d x=1, \phi(x)=O\left((1+|x|)^{-n-\delta}\right)$, $\hat{\phi}(\xi)=O\left((1+|\xi|)^{-n-\delta}\right)$ for some $\delta>0$. Show that

$$
\frac{1}{(2 \pi)^{n}} \sum_{k \in \mathbb{Z}^{n}} \hat{\phi}(k / \lambda) \hat{f}(k) e^{i\langle x, k\rangle} \rightarrow f(x) \quad \text { as } \lambda \rightarrow \infty
$$

where the convergence is in $L^{p}, 1 \leq p<\infty$ for any $f \in L^{p}\left(\mathbb{T}^{n}\right)$. If $f \in C\left(\mathbb{T}^{n}\right)$ then the convergence is uniform. Hint: the Poisson summation formula.
5. Suppose A is $n \times n$ non-singular real matrix and $b \in \mathbb{R}^{n}$. Show that for $f \in$ $L^{1}\left(\mathbb{R}^{n}\right)$

$$
f(\widehat{A x-} b)(\xi)=|\operatorname{det} A|^{-1} \hat{f}\left(\left(A^{-1}\right)^{*} \xi\right) e^{-i\left\langle\xi, A^{-1} b\right\rangle}
$$

6. Suppose μ, ν are finite Borel measure on \mathbb{R}^{n} show that $\mu * \nu$ given by

$$
\mu * \nu(A)=\int_{\mathbb{R}^{n}} \mu(A-x) d \nu(x), \quad \text { for Borel } A \subset \mathbb{R}^{n}
$$

is also a finite Borel measure. Show that $\widehat{(\mu * \nu)}(\xi)=\hat{\mu}(\xi) \hat{\nu}(\xi)$ for all $\xi \in \mathbb{R}^{n}$.
7. Show that for any $p>2$ there exists $f \in L^{p}$ such that \hat{f} is not a regular distribution, i.e., it is not given as an integration against a locally integrable function. Hint: consider $f(x)=(1+i \delta)^{-1 / 2} e^{-x^{2} /(1+i \delta)}$ and use the Closed Graph Theorem.
8. Show that the Fourier transform does not map $L^{1}(\mathbb{R})$ onto $C_{0}(\mathbb{R})$.
9. Show that the Hermite functions $h_{k}(x)=e^{x^{2} / 2} \frac{d^{k}}{d x^{k}} e^{-x^{2}}, k=0,1, \ldots$, are the eigenvectors of the Fourier transform. Hint: Using

$$
h_{k}^{\prime}-x h_{k}=h_{k+1} \quad k=0,1, \ldots
$$

show that \hat{h}_{k} and $(-i)^{k} h_{k}$ obey the same recursion formula and $\hat{h}_{0}=\sqrt{2 \pi} h_{0}$.
10. Show that $\left\{h_{k} /\left\|h_{k}\right\|_{2}\right\}_{k=0,1, \ldots}$ forms an orthonormal basis of $L^{2}(\mathbb{R})$. Hint: consider a differential operator $f \mapsto f^{\prime \prime}-x^{2} f$ and use

$$
h_{k}^{\prime}+x h_{k}=-2 k h_{k-1} \quad k=0,1, \ldots
$$

11. For $f \in \mathcal{S}(\mathbb{R})$ define define its Hilbert transform $H f(x)$ by

$$
H f(x)=\frac{1}{\pi} \mathrm{p} . \mathrm{v} \cdot \int_{-\infty}^{\infty} \frac{f(x-u)}{u} d u=\frac{1}{\pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{|u| \geq \epsilon} \frac{f(x-u)}{u} d u .
$$

Show that $\widehat{H f}(\xi)=-i \frac{\xi}{|\xi|} \hat{f}(\xi)$. Moreover, show that H extends to a unitary operator on $L^{2}(\mathbb{R})$.
12. Show that the Schwartz class $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is separable. Hint: consider linear combinations of $e^{-|x-a|^{2} / q}, a \in \mathbb{Q}^{n}, 0<q \in \mathbb{Q}$, with rational coefficients.

