Math 650, Winter 2001, Homework \# 1 solve at least 7 out of 12 problems

1. (Vitali) Show that an orthonormal system $\left\{e_{i}\right\}_{i \in I}$ in $L^{2}[a, b]$ is complete \Longleftrightarrow

$$
\sum_{i \in I}\left|\int_{a}^{x} e_{i}(t) d t\right|^{2}=x-a \quad \text { for a.e. } x \in[a, b] .
$$

2. (Dalzell) Show that an orthonormal system $\left\{e_{i}\right\}_{i \in I}$ in $L^{2}[a, b]$ is complete \Longleftrightarrow

$$
\sum_{i \in I} \int_{a}^{b}\left|\int_{a}^{x} e_{i}(t) d t\right|^{2}=\frac{(b-a)^{2}}{2}
$$

3. Show that a frame that ceases to be a frame when any of its elements is removed is a Riesz basis.
4. Prove that for any $\left(b_{n}\right)_{n \in \mathbb{Z}}$ such that $b_{n} \rightarrow 0$ as $|n| \rightarrow \infty$ there exists $\left(a_{n}\right)_{n \in \mathbb{Z}}$ such that $a_{n} \rightarrow 0$ as $|n| \rightarrow \infty, a_{n}=a_{-n} \geq 0, a_{n+1}+a_{n-1}-2 a_{n} \geq 0$ for $n>0$, and $b_{n} / a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
5. Show that $f(t)=\sum_{n=2}^{\infty} \frac{\sin (n t)}{\log (n)}$ converges for all $t \in \mathbb{R}$. Hint: Abel summation method.
6. Show that f defined in 5 . does not belong to $L^{1}(\mathbb{T})$. (This problem is harder than it seems; it turns out that $f(t) \sim(t \ln (1 /|t|))^{-1}$ as $\left.t \rightarrow 0\right)$.
7. Suppose that $f \in L^{1}(\mathbb{T})$ and $\hat{f}(n)=O\left(|n|^{-k}\right)$ as $|n| \rightarrow \infty$. Show that f is m-differentiable with $f^{(m)} \in L^{2}(\mathbb{T})$ provided $k-m>1 / 2$.
8. Show that the Lebesgue constants satisfy $L_{n}=4 / \pi^{2} \ln n+O(1)$ as $n \rightarrow \infty$. Hint:

$$
2 \pi L_{n}=2 \int_{0}^{\pi}\left|\frac{\sin (n+1 / 2) t}{\sin (t / 2)}\right| d t=4 \sum_{j=1}^{n-1} \int_{\frac{j \pi}{n+1 / 2}}^{\frac{(j+1) \pi}{n+1 / 2)}} \frac{|\sin (n+1 / 2) t|}{t} d t+O(1) .
$$

9. Suppose that $\left(a_{n}\right)_{n \in \mathbb{Z}}$ satisfies $a_{n} \rightarrow 0$ as $|n| \rightarrow \infty, a_{n}=a_{-n} \geq 0, a_{n+1}+$ $a_{n-1}-2 a_{n} \geq 0$ for $n>0$. Prove that the partial sums $S_{N}(f)$ of the Fourier series $f(t)=\sum_{n \in \mathbb{Z}} a_{n} e^{i n t}$ are bounded in $L^{1}(\mathbb{T})$ if and only if $a_{n} \ln n=O(1)$ and the series converges in $L^{1}(\mathbb{T})$ if and only if $\lim _{n \rightarrow \infty} a_{n} \ln n=0$.
10. Suppose $f \in L^{1}(\mathbb{T})$ is Lipschitz at $t=t_{0}$. Show that the partial Fourier sums $S_{n}\left(f, t_{0}\right)$ converge to $f\left(t_{0}\right)$ as $n \rightarrow \infty$. Hint: if $t_{0}=0$ then consider $g(t)=$ $(f(2 t)-f(0)) / \sin t$.
11. Show that each of the systems $\{\sqrt{2 / \pi} \cos (n+1 / 2) x\}_{n=0,1, \ldots}$ and $\{\sqrt{2 / \pi} \sin (n+$ $1 / 2) x\}_{n=0,1, \ldots}$ is an orthonormal basis for $L^{2}(0, \pi)$.
12. Let $\left\{\lambda_{n}\right\}$ be lacunary and let $f \sim \sum a_{n} \cos \left(\lambda_{n} t\right)$ satisfies a Lip ${ }_{\alpha}$ condition with $0<\alpha<1$ at $t=t_{0}$. Show that $a_{n}=O\left(\lambda_{n}^{-\alpha}\right)$ as $n \rightarrow \infty$. Deduce that $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$.

If you get stuck in any of the problems 4-12 you can always look up Zygmund's book"Trigonometric series".

