Math 650, Winter 2001, Homework # 1 solve at least 7 out of 12 problems

1. (Vitali) Show that an orthonormal system $\{e_i\}_{i \in I}$ in $L^2[a, b]$ is complete \iff

$$\sum_{i \in I} \left| \int_a^x e_i(t) dt \right|^2 = x - a \quad \text{for a.e. } x \in [a, b].$$

2. (Dalzell) Show that an orthonormal system $\{e_i\}_{i \in I}$ in $L^2[a, b]$ is complete \iff

$$\sum_{i \in I} \int_a^b \left| \int_a^x e_i(t) dt \right|^2 = \frac{(b-a)^2}{2}.$$

3. Show that a frame that ceases to be a frame when any of its elements is removed is a Riesz basis.

4. Prove that for any $(b_n)_{n\in\mathbb{Z}}$ such that $b_n \to 0$ as $|n| \to \infty$ there exists $(a_n)_{n\in\mathbb{Z}}$ such that $a_n \to 0$ as $|n| \to \infty$, $a_n = a_{-n} \ge 0$, $a_{n+1} + a_{n-1} - 2a_n \ge 0$ for n > 0, and $b_n/a_n \to 0$ as $n \to \infty$.

5. Show that $f(t) = \sum_{n=2}^{\infty} \frac{\sin(nt)}{\log(n)}$ converges for all $t \in \mathbb{R}$. Hint: Abel summation method.

6. Show that f defined in 5. does not belong to $L^1(\mathbb{T})$. (This problem is harder than it seems; it turns out that $f(t) \sim (t \ln(1/|t|))^{-1}$ as $t \to 0$).

7. Suppose that $f \in L^1(\mathbb{T})$ and $\hat{f}(n) = O(|n|^{-k})$ as $|n| \to \infty$. Show that f is *m*-differentiable with $f^{(m)} \in L^2(\mathbb{T})$ provided k - m > 1/2.

8. Show that the Lebesgue constants satisfy $L_n = 4/\pi^2 \ln n + O(1)$ as $n \to \infty$. Hint:

$$2\pi L_n = 2\int_0^{\pi} \left| \frac{\sin(n+1/2)t}{\sin(t/2)} \right| dt = 4\sum_{j=1}^{n-1} \int_{\frac{j\pi}{n+1/2}}^{\frac{(j+1)\pi}{n+1/2}} \frac{|\sin(n+1/2)t|}{t} dt + O(1).$$

9. Suppose that $(a_n)_{n\in\mathbb{Z}}$ satisfies $a_n \to 0$ as $|n| \to \infty$, $a_n = a_{-n} \ge 0$, $a_{n+1} + a_{n-1} - 2a_n \ge 0$ for n > 0. Prove that the partial sums $S_N(f)$ of the Fourier series $f(t) = \sum_{n\in\mathbb{Z}} a_n e^{int}$ are bounded in $L^1(\mathbb{T})$ if and only if $a_n \ln n = O(1)$ and the series converges in $L^1(\mathbb{T})$ if and only if $\lim_{n\to\infty} a_n \ln n = 0$.

10. Suppose $f \in L^1(\mathbb{T})$ is Lipschitz at $t = t_0$. Show that the partial Fourier sums $S_n(f, t_0)$ converge to $f(t_0)$ as $n \to \infty$. Hint: if $t_0 = 0$ then consider $g(t) = (f(2t) - f(0)) / \sin t$.

11. Show that each of the systems $\{\sqrt{2/\pi}\cos(n+1/2)x\}_{n=0,1,\dots}$ and $\{\sqrt{2/\pi}\sin(n+1/2)x\}_{n=0,1,\dots}$ is an orthonormal basis for $L^2(0,\pi)$.

12. Let $\{\lambda_n\}$ be lacunary and let $f \sim \sum a_n \cos(\lambda_n t)$ satisfies a $\operatorname{Lip}_{\alpha}$ condition with $0 < \alpha < 1$ at $t = t_0$. Show that $a_n = O(\lambda_n^{-\alpha})$ as $n \to \infty$. Deduce that $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$.

If you get stuck in any of the problems 4–12 you can always look up Zygmund's book "Trigonometric series".