Math 351, Fall 2011, Projects
Numerical Analysis I, Prof. Bownik

Instructions: 20% of your grade will come from a programming or research project due on
the last day of classes, Friday, December 2. You can work individually or in teams of two. If
working with another student, you should turn in a single project for both of you. You should
decide on a topic within a week and then discuss with me either in person or by e-mail. I
recommend that you turn in a rough draft before or immediately after Thanksgiving break
in order to receive a feedback.

Computer programming: Topics can be written in any language, such as Java, C, C++,
or Mathematica. You must submit your source code, which should be thoroughly commented,
and also a text file with a description of the program.

Research project: Projects should be 4-5 typed pages and should include a discussion of the
theory, examples of computations, and a complete bibliography. You might consider writing
your research project as a Mathematica notebook, since it has built-in formula formatting
and you can use it for your calculations.

Topics: You can choose any of “Student Research Projects” listed in the textbook, an
assortment of computer problems from the textbook, or another project of your own design
in consultation with me. Please choose a topic related to the material in Chapters 1-6. Most
importantly, choose a topic that you find interesting. For example, a topic that ties Numerical
Analysis to your other studies or interests. Here are a few possible topics for a project.

(1) Computing 7. Investigate the algorithms for computing 7. If doing this as a pro-
gramming project, write a code to generate m up to at least 1000 decimal digits. If
doing research project, describe several techniques for computing 7, and compare and
contrast them.

(2) Polynomial interpolation demo. Write a graphical demonstration of polynomial
interpolation e.g. as a Java applet. The user should be able to drag data points in
the plane and the program should compute interpolating polynomial and graph it in
a real time. Hence, you will need to figure out the graphical interface.

(3) Hybrid root approximation methods. Investigate the hybrids of the bisection and
the secant methods. Look up the references provided in Section 3.3 of the textbook
to learn more about hybrid methods.

(4) Muller’s method. Implement on a computer Muller’s method for computing roots
of equations. This algorithm is similar to the secant method. It uses polynomial
interpolation with quadratic polynomials to determine recursively the next point in
approximating sequence.

(5) Newton’s method for multiple variables. Investigate the algorithms for finding
roots of systems of equations.

(6) Clenshaw-Curtis method. Investigate this method for numerical integration which
is often superior to the Romberg method.

(7) Parallel numerical integration. Investigate how numerical integration algorithms,
which we have learned in this course, can be implemented on parallel processors and
computers to speed up calculations.



