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Abstract. Multiresolution analysis (MRA) on a compact abelian group G has been con-
structed with epimorphism as a dilation operator. We show a characterization of scaling
sequences of an MRA on Lp(G), 1 ≤ p < ∞. With the help of the scaling sequence we
construct an orthonormal wavelet basis of L2(G).

1. Introduction

In recent years there has been a considerable interest in construction of wavelets on locally
compact abelian groups. Dahlke [8] was one of the first to introduce the concept of wavelets
on locally compact abelian groups as he has constructed MRA and wavelets with the help
of self-similar tiles and B-splines. Lang [14, 15] has constructed wavelets on the Cantor
dyadic group. Wavelets on more general p-adic Vilenkin groups were studied by Farkov [9].
J. J. Benedetto and R. L Benedetto [5, 6] studied wavelets on local fields and more generally
on totally disconnected, nondiscrete locally compact abelian group with compact open sub-
group. Wavelets on local fields of zero characteristic, that is a field of p-adic numbers, were
studied by Skopina and her collaborators [1, 13, 21]. Multiresolution analysis and wavelets
on local fields of positive characteristic were given by Jiang, Li, and Jin [12] and Behera and
Jahan [3, 4]. Multiresolution analysis and wavelet bases on abelian zero-dimensional groups
were studied by Lukomskii [16, 17], and more recently by Barg and Skriganov [2] in a general
setting of association schemes on measure spaces.

The underlying theme of these works is that we are given an automorphism on a locally
compact abelian group G which plays a role of a dilation and a discrete subgroup of G
which plays a role of translations. As in the classical setting of wavelets on the real line,
or Euclidean space Rd, a wavelet system is generated by translates and dilates of a finite
collection of functions in L2(G) over integer scales. In contrast, when the group G is com-
pact, we can no longer require that a dilation is given by an automorphism, but rather by
a surjective endomorphism (epimorphism) of G. The reason is that automorphisms of a
compact group G do not lead to a sensible definition of an MRA. This is already seen in the
construction of periodic wavelets over a finite dimensional torus G = Td by Maksimenko and
Skopina [18], where the role of dilation is played by an epimorphism of Td, which is not an
automorphism. Consequently, wavelets are indexed only over positive scales since stretching
(negative dilates) is not available in the compact case.
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In this paper we assume that we are given a compact abelian group G and an epimorphism
A : G → G with a finite kernel such that

⋃
j∈N0

kerAj is dense in G. These standing

assumptions are necessary to guarantee that an MRA (Vj)j∈N0 satisfies the density property⋃∞
j=0 Vj = Lp(G). Inspired by the work of Skopina [22] and her collaborators [18, 19], we

define the concept of a multiresolution analysis (MRA) in this setting. Our first main result
is a characterization of scaling sequences of an MRA for Lp(G), 1 ≤ p <∞, which generalizes
the results of Maksimenko and Skopina [18] from a finite dimensional torus Td to a compact
abelian group G. The results in [18] require that an epimorphism A of Td is given by an
expansive d × d matrix with integer entries. That is, all eigenvalues λ of A satisfy |λ| > 1.
Even in the setting of the torus G = Td, our results are a generalization of [18] as we impose
a weaker assumption on an epimorphism. We show that our standing assumptions in the
case of the torus Td are equivalent to A having no eigenvalues which are integral algebraic
units. That is, for each eigenvalue λ of A, its reciprocal 1/λ is not an algebraic integer.
Beyond the setting of the torus we provide several examples of epimorphisms of compact
abelian groups satisfying our standing assumptions. These include a compact Cantor group
with more general dilations than the backward shift mapping.

Our second main result shows the existence of minimally supported frequency (MSF)
multiresolution analysis for every compact abelian group satisfying our standing assumptions.
This is an important result as it shows that our characterization results are not vacuous
despite the fact the actual constructions of MRAs need to be customized to a specific group
G and an epimorphism A. Moreover, once an MRA is given to us, we show that a rather
standard procedure yields an orthonormal wavelet basis of L2(G).

In Section 2, we present the necessary definitions and properties of epimorphisms on com-
pact abelian groups. We also provide several specific examples of compact abelian groups
and epimorphisms satisfying our standing assumptions. In addition, we characterize epimor-
phisms of the torus Td with dense kernel of iterates. In Section 3, we define the concept of
an MRA (Vj)j∈N0 on a compact abelian group and we prove the characterization of scaling
sequences which is preceded by many results including the construction of a basis in each
space Vj. In the last section we construct wavelet bases for L2(G). We also prove the ex-
istence of MSF MRA under our standing assumptions on an epimorphism A. We conclude
the paper by constructing an orthonormal MSF wavelet basis of L2(G).

2. Preliminaries

In this section we give some basic definitions and set our notations which we will use

throughout the article. Let G be a second countable locally compact abelian group. Let Ĝ
be its dual group, i.e.,

Ĝ = {χ : G→ C : χ is a continuous character of G}
with the additive group operation (χ1 + χ2)(x) = χ1(x)χ2(x). For convenience we denote
identity element of this group as 0. The following result can be found in [10, 11, 20].

Theorem 2.1. If G is compact, then Ĝ is discrete. If G is discrete, then Ĝ is compact.

Definition 2.2. Let H ⊂ G be a subgroup of G. We define the subgroup H⊥, called the
annihilator of H, as the collection of all characters which are trivial on the subgroup H,

H⊥ = {χ ∈ Ĝ : χ(h) = 1 for all h ∈ H}.
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Definition 2.3. For all f ∈ L1(G), the function f̂ defined on Ĝ by

f̂(χ) =

∫
G

f(x)χ(x)dx

is called the Fourier transform of f . Here, dx denotes a left invariant Haar measure on G,
which is also right invariant since G is abelian.

We denote N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. Let Epi(G) be the semigroup of contin-
uous group homomorphism of G onto G. Then, we have the following elementary fact.

Proposition 2.4. Let G be a locally compact abelian group and A ∈ Epi(G). Then, the set⋃
j∈N0

kerAj is dense in G if and only if
⋂
j∈N0

(
kerAj

)⊥
= {0}.

Proof. Suppose that
⋃
j∈N0

kerAj is dense in G. Take χ ∈
⋂
j∈N0

(
kerAj

)⊥
, i.e., χ(x) = 1 for all

x ∈ kerAj and for all j ∈ N0. By continuity, we have χ(x) = 1 for all x ∈ G, which implies
χ = 0.

Conversely, suppose H =
⋃
j∈N0

kerAj is a proper closed subgroup of G. Then, G/H is

nontrivial which implies Ĝ/H is also nontrivial. By [20, Theorem 2.1.2], Ĝ/H = H⊥ and
hence H⊥ is also nontrivial. Take 0 6= χ ∈ H⊥. Then, χ(x) = 1 for all x ∈ kerAj,

j ≥ 0. This implies χ ∈
(

kerAj
)⊥

for all j ≥ 0, which gives χ ∈
⋂
j∈N0

(
kerAj

)⊥
. Therefore,⋂

j∈N0

(
kerAj

)⊥ 6= {0}. �

As in [7], let Epick(G) be the collection of all A ∈ Epi(G) having compact kernel. Given
G, Epick(G) is a semigroup under composition. Moreover, by [7, Theorem 6.2] there is a
semigroup homomorphism ∆ : Epick(G) −→ (0,∞) such that

(2.1)

∫
G

(f ◦ A)(x)dx = ∆(A)

∫
G

f(x)dx

for all integrable functions f on G with respect to the Haar measure dx. To obtain ∆(A),
observe that f 7→

∫
G

(f ◦A)(x) dx defines a positive translation-invariant linear functional on
the space Cc(G) of continuous functions on G with compact support and use the uniqueness
of Haar measure up to a normalization [11, Theorem (15.5)].

Definition 2.5. Let G be a locally compact abelian group and A ∈ Epi(G) has a finite
kernel. Define the periodization operator P acting on functions f on G by

Pf(x) =
∑

a∈kerA

f(y + a) where y ∈ A−1x, x ∈ G.

Proposition 2.6. For all integrable functions f on G, the periodization operator P satisfies∫
G

Pf(x)dx = | kerA|(∆(A))−1
∫
G

f(x)dx.

Proof. By (2.1), we have

(2.2)

∫
G

Pf(Ax)dx = ∆(A)

∫
G

Pf(x)dx.

3



Using the translation invariance of Haar measure, we have

(2.3)

∫
G

Pf(Ax)dx =
∑

a∈kerA

∫
G

f(x+ a)dx = | kerA|
∫
G

f(x)dx.

The result follows from equations (2.2) and (2.3). �
In this article we mainly concentrate on compact abelian groups. If G is compact, then

by taking f ≡ 1, we deduce that for any epimorphism A we have ∆(A) = 1 in Proposition
2.6. In fact, the standing assumptions in the paper are that:

• G is a compact abelian group,
• A ∈ Epi(G) has a finite kernel,
•
⋃
j∈N0

kerAj is dense in G.

First, we will consider the classical case when G is a finite dimensional torus Td = Rd/Zd.
Let A be a d × d matrix with integer entries. Then, A induces an endomorphism T = TA
of Td = Rd/Zd, and every endomorphism of Td is induced in this way. Moreover, TA is
an epimorphism of Td if and only if A is an invertible matrix, see [23, Theorem 0.15].
The following result, which was communicated to the authors by J. Kwapisz, classifies all
epimorphisms on Td satisfying our standing assumptions.

Theorem 2.7. Let A be a d × d invertible matrix with integer entries. Suppose that TA is
a surjective endomorphism (epimorphism) on Td. Then the following are equivalent:

(i) {x ∈ Td : (TA)nx = 0 for some n ≥ 0} 6= Td,
(ii) A has an eigenvalue λ ∈ C which is an integral algebraic unit, i.e., both λ and 1/λ are

algebraic integers.

We were unable to find Theorem 2.7 in the literature and hence we present its proof. First,
we need to show a basic lemma.

Lemma 2.8. Let A be a d × d invertible matrix with integer entries. Suppose that TA is a
surjective endomorphism (epimorphism) on Td and K ⊂ Td is a set. Then

T−1A (K) = T−1A (K)

Proof. One side of the inclusion is obvious, i.e., T−1A (K) ⊂ T−1A (K) since T−1A (K) ⊂ T−1A (K).
We claim that

T−1A (K) ⊂ T−1A (K).

To prove this, let x ∈ T−1A (K). Then we have y ∈ K such that y = TAx. There exists
a sequence (yn) in K which converges to y. Since TA is a local homeomorphism, there
exists a neighborhood W of x and a neighborhood U of y such that TA|W : W → U is a
homeomorphism. Hence, (TA|W )−1yn converges to (TA|W )−1y. Since (TA|W )−1y = x, we

have x ∈ (TA|W )−1(K) ⊂ T−1A (K). �

Proof of Theorem 2.7. Since A is invertible, it induces a surjective endomorphism (epimor-
phism) TA on Td. Let q = | detA|. Then, TA is q-to-1 mapping. That is, for every x ∈ Td,
(TA)−1(x) consists of q points. Also TA is a local homeomorphism. If q = 1, then the result is
trivial since we necessarily have kerTA = {0} and all eigenvalues of A are integral algebraic
units. Hence, we can assume that q ≥ 2.
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Let

H := {x ∈ Td : (TA)nx = 0 for some n ≥ 0}.

Then, H is a closed subgroup of Td and (TA)−1(H) = H, by Lemma 2.8. Let H0 be the
connected component of H containing 0. Thus, H0 is a closed connected subgroup of Td,
hence a subtorus. Moreover, G := H/H0 is a discrete compact group on which TA induces a
surjective endomorphism, hence an automorphism. We also have TA(H0) = H0.

We claim that

(2.4) (TA)−1(H0) = H0.

Suppose that H0 6= (TA)−1(H0). Since H0 ⊂ (TA)−1(H0) ⊂ H, there exists h ∈ H \H0 such
that h + H0 ⊂ (TA)−1(H0). Thus, TA(h + H0) ⊂ H0, which contradicts the fact that TA is
an automorphism on G.

A subtorus H0 ⊂ Td lifts to a rational A invariant linear subspace K0 ⊂ Rd, i.e., K0

a linear span of rational vectors and A(K0) = K0. The formula (2.4) implies that the
endomorphism TA restricted to the subtorus H0 is q-to-1 mapping. Consequently, the linear
map A restricted to K0 has determinant ±q.

The matrix A also induces a linear mapping Ã : Rd/K0 → Rd/K0, which corresponds
to endomorphism of the torus Td/H0. Hence, Ã can be identified with an integer matrix,
see [23, Theorem 0.15]. The characteristic polynomial of A is the product of characteristic
polynomials of A|K0 and Ã. These polynomials have all integer coefficients. Since the
constant coefficients of A and A|K0 are ±q, the characteristic polynomial of Ã is an integral
monic polynomial with the constant term ±1. This proves (i) =⇒ (ii).

To prove the converse implication we assume (ii). Thus, the characteristic polynomial
p ∈ Z[x] of A is divisible by a monic polynomial p0 ∈ Z[x] with constant coefficient ±1.
Hence, p1 := p/p0 ∈ Z[x] is a monic polynomial with constant coefficient ±q. Consider the
invariant subspaces K0 and K1 corresponding to p0 and p1, i.e.,

K0 = {x ∈ Rd : p0[A]x = 0}, K1 = {x ∈ Rd : p1[A]x = 0}.

Then, K0 and K1 are rational subspaces of Rd which are invariant under A. Moreover, the
characteristic polynomial of A restricted to Ki is pi, i = 0, 1. The matrix A has a block
diagonal form with respect to subspaces K0 and K1. So does any power An, n ≥ 1. Let Hi

be a subtorus of Td corresponding to a subspace Ki, i = 0, 1. Since A|K0 has determinant
±1, TA|H0 is an automorphism of H0. Hence, kerTA ⊂ H1. Likewise, ker(TA)n ⊂ H1 for any
n ≥ 1. Since H1 is a proper subtorus, this yields (i). �

As a corollary of Theorem 2.7 we obtain

Corollary 2.9. Let A be a d×d invertible matrix with integer entries such that no eigenvalues
of A are integral algebraic units. Then the epimorphism TA satisfies our standing assumption,
i.e.,

(2.5) {x ∈ Td : (TA)nx = 0 for some n ≥ 0} = Td.

In particular, for any expansive matrix A, i.e., all its eigenvalues λ of A satisfy |λ| > 1, the
corresponding epimorphism TA satisfies (2.5).
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Proof. If A is a d× d invertible matrix with integer entries such that no eigenvalues of A are
integral algebraic units then by Theorem 2.7, (2.5) holds. To prove the second part of the
corollary, assume that A is expansive. But suppose that (2.5) fails, i.e.,

{x ∈ Td : (TA)nx = 0 for some n ≥ 0} 6= Td.
Then by Theorem 2.7, A has an eigenvalue λ ∈ C which is an integral algebraic unit, i.e.,
both λ and 1

λ
are algebraic integers. Hence, the characteristic polynomial of A is divisible

by the minimal monic polynomial p of λ, which has integer coefficients. Since 1/λ is also an
algebraic integer, the constant coefficient of p is ±1. Hence, the product of eigenvalues of A,
which correspond to the roots of p, is equal to ±1. This gives a contradiction with the fact
that A is expansive. �

The well-known doubling map illustrates the essence of our standing assumptions.

Example 2.10. Let G = T = R/Z. Let m be an integer such that |m| ≥ 2. Define an
epimorphism A : T→ T as a multiplication map A(x) = mx mod 1, x ∈ T. Then, kerA is
finite, has cardinality |m|, and for any j ∈ N,

kerAj = {k/mj + Z : k = 0, 1, . . . , |m|j − 1}.
Hence, the pair (G,A) satisfies the standing assumptions. In particular, when m = 2, then
A : T→ T is a well-known doubling map A(x) = 2x mod 1.

Next we give more examples of epimorphisms on compact abelian groups satisfying our
standing hypothesis.

Example 2.11. For a fixed natural number N ≥ 2, let ZN = 1
N
Z/Z ' {0, 1

N
, 2
N
, . . . , N−1

N
}.

Consider G = (ZN)N equipped with the product topology. By Tychonoff’s Theorem G is
compact. We define the backward shift mapping S on G, i.e., S(x1, x2, . . .) = (x2, x3, . . .).
It is straightforward to verify that S satisfies the standing assumptions. In fact, we have a
more general example below.

Example 2.12. Consider again G = (ZN)N, for fixed natural number N ≥ 2. Let A be
an upper triangular matrix such that main diagonal elements are zero, the upper diagonal
elements are 1, and A is the band matrix with upper bandwidth k ∈ N. More precisely,

(2.6) A =


0 1 a1,3 a1,4 . . . a1,k+1 0 0 0 . . .
0 0 1 a2,4 a2,5 . . . a2,k+2 0 0 . . .
0 0 0 1 a3,5 a3,6 . . . a3,k+3 0 . . .
...

...
...

. . . . . . . . . · · · . . . . . . · · ·

 .
With the help of the above matrix A, we define a homomorphism TA on G by

TA(Y ) = AY

where Y = (y1, y2, y3, . . .) ∈ G and AY =
( ∞∑
j=1

a1jyj,
∞∑
j=1

a2jyj, . . .
)
. The following lemma

shows that TA satisfies our standing assumptions.

Lemma 2.13. Let G = (ZN)N. Suppose that A is an N×N matrix with integer entries such
that each row has finitely many non zero entries and TA : G→ G is defined by

TA(Y ) = AY for Y ∈ G.
Then
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(i) TA is a well defined continuous homomorphism G→ G.
(ii) If A is of the form (2.6), then TA is an epimorphism.

(iii) If A is of the form (2.6), then kerTA is finite and its cardinality is bounded by

(2.7) | kerTA| ≤ Nk.

Proof. Since each row of A has finitely many non-zero entries, AY is well defined for any
Y ∈ G, and TA is a homomorphism. The group G is metrizable with metric given by

d(X, Y ) =
∞∑
i=1

|xi − yi|
2i

, X = (x1, x2, . . .), Y = (y1, y2, . . .) ∈ G.

For any n ∈ N we can find m ∈ N such that ai,j = 0 for all 1 ≤ i ≤ n and j > m. Hence,
if X = (x1, x2, . . .) ∈ G satisfies xi = 0 for 1 ≤ i ≤ m, then d(AX, 0) ≤

∑∞
i=n+1 2−i = 2−n.

Hence, TA is continuous at 0 ∈ G and thus everywhere.
To prove (ii), we define the projection pn : G→ G by

pn(x1, x2, . . .) = (x1, x2, . . . , xn, 0, 0, . . .).

We have following two claims:

Claim (a): pn ◦ TA(G) = pn(G)
Claim (b): TA(G) = G

To prove Claim (a), take any Y = (y1, y2, . . .) ∈ G. By (2.6) for any X = (x1, x2, . . .) ∈ G
we have

pn ◦ TA(x1, x2, . . .) =

(
x2 +

k+1∑
j=3

a1,jxj, . . . , xn+1 +
k+n+1∑
j=n+2

an,jxj, 0, . . .

)
.

We can find X ∈ G satisfying pn◦TA(X) = pn(Y ) by back substitution. Indeed, let xn+1 = yn
and xi = 0 for i > n+ 1. Having defined xi for i > m, we let

xm = ym−1 −
k+m∑
j=m+1

am−1,jxj.

Proof of Claim (b). For fixed Y ∈ G, we find a sequence (Xn)∞n=1 in G such that

pn ◦ TA(Xn) = pn(Y ).

By the compactness there exists a subsequence (Xnk) which converges to X such that

pnk ◦ TA(Xnk) = pnk(Y ).

By continuity of TA, pnk ◦TA(Xnk) converges to TA(X) and pnk(Y ) converges to Y as k →∞.
Hence, we have

TA(X) = Y.

Proof of (iii). We claim that there are exactly Nk solutions of the equation

(2.8) pn ◦ A(X) = 0 for X ∈ pn+k(G).

Indeed, if we assign values of xn+2, . . . , xn+k, then the value of xn+1 is uniquely determined
by the n’th row of A. By back substitution, the values of x2, . . . , xn are also uniquely
determined. Finally, x1 can take any value in ZN . Since we can assign k values in ZN , the
number of solutions of (2.8) is Nk. Since A is a band matrix with bandwidth k, if X ∈ kerTA,
then pn+k(X) is a solution of (2.8). This implies (2.7). �
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Example 2.14. Consider G = Td × (ZN)N, for fixed N ≥ 2. Let B be a d × d integer
invertible matrix, which induces an epimorphism TB on Td. Assume B has no eigenvalues
which are algebraic integral units. Let i : (ZN)N → Td be a homomorphism with a finite
image. Let S : (ZN)N → (ZN)N be the backward shift. Define a homomorphism A on G by

A(X, Y ) = (TB(X) + i(Y ), S(Y )) where X ∈ Td, Y ∈ (ZN)N.

We claim that A satisfies our standing assumptions. It is easy to show that A is an epimor-
phism from the fact that TB and S are both epimorphisms. Moreover, kerA is finite and its
cardinality

| kerA| = N | kerTB| = N | detB|.
We only need to prove that

⋃
j∈N0

kerAj is dense in G. A simple calculation yields

(2.9)

kerAj =

{
(X, Y ) ∈ G : yj+1 = yj+2 = · · · = 0

and T jB(X) = −
j−1∑
k=0

T kB(i(Sj−k−1(Y )))

}
.

Take any (X0, Y0) ∈ G such that Y0 has finitely many non-zero coordinates. Hence, Sj(Y0) =
0 for sufficiently large j > j0. It suffices to find a sequence (Xj)j∈N in Td such that

(2.10) (Xj, Y0) ∈ kerAj for j > j0 and lim
j→∞

Xj = X0.

By Theorem 2.7,
⋃
j∈N0

ker(TB)j is dense in Td. Therefore, for every sequence (X ′j)
∞
j=1 in Td,

there exists a sequence (Xj)
∞
j=1 in Td such that Xj ∈ T−jB (X ′j) and Xj converges to X0 as

j →∞. Taking X ′j = −
j−1∑
k=0

T kB(i(Sj−k−1(Y0))), this observation and (2.9) yields (2.10).

Despite our efforts, the following problem remains open.

Problem 2.15. Let G = TN be the infinite dimensional torus. Does there exist an epimor-
phism A on TN such that the standing hypotheses on A hold? That is, kerA is finite and⋃
j∈N0

kerAj is dense in TN.

3. MRA and scaling sequences

In this section we give the definition of a multiresolution analysis (MRA) in the setting of a
compact abelian group G and an epimorphism A satisfying the standing assumptions. Then
we give the characterization of scaling functions. Our definition of an MRA is motivated
by the definition of a periodic multiresolution analysis due to Skopina [22] and Maksimenko
and Skopina [18] in higher dimensions; see also [19]. However, our definition differs slightly
from [19, Definition 9.1.1] since it explicitly mentions a scaling function.

Definition 3.1. We define the shift operator Ty, y ∈ G, acting on functions f on G by

Tyf(x) = f(x− y).

A multiresolution analysis (MRA) of Lp(G) for 1 ≤ p < ∞ is a sequence (Vj)j∈N0 of closed
subspaces of Lp(G) satisfying the following properties:
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MR1. Vj ⊂ Vj+1 for all j ∈ N0,

MR2.
⋃∞
j=0 Vj = Lp(G),

MR3. f ∈ Vj if and only if Tγf ∈ Vj, for γ ∈ kerAj and j ∈ N0,
MR4. there exists a function ϕj ∈ Vj such that (Taϕj)a∈kerAj forms a basis of Vj, j ∈ N0,
MR5. a) f ∈ Vj ⇒ f(A(·)) ∈ Vj+1;

b) f ∈ Vj+1 ⇒ Pf ∈ Vj, where P is as in Definition 2.5.

A sequence of functions (ϕj)j∈N0 as in MR4 is called a scaling sequence of an MRA (Vj)j∈N0 .

Let Â be the adjoint homomorphism to A, which is defined by Â(χ) = χ ◦ A for χ ∈ Ĝ.

Then, Â is a topological isomorphism of Ĝ onto the annihilator of kerA, see [7, Proposition
6.5].

Definition 3.2. Any set containing only one representative of each coset, Ĝ/(kerA)⊥ =

Ĝ/Â(Ĝ), is called a set of digits of A, which is denoted by D(A). Let m = | kerA| be the
cardinality of D(A). Then, we define recursively the set D(Aj), j ∈ N, of representatives of

distinct cosets of Ĝ/(kerAj)⊥ by

(3.1) D(Aj+1) = {Âjπ + r : r ∈ D(Aj), π ∈ D(A)}.

To prove that D(Aj+1) is a set of representatives of distinct cosets of Ĝ/(Â)j+1(Ĝ), take
any π, π′ ∈ D(A) and r, r′ ∈ D(Aj) such that

Âjπ + r − (Âjπ′ + r′) ∈ (Â)j+1(Ĝ).

We can deduce that r = r′ and then π = π′. Hence, elements of D(Aj+1) represent dis-

tinct cosets of Ĝ/(Â)j+1(Ĝ). Moreover, its cardinality |D(Aj+1)| = |D(A)||D(Aj)| = mj+1.
Therefore, (3.1) defines representatives of all such cosets.

The main result of this section is a characterization of scaling functions associated to an
MRA (Vj)j∈N0 , which is a generalization of a result of Maksimenko and Skopina [18, Theorem
7] to compact abelian groups G, see also [19, Theorem 9.1.4].

Theorem 3.3. Functions (ϕj)j∈N0 ⊂ Lp(G) form a scaling sequence for an MRA of Lp(G),
1 ≤ p <∞, if and only if:

(1) ϕ̂0(χ) = 0 for all χ 6= 0, χ ∈ Ĝ.

(2) For any j ∈ N0 and any η ∈ Ĝ, there exists χ ∈ (kerAj)⊥ + η such that ϕ̂j(χ) 6= 0.

(3) For any χ ∈ Ĝ, there exists j ∈ N0 such that ϕ̂j(χ) 6= 0.

(4) For any j ∈ N and any η ∈ Ĝ, there exists a number µjη such that ϕ̂j−1(χ) = µjηϕ̂j(χ)

for all χ ∈ (kerAj)⊥ + η.

(5) For any j ∈ N0 and any η ∈ Ĝ, there exists a number γjη 6= 0 such that ϕ̂j+1(Â(χ)) =

γjηϕ̂j(χ) for all χ ∈ (kerAj)⊥ + η.

The proof of Theorem 3.3 follows a similar scheme as in [18] with necessary changes
imposed by the more general setting of this theorem. The following lemmas are useful in
proving the main results.

Lemma 3.4. Suppose Vj ⊂ Lp(G), 1 ≤ p < ∞, j ∈ N0 and axioms MR1, MR2, MR3 and
MR5 b) of Definition 3.1 hold. Then the space V0 consists of constants.

9



Proof. The space V0 is one-dimensional by property MR3. Let f ∈ V0 such that ‖f‖ 6= 0.

First we will show that f̂(0) 6= 0. Consider g = Pf . By Proposition 2.6

ĝ(0) = P̂ f(0) =

∫
G

Pf(x)dx = | kerA|
∫
G

f(x)dx = | kerA|f̂(0).

Let g0 ∈ Vj. Then by MR5 b), g1 := Pg0 ∈ Vj−1, . . . , gj := Pgj−1 ∈ V0. If we assume

f̂(0) = 0, then ĝj(0) = 0. This implies that any function from any Vj has zero mean, which
contradicts axiom MR2 of Definition 3.1.

Next suppose that f̂(χ0) 6= 0 for some χ0 6= 0. Since f ∈ V0, using MR1, we have f ∈ V1,
hence by MR5 b), g ∈ V0. Since V0 is a one-dimensional space, therefore, for some constant

λ it follows that g = λf and hence ĝ(χ) = λf̂(χ). From the above calculation λ = | kerA|.
We define the A-dilation operator on Lp(G) for 1 ≤ p <∞ by

DAf(x) = f(Ax) for all x ∈ G.
By [7, Lemma 6.6], we have

D̂Af(χ) =

{
f̂(Â−1(χ)) for χ ∈ Â(Ĝ) = (kerA)⊥,
0 otherwise.

Hence, for χ ∈ (kerA)⊥,

D̂Ag(χ) =

∫
G

Pf(Ax)χ(x)dx =
∑

a∈kerA

∫
G

f(x+ a)χ(x)dx

=
∑

a∈kerA

χ(a)f̂(χ) = | kerA|f̂(χ).

Therefore, for χ ∈ (kerA)⊥,

f̂(χ) = f̂(Â−1(χ)).

Equivalently, for any η = Â−1(χ) ∈ Ĝ, we have f̂(Âη) = f̂(η). Hence, for any m ∈ N we
have

(3.2) 0 6= f̂(χ0) = f̂(Âχ0) = · · · = f̂(Âmχ0).

We claim that χ0, Âχ0, Â
2χ0, . . . are all distinct. On the contrary, suppose that for some

m ≥ 1 we have χ0 = Âmχ0. Since χ0(x) = χ0(A
mx) for all x ∈ G, we necessarily have

χ0(x) = 1 for all x ∈ kerAkm, k ∈ N. By our standing assumptions, Proposition 2.4 implies
that χ0(x) = 1 for all x ∈ G, which contradicts the assumption that χ0 6= 0.

Combining the above claim with (3.2) leads to the contradiction with the fact that the

Fourier transform maps L1(G) ⊃ Lp(G) into C0(Ĝ). Consequently, f̂(χ) = 0 for all χ 6= 0,
and hence, f is constant. �

Definition 3.5. Define the operators ωjη on L1(G), for j ∈ N0 and η ∈ Ĝ, as follows

ω0
ηf := f,

ωjηf(x) :=
1

| kerAj|
∑

a∈kerAj
η(a)f(x+ a).

Note that unlike [19], the operators ωjη are not defined recursively.
10



Lemma 3.6. Let f ∈ L1(G), j ∈ N0, and η ∈ Ĝ. Then, ωjη has a Fourier series representa-
tion

(3.3) ωjηf ∼
∑

κ∈(kerAj)⊥
f̂(η + κ)(η + κ).

That is, for any χ ∈ Ĝ,

(3.4) ω̂jηf(χ) =

{
f̂(χ) if χ ∈ (kerAj)⊥ + η,

0 if χ 6∈ (kerAj)⊥ + η.

In addition, let Vj ⊂ Lp(G) for j ∈ N0 be such that MR3 of Definition 3.1 holds. If f ∈ Vj0
for fixed j0, then ωjηf ∈ Vj0 for all j = 0, . . . , j0.

Proof. We start by the following calculation.

ω̂jηf(χ) =
1

| kerAj|
∑

a∈kerAj
η(a)

∫
G

f(x+ a)χ(x)dx

=
1

| kerAj|
∑

a∈kerAj
η(a)χ(a)

∫
G

f(x)χ(x)dx.

The product of two character is also a character on Ĝ. Therefore using [11, Lemma 23.19],
the sum on right hand side is | kerAj| if χ− η ∈ (kerAj)⊥ and 0 if χ− η 6∈ (kerAj)⊥. This
proves (3.4).

Next, suppose that f ∈ Vj0 and j = 0, . . . , j0. Then by MR3 of Definition 3.1, Taf ∈ Vj0
for a ∈ kerAj ⊂ kerAj0 . Therefore, ωjηf ∈ Vj0 . �

Lemma 3.7. Let f ∈ L1(G) and j ∈ N0. Then functions Taf , a ∈ kerAj, are linearly
independent if and only if ωjηf 6= 0 for all η ∈ D(Aj).

Proof. Consider mj ×mj matrix (η(a))η∈D(Aj),a∈kerAj , which represents the discrete Fourier

transform of the finite group kerAj ⊂ G. Its characters are elements of Ĝ/(kerAj)⊥, which
we identify with D(Aj). The discrete Fourier transform matrix is a multiple of a unitary
matrix, and hence invertible. Therefore, Taf , a ∈ kerAj, are linearly independent if and

only if ωjηf , η ∈ D(Aj) are linearly independent. By (3.4) the supports of ω̂jηf , η ∈ D(Aj),

are disjoint. Hence, their linear independence is equivalent to ω̂jηf 6= 0 for all η ∈ D(Aj). �

Lemma 3.8. Let (Vj)
∞
j=0 be an MRA of Lp(G), 1 ≤ p < ∞. Then there exists a family of

functions vjη, j ∈ N0, η ∈ Ĝ, satisfying the following properties:

V0. vjη = vjη′ if η − η′ ∈ (kerAj)⊥ and (vjη)η∈D(Aj) is a basis of Vj.

V1. v̂jη(χ) = 0 for all χ 6∈ (kerAj)⊥ + η.

V2. If v̂jη(χ0) 6= 0 for some χ0 ∈ (kerAj+1)⊥ + η, then v̂j+1
η (χ) = v̂jη(χ) for all χ ∈

(kerAj+1)⊥ + η.

V3. v̂jη(χ) = v̂j+1

Âη
(Âχ) for all χ ∈ Ĝ.

Proof. First we observe that (V3) can be conveniently rewritten as

(V4) v̂j+1
η (χ) = v̂j

Â−1η
(Â−1χ) for all χ, η ∈ (kerA)⊥.

11



Define the space

V
(η)
j := {f ∈ Vj : f̂(χ) = 0 for all χ 6∈ (kerAj)⊥ + η}.

Let f ∈ Vj. Then by Lemma 3.6

f =
∑

η∈D(Aj)

ωjηf =
∑

η∈D(Aj)

fη,

where fη ∈ V
(η)
j . This implies that Vj =

⊕
η∈D(Aj)

V
(η)
j . By MR4 of Definition 3.1 and

Lemma 3.7 we have dimV
(η)
j ≥ 1. Since dimVj = mj and |D(Aj)| = mj, we actually have

dimV
(η)
j = 1.

The proof is by the induction on scale j. Assume we have constructed functions (vjη) for
j = 0, . . . , j0, satisfying (V0) and (V1) for j ≤ j0, and (V2) and (V3) for j ≤ j0− 1, where

j0 ∈ N0. Suppose first that v̂j0η (χ0) 6= 0 for some χ0 ∈ (kerAj0+1)⊥ + η and η ∈ Ĝ. We set

vj0+1
η := ωj0+1

η vj0η . Then by Lemma 3.6

v̂j0+1
η (χ) =

{
v̂j0η (χ) for χ ∈ (kerAj0+1)⊥ + η,
0 for χ 6∈ (kerAj0+1)⊥ + η.

Hence, (V1) holds for j = j0 + 1 and (V2) holds for j = j0. Next we check that (V4)
holds for j = j0. Let χ, η ∈ (kerA)⊥. If χ ∈ (kerAj0+1)⊥ + η, then by (V2) and (V4) for
j = j0 − 1, we have

v̂j0+1
η (χ) = v̂j0η (χ) = v̂j0−1

Â−1η
(Â−1χ) = v̂j0

Â−1η
(Â−1χ).

Otherwise, if χ 6∈ (kerAj0+1)⊥ + η, then by (V1) we have

v̂j0+1
η (χ) = 0 = v̂j0

Â−1η
(Â−1χ).

Either way, (V4) holds for j = j0.
Next suppose that v̂j0η (χ) = 0 for all χ ∈ (kerAj0+1)⊥ + η and η ∈ (kerA)⊥. We set

vj0+1
η (x) = vj0

Â−1η
(Ax). Then,

v̂j0+1
η (χ) =

∫
G

vj0
Â−1η

(Ax)χ(x)dx = D̂Av
j0

Â−1η
(χ).

By [7, Lemma 6.6], the right hand side is equal to v̂j0
Â−1η

(Â−1χ) for χ ∈ (kerA)⊥ and 0

otherwise. This proves that (V4) holds for j = j0. Likewise, (V1) holds for j = j0 + 1 by
the inductive assumption and (V2) need not be verified.

Finally, suppose v̂j0η (χ) = 0 for χ ∈ (kerAj0+1)⊥+η and η 6∈ (kerA)⊥. In this case we take

for vj0+1
η , η ∈ D(Aj0+1), any nonzero element from the space V

(η)
j0+1, and then let vj0+1

η′ = vj0+1
η

if η − η′ ∈ (kerAj0+1)⊥. Since v̂j0+1
η (χ) = 0 for all χ 6∈ (kerAj0+1)⊥ + η we have (V1), while

(V2) and (V4) need not be checked.

Finally, observe that by the construction all functions vjη ∈ V
(η)
j are non-zero and vjη = vjη′

if η− η′ ∈ (kerAj)⊥. Since Vj =
⊕

η∈D(Aj)

V
(η)
j and dimV

(η)
j = 1, we conclude that (V0) holds

as well. �
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Proposition 3.9. Let (Vj)j∈N0 be an MRA of Lp(G), 1 ≤ p <∞. Let (vjη)η∈D(Aj) be a basis
of Vj given by Lemma 3.8. A sequence (ϕj)

∞
j=0 ⊂ Lp(G) is a scaling sequence if and only if

(3.5) ϕj =
∑

η∈D(Aj)

αjηv
j
η,

where αjη 6= 0 for all η ∈ D(Aj).

Proof. Suppose (ϕj)
∞
j=0 ⊂ Lp(G) is a scaling sequence. By Lemma 3.8 we can write ϕj as in

(3.5). By Lemma 3.6 we have

ωjηϕj = αjηv
j
η η ∈ D(Aj).

By Lemma 3.7 we have αjη 6= 0.

Conversely, suppose ϕj is given by (3.5), where αjη 6= 0. Then by Lemma 3.7 the functions

Taϕj, a ∈ kerAj, are linearly independent, and hence a basis of Vj since dimVj = mj. �

Corollary 3.10. If (ϕj)
∞
j=0 is a scaling sequence, then ωjηϕj = αjηv

j
η, where αjη 6= 0. In

particular, the functions (ωjηϕj)η∈D(Aj) form a basis of the space Vj.

We are now ready to give the proof of Theorem 3.3.

Proof of Theorem 3.3. Assume that (ϕj)
∞
j=0 is a scaling sequence for an MRA (Vj)

∞
j=0 of

Lp(G). Part (1) of Theorem 3.3 follows from Lemma 3.4. For (2), we use Corollary 3.10

noting that for χ ∈ (kerAj)⊥ + η, η ∈ Ĝ,

ϕ̂j(χ) = ω̂jηϕj(χ) = αjηv̂
j
η(χ).

By (V1) of Lemma 3.8 there exists χ ∈ (kerAj)⊥+ η such that v̂jη(χ) 6= 0. Since αjη 6= 0, we
get ϕ̂j(χ) 6= 0. To prove (3), suppose on the contrary that ϕ̂j(χ) = 0 for all j ∈ N0. This

contradicts the axiom MR2 of Definition 3.1. To prove (4), take any η ∈ Ĝ. First consider
the case ϕ̂j−1(χ0) 6= 0 for some χ0 ∈ (kerAj)⊥ + η. Using Lemma 3.6 and Corollary 3.10 we
have

ωjηϕj = αjηv
j
η and ωjηϕj−1 = ωjηω

j−1
η ϕj−1 = αj−1η ωjηv

j−1
η

for some αjη, α
j−1
η 6= 0. By (V2) of Lemma 3.8, for χ ∈ (kerAj)⊥ + η

ϕ̂j−1(χ)

αj−1η

=
ϕ̂j(χ)

αjη
.

The above expression implies

ϕ̂j−1(χ) = µjηϕ̂j(χ),

where µjη =
αj−1
η

αjη
. In the case when ϕ̂j−1(χ) = 0 for all χ ∈ (kerAj)⊥ + η, we take µjη = 0.

To prove (5), we use Lemma 3.6

ω̂j+1

Âη
f(Âχ) =

{
f̂(Âχ), for χ ∈ (kerAj)⊥ + η,
0, otherwise.
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We again use Corollary 3.10. For any χ ∈ (kerAj)⊥ + η, we have ϕ̂j(χ) = αjηv̂
j
η(χ) and

ϕ̂j+1(Âχ) = αj+1

Âη
v̂j+1

Âη
(Âχ), where αjη, α

j+1
η 6= 0. By (V3) of Lemma 3.8, it follows that

ϕ̂j+1(Âχ) =
αj+1

Âη

αjη
ϕ̂j(χ).

Hence (5) holds with γjη =
αj+1

Âη

αjη
.

For the sufficiency part let us assume that functions ϕj ∈ Lp(G) satisfy properties (1)–(5)
of Theorem 3.3. Set Vj = span{Taϕj : a ∈ kerAj}. Our aim is to show that (Vj)

∞
j=0 is an

MRA and (ϕj) is a scaling sequence.
MR4 follows by Lemma 3.6, Lemma 3.7, and property (2). MR3 follows then from MR4.

Indeed, write f ∈ Vj as

f =
∑

k∈kerAj
αkTkϕj.

For a ∈ kerAj,

Taf =
∑

k∈kerAj
αkTaTkϕj =

∑
k∈kerAj

αkTa+kϕj.

Hence, Taf ∈ Vj.
To prove MR1, we restrict ourself to a basis function ωjηϕj, η ∈ D(Aj). We need to verify

that if f ∈ Vj, then f ∈ Vj+1. By Lemma 3.6 we have

(3.6) ωjηϕj =
∑

π∈D(A)

ωj+1

η+Âjπ
ωjηϕj.

Using property (4) we can write

(3.7) ωjηϕj =
∑

π∈D(A)

µj+1

η+Âjπ
ωj+1

η+Âjπ
ϕj+1.

Hence, by Lemma 3.6 we have ωj+1

η+Âjπ
ϕj+1 ∈ Vj+1, which proves MR1.

Next we claim that there exists a family of functions vjη, j ∈ N0, η ∈ Ĝ satisfying the
conditions (V0), (V1), (V2) and (V3) of Lemma 3.8. Observe that by properties (2), (4),
and (5), we have

µjη = µjη′ and γjη = γjη′ if η − η′ ∈ (kerAj)⊥, j ∈ N0.

We define numbers αjη, j ∈ N0, η ∈ Ĝ, recursively with respect to j. Set α0
0 := 1. Define

αjη =


αj−1η /µjη µjη 6= 0,

αj−1
Â−1η

γj−1
Â−1η

µjη = 0 and η ∈ (kerA)⊥,

1 µjη = 0 and η 6∈ (kerA)⊥.

By construction

αjη = αjη′ 6= 0 if η − η′ ∈ (kerAj)⊥, j ∈ N0.

Set vjη =
ωjηϕj

αjη
. Then, (vjη)η∈D(Aj) is a basis since (ωjηϕj)η∈D(Aj) forms a basis of the space Vj

by Lemma 3.7 and property (2). This proves (V0). Likewise, we deduce that (V1) and (V2)
14



hold. To verify (V3) we rewrite it as (V4). Now, if µj+1
η = 0, then (V4) follows directly

from the definition of αj+1
η . Otherwise, we observe the fact that

µj+1
η 6= 0 ⇐⇒ v̂jη(χ0) 6= 0 for some χ0 ∈ (kerAj+1)⊥ + η.

Then, we can verify (V4) inductively in a similar way as in the proof of Lemma 3.8. We
leave details to the reader.

To prove MR5(a), it suffices to show that it holds for the basis (vjη)η∈D(Aj). For χ ∈

(kerA)⊥ we have D̂Av
j
η(χ) = v̂jη(Â

−1χ) = v̂j+1

Âη
(χ) by (V3). Otherwise, if χ 6∈ (kerA)⊥, then

D̂Av
j
η(χ) = 0 = v̂j+1

Âη
(χ) by (V1). This implies that vjη(A·) = vj+1

Âη
∈ Vj+1.

To prove MR5(b), we need to show that Pvj+1
η ∈ Vj. We claim that

(3.8) P̂ vj+1
η (χ) = | kerA|v̂j+1

η (Âχ)

To prove (3.8) we use (2.1)∫
G

Pvj+1
η (Ax)χ(Ax)dx = ∆(A)

∫
G

Pvj+1
η (x)χ(x)dx.

Using the change of variables we have∫
G

Pvj+1
η (Ax)χ(Ax)dx =

∑
a∈kerA

∫
G

vj+1
η (x+ a)χ(Ax)dx

=
∑

a∈kerA

∫
G

vj+1
η (x)χ(Ax)dx

= | kerA|v̂j+1
η (Âχ).

Since G is compact, ∆(A) = 1, which yields equation (3.8).

If η ∈ (kerA)⊥, then we use the property (V3) of Lemma 3.8, which gives v̂j+1
η (Âχ) =

v̂j
Â−1η

(χ). By (3.8) we have Pvj+1
η = | kerA|vj

Â−1η
∈ Vj. If η 6∈ (kerA)⊥, then we use the

property (V1) and (3.8) to get Pvj+1
η = 0.

It only remains to prove the property MR2 of Definition 3.1. Take any χ ∈ Ĝ. By property
(3), there exists j0 such that ϕ̂j0(χ) 6= 0 and for j ≥ j0, ϕ̂j(χ) 6= 0 by property (4). Hence,

(3.4) yields v̂jχ(χ) =
ϕ̂j(χ)

αjχ
6= 0 for all j ≥ j0. We introduce functions hj for j ≥ j0 by

(3.9) hj(x) := 1−
vjχ(x)

v̂jχ(χ)
χ(x), x ∈ G.

By taking the Fourier transform, we have

(3.10) ĥj(κ) =

∫
G

κ(x)dx−
v̂jχ(χ+ κ)

v̂jχ(χ)
, κ ∈ Ĝ.

For κ = 0, ĥj(κ) = 0, and ĥj(κ) 6= 0 can happen only if κ ∈
(

kerAj
)⊥

by (V1).
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Suppose that f ∈ Lp(G) is such that f̂(κ) = 0 for all κ 6∈ (kerAj0)⊥. Equivalently,
f(x) = f(x+ a) for all a ∈ kerAj0 and x ∈ G. For j ≥ j0 define

(3.11) Sjf(x) =
1

mj−j0

∑
[a]∈kerAj/ kerAj0

f(x+ a),

where the above sum runs over representatives of cosets of kerAj/ kerAj0 and m = | kerA|.
The Fourier coefficients of the function Sjf can be non-zero only if κ ∈ (kerAj0)⊥. Hence,
by the fact that the dual of kerAj/ kerAj0 is (kerAj0)⊥/(kerAj)⊥ and [11, Lemma (23.19)]
they are equal to

(3.12) Ŝjf(κ) =
1

mj−j0

∑
[a]∈kerAj/ kerAj0

κ(a)f̂(κ) =

{
f̂(κ) if κ ∈ (kerAj)⊥,

0 otherwise.

Moreover, by the triangle inequality we have

(3.13) ||Sjf ||p ≤ ||f ||p.

We claim that

(3.14) Sjhj0 = hj for j ≥ j0.

Indeed, by (V2) we have

v̂j0χ (χ+ κ) = v̂jχ(χ+ κ) for κ ∈ (kerAj)⊥, j ≥ j0.

Hence, by (3.10) we have

(3.15) ĥj(κ) =

{
ĥj0(κ) for κ ∈ (kerAj)⊥, j ≥ j0,

0 otherwise.

Combining (3.12) and (3.15) yields (3.14).
Let ε > 0. Using the fact that trigonometric polynomials are dense in Lp(G/(kerAj0)),

there exists a trigonometric polynomial q =
∑

κ∈Ĝ cκκ such that cκ = 0 for all κ 6∈ (kerAj0)⊥

and ||hj0 − q||p < ε. Since ĥj0(0) = 0 we can additionally assume that q̂(0) = 0. By our
standing assumption and Proposition 2.4 we have⋂

j∈N0

(kerAj)⊥ = {0}.

Hence, if j is sufficiently large, then Sjq is a zero function by (3.12). By (3.13) and (3.14)
we have

||hj||p = ||Sj(hj0 − q)||p ≤ ||hj0 − q||p < ε.

Consequently, the sequence (hj) converges to 0 as j →∞ in Lp(G) norm. Thus, by (3.9) we

have proved that the character function χ(·) is approximated by the functions
vjχ(·)
v̂jχ(χ)

∈ Vj in

Lp(G) norm. This completes the proof of Theorem 3.3. �
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4. Construction of wavelet functions

In this section, we are interested in constructing a wavelet orthonormal basis of L2(G).
Given an MRA (Vj)j∈N0 of closed subspaces of L2(G), we define the wavelet spaces as the
orthogonal complements of Vj in Vj+1 and we construct wavelet functions whose shifts form
bases in these spaces. In addition, we show the existence of a special type of an MRA,
called minimally supported frequency MSF MRA, for every choice of an epimorphism of a
compact abelian group satisfying our standing assumptions. This yields the construction of
MSF wavelets on general compact abelian groups.

Proposition 4.1. Let (Vj)j∈N0 be an MRA of L2(G) with scaling sequence (ϕj)j∈N0. The
following are equivalent:

(i) the system (Taϕj)a∈kerAj is orthonormal,
(ii) the system (mj/2ωjηϕj)η∈D(Aj) is orthonormal, where the operators ωjη are as in Defini-

tion 3.5 and m = | kerA|,
(iii) we have

(4.1) 〈ωjηϕj, ωjηϕj〉 = m−j for all η ∈ D(Aj).

Proof. By Lemma 3.6 we have

(4.2) Tkϕj =
∑

η∈D(Aj)

ωjη(Tkϕj) =
∑

η∈D(Aj)

η(k)ωjηϕj.

By the Plancherel formula and (3.4) for any f, g ∈ L2(G) we have

(4.3) 〈ωjηf, ω
j
η′g〉 = 〈ω̂jηf, ω̂jη′g〉 = 0 for η 6= η′ ∈ D(Aj).

Hence, for any k, n ∈ kerAj

〈Tkϕj, Tnϕj〉 =

〈 ∑
η∈D(Aj)

η(k)ωjηϕj,
∑

η′∈D(Aj)

η′(n)ωjη′ϕj

〉
=

∑
η∈D(Aj)

η(k)η(n)〈ωjηϕj, ωjηϕj〉.

From [11, Lemma 23.19], we have

(4.4)
∑

η∈D(Aj)

η(n− k) =

{
| kerAj|, for n = k,
0, otherwise.

This gives the required equation (4.1) and this argument can be reversed. �

From now on we will assume that (ϕj)j∈N0 is an orthonormal scaling sequence. That is,
(4.1) in the above proposition holds for all j ∈ N0. Recall that by (3.7) we have

ωjηϕj =
∑

π∈D(A)

µj+1

η+Âjπ
ωj+1

η+Âjπ
ϕj+1,

where coefficients µjη are defined as in Theorem 3.3. Then, by Proposition 4.1 and (4.3)

m1−j = 〈ωj−1η ϕj−1, ω
j−1
η ϕj−1〉
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=

〈 ∑
π∈D(A)

µj
η+Âj−1π

ωj
η+Âj−1π

ϕj,
∑

π′∈D(A)

µj
η+Âj−1π′

ωj
η+Âj−1π′

ϕj

〉
=

∑
π∈D(A)

|µj
η+Âj−1π

|2〈ωj
η+Âj−1π

ϕj, ω
j

η+Âj−1π
ϕj, 〉,

where the last equality is a consequence of Lemma 3.6. Hence, by (4.1) we have

(4.5)
∑

π∈D(A)

|µj
η+Âj−1π

|2 = m.

Now our aim is to find the wavelet spaces and wavelet bases. Let (Vj) be an MRA of
L2(G) and (ϕj) be an orthonormal scaling sequence. We aim to find wavelet functions ψν ,
ν = 1, . . . ,m − 1 in the space Vj+1 such that the systems (Tγψ

ν)γ∈kerAj are orthonormal,
mutually orthogonal for different values of ν, and orthogonal to the space Vj. To construct
such functions we follow the procedure described below.

We write D(A) = {π0, π1, . . . , πm−1}, where π0 = 0. We define b0k = µj+1

η+Âjπk
/
√
m, where

η ∈ D(Aj), k = 0, . . . ,m− 1. By equation (4.5), we have

m−1∑
k=0

|b0k|2 = 1.

We can extend this row to an m ×m unitary matrix B = (bν,k)
m−1
ν,k=0. For example, we can

use Householder’s transform as in [19, (9.19)]. We set

αν,j
η+Âjπk

=
√
mbν,k for ν = 1, 2, . . . ,m− 1, η ∈ D(Aj), k = 0, . . . ,m− 1.

By (3.1) we have defined αν,jχ for all χ ∈ D(Aj+1). Then we extend this sequence to Ĝ by
setting

αν,jχ = αν,jη for χ ∈ (kerAj+1)⊥ + η, η ∈ D(Aj+1).

Now, we define the wavelet functions ψνj for ν = 1, . . . ,m− 1, in terms of Fourier transform
by the formulas

(4.6) ψ̂νj (χ) = αν,jχ ϕ̂j+1(χ) for χ ∈ Ĝ,
and the wavelet spaces by

W
(ν)
j := span{Taψνj : a ∈ kerAj}.

Then we have the following theorem.

Theorem 4.2. Suppose (Vj)j∈N0 is an MRA of L2(G) and (ϕj)j∈N0 is an orthonormal scaling
sequence. Then, for any j ∈ N0 we have

(4.7) Vj+1 = Vj ⊕W (1)
j ⊕ · · · ⊕W

(m−1)
j ,

and the system (Taψ
ν
j )a∈kerAj is an orthonormal basis of the space W

(ν)
j for ν = 1, . . . ,m−1.

As a corollary of Theorem 4.2 and MR2 the wavelet system

{Taψνj : a ∈ kerAj, j ∈ N0, ν = 1, . . . ,m− 1},

together with the constant function ϕ0 ≡ 1 forms an orthonormal basis of L2(G).
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Proof. For any fixed η ∈ D(Aj) and j ∈ N0, by (3.7) we have

(4.8) ωjηϕj =
m−1∑
k=0

µj+1

η+Âjπk
ωj+1

η+Âjπk
ϕj+1.

Analogously, by Lemma 3.6 and (4.6) we have

(4.9) ωjηψ
ν
j =

m−1∑
k=0

αν,j
η+Âjπk

ωj+1

η+Âjπk
ϕj+1.

In particular, (4.9) implies that ψνj ∈ Vj+1 and hence W
(ν)
j ⊂ Vj+1 for all ν = 1, . . . ,m− 1.

We claim that:

(i) W
(ν)
j ⊥ Vj for all ν = 1, . . . ,m− 1,

(ii) W
(ν)
j ⊥ W

(κ)
j for all ν 6= κ, ν, κ = 1, . . . ,m− 1.

For (i), first note that
m−1∑
k=0

αν,j
η+Âjπk

µj+1

η+Âjπk
= 0 by the fact that the matrix B constructed

above is unitary. Using (4.1), (4.3), (4.8), and (4.9) we have

〈ωjηψνj , ωjηϕj〉 =

〈m−1∑
k=0

αν,j
η+Âjπk

ωj+1

η+Âjπk
ϕj+1,

m−1∑
k′=0

µj+1

η+Âjπk′
ωj+1

η+Âjπk′
ϕj+1

〉

=
m−1∑
k=0

αν,j
η+Âjπk

µj+1

η+Âjπk
〈ωj+1

η+Âjπk
ϕj+1, ω

j+1

η+Âjπk
ϕj+1〉 = 0.

This proves (i) by (4.3). Likewise, since B is unitary, we have that
m−1∑
k=0

αν,j
η+Âjπk

ακ,j
η+Âjπk

=

mδν,κ for ν, κ = 1, . . . ,m− 1. Hence,

〈ωjηψνj , ωjηψκj 〉 =
m−1∑
k=0

αν,j
η+Âjπk

ακ,j
η+Âjπk

〈ωj+1

η+Âjπk
ϕj+1, ω

j+1

η+Âjπk
ϕj+1〉 = m−jδν,κ.

This proves our claim (ii). Moreover, by Proposition 4.1, (Tkψ
ν
j )k∈kerAj is an orthonormal

basis of W
(ν)
j . Since

dimVj = dimW
(ν)
j = mj

and
Vj ⊕W (1)

j ⊕ · · · ⊕W
(m−1)
j ⊂ Vj+1

the dimension count implies the equality in the above inclusion. �
Next we tackle the problem of the existence of an MRA for general compact abelian groups.

Let (ϕj)j∈N0 be a scaling sequence of an MRA. Note that by Theorem 3.3 the supports of
ϕ̂j satisfy

| supp ϕ̂j| ≥ mj for all j ∈ N0.

This motivates the following definition of minimally supported frequency (MSF) multireso-
lution analysis.

Definition 4.3. We say that an MRA (Vj)j∈N0 is MSF if its scaling sequence (ϕj)j∈N0 satisfies

(4.10) | supp ϕ̂j| = mj for all j ∈ N0.
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The following theorem characterizes all minimally supported frequency MRAs.

Theorem 4.4. Suppose that (Vj)j∈N0 is an MSF multiresolution analysis. Then there exists

a sequence (Kj)j∈N0 of subsets of Ĝ such that

(4.11) Vj = {f ∈ L2(G) : supp f̂ ⊂ Kj}
satisfying for all j ∈ N0 the following properties:

(i) K0 = {0},
(ii) |Kj ∩ (η + (kerAj)⊥)| = 1 for all η ∈ D(Aj),

(iii) Kj ⊂ Kj+1,

(iv) Â(Kj) ⊂ Kj+1, and

(v)
⋃∞
j=0Kj = Ĝ.

Conversely, if a sequence (Kj)j∈N0 of subsets of Ĝ satisfies (i)–(v), then (Vj)j∈N0 given by
(4.11) is an MSF MRA.

Proof. Suppose that (Vj)j∈N0 is an MSF MRA. Define sets Kj = supp ϕ̂j. We claim that
(4.11) holds. Indeed, the inclusion ⊂ in (4.11) is trivial. By MR4 and (4.10) the dimensions
of the spaces in (4.11) are both equal to mj. Hence we have an equality in (4.11).

Parts (1), (2), and (3) of Theorem 3.3 imply (i), (ii), and (v), respectively. By part (4)
of Theorem 3.3, if χ ∈ Kj−1 for some j ∈ N, then ϕ̂j−1(χ) 6= 0 implies that ϕ̂j(χ) 6= 0. This
proves (iii). Likewise, by part (5) of Theorem 3.3, if χ ∈ Kj, then ϕ̂j(χ) 6= 0 implies that

ϕ̂j+1(Âχ) 6= 0. Hence, Âχ ∈ Kj+1, which proves (iv).

Conversely, if a sequence (Kj)j∈N0 of subsets of Ĝ satisfies (i)–(v), then we define a sequence
of functions (ϕj) by

(4.12) ϕ̂j = 1Kj .

Let Vj = span{Taϕj : a ∈ kerAj}. By Lemma 3.7 dimVj = mj. On the other hand, by (ii)
we have |Kj| = mj, which implies (4.11) by the above argument. Likewise, using Theorem
3.3 one can verify that (ϕj)j∈N0 is a scaling sequence. �

The following theorem proves that there always exist MRAs under our standing assump-
tions.

Theorem 4.5. Suppose G is a compact abelian group and an epimorphism A : G → G
satisfies the standing assumptions: kerA is finite and

⋃
j∈N0

kerAj is dense in G. Then, there

exists an MSF MRA (Vj)j∈N0 associated with (G,A).

Proof. By Theorem 4.4 it suffices to construct a sequence (Kj)j∈N0 of subsets of Ĝ satisfying

(i)–(v). By the standing assumptions G is a separable compact abelian group and hence Ĝ is

discrete and countable. We enumerate Ĝ \ Â(Ĝ) as {χ1, χ2, . . .}. Define K0 = {0}. Assume
that we have already defined sets K0, . . . , Kj0 satisfying the following three properties for all
1 ≤ j ≤ j0:

|Kj ∩ (η + Âj(Ĝ))| = 1 for all η ∈ Ĝ,(4.13)

Kj−1 ⊂ Kj,(4.14)

Â(Ĝ) ∩Kj = Â(Kj−1).(4.15)
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Our goal is to construct a set Kj0+1 such that (4.13)–(4.15) hold for j = j0 + 1. Let

K ′j0+1 = Kj0 ∪ Â(Kj0). We claim that

(4.16) |K ′j0+1 ∩ (η + Âj0+1(Ĝ))| ≤ 1 for all η ∈ Ĝ.

By (4.13) we have

|Kj0 ∩ (η + Âj0+1(Ĝ))| ≤ 1 for all η ∈ Ĝ,

|Â(Kj0) ∩ (η + Âj0+1(Ĝ))| =

{
1 η ∈ Â(Ĝ),

0 otherwise.
(4.17)

Hence, (4.16) might fail only if there exist η ∈ Â(Ĝ), ξ1 ∈ Kj0 , ξ2 ∈ Â(Kj0) such that

ξ1, ξ2 ∈ η + Âj0+1(Ĝ). This implies that ξ1 ∈ Â(Ĝ). By (4.14) and (4.15),

(Â)−1(ξ1) ∈ Kj0−1 ⊂ Kj0 .

On the other hand, (Â)−1(ξ2) ∈ Kj0 and both (Â)−1(ξ1) and (Â)−1(ξ2) belong to the same

coset of Ĝ/Âj0(Ĝ). Hence, by (4.13), we have ξ1 = ξ2, which proves (4.16).
By (4.16) and (4.17) we have

(4.18) |K ′j0+1 ∩ (η + Âj0+1(Ĝ)| = 1 for all η ∈ Â(Ĝ).

Now we find the smallest m ∈ N such that

K ′j0+1 ∩ (χm + Âj0+1(Ĝ)) = ∅.

Then, we find the smallest m′ ∈ N such that

(K ′j0+1 ∪ {χm}) ∩ (χm′ + Âj0+1(Ĝ)) = ∅,

and we keep adding minimal elements from Ĝ \ Â(Ĝ) until we have constructed the set
Kj0+1 = K ′j0+1 ∪ {χm, χm′ , . . .} such that (4.13) holds for j = j0 + 1. This will happen after
a finite number of steps. The property (4.14) holds for j = j0 + 1 by the definition of Kj0+1.
By the construction of the set Kj0+1 and the inductive hypotheses (4.14) and (4.15), we have

Kj0+1 ∩ Â(Ĝ) = (Kj0 ∪ Â(Kj0)) ∩ Â(Ĝ) = Â(Kj0) ∪ (Â(Ĝ) ∩Kj0)

= Â(Kj0) ∪ Â(Kj0−1) = Â(Kj0).

This proves (4.15) for j = j0 + 1, and completes the inductive step. Therefore, we have
constructed sets (Kj) satisfying (i)–(iv) in Theorem 4.4.

Finally, the property (v) follows by the choice of minimal elements in the above construc-
tion. Indeed, suppose that there exists an element χm which was never chosen. That is,
there exists j0 ∈ N such that χ1, . . . , χm−1 ⊂ Kj0 and χm 6∈ Kj for all j ≥ j0. Let χ ∈ Kj0

be such that χm ∈ χ+ Âj0(Ĝ). Then, by our construction we have

(4.19) χm ∈ χ+ Âj(Ĝ) for all j ≥ j0.

This is shown inductively using the fact that χ 6∈ Â(Ĝ) and the decomposition

(4.20) χ+ Âj(Ĝ) =
⋃

π∈D(A)

χ+ Âjπ + Âj+1(Ĝ).
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Indeed, suppose that χm ∈ χ+ Âj(Ĝ). Let π ∈ D(A) be such that

χm ∈ χ+ Âjπ + Âj+1(Ĝ).

Then, by the construction of Kj+1 we have

∅ 6= K ′j+1 ∩ (χ+ Âjπ + Âj+1(Ĝ)) = Kj ∩ (χ+ Âjπ + Âj+1(Ĝ)).

Since χ ∈ Kj0 ⊂ Kj, by (4.13) and (4.20), the above intersection is a singleton {χ}. Hence,

we have π = 0 and thus χm ∈ χ+ Âj+1(Ĝ), which proves (4.19). By the fact that

∞⋂
j=0

Âj(Ĝ) = {0}

and (4.19) we have χ = χm, which is a contradiction. This proves (v) and completes the
proof of Theorem 4.5. �

We finish the paper by illustrating how Theorem 4.2 can be applied in the context of an
MSF MRA given by Theorem 4.5 to produce orthonormal MSF wavelets.

Theorem 4.6. Suppose that (Vj)j∈N0 is an MSF MRA associated with (G,A) as in Theorem
4.5. Let m = | kerA|. Then there exists wavelet functions ψνj , j ∈ N0, ν = 1, . . . ,m − 1,

such that (Taψ
ν
j )a∈kerAj is an orthonormal basis of spaces W

(ν)
j satisfying (4.7) and each ψνj

has minimal support in frequency

(4.21) | supp ψ̂νj | = mj for all j ∈ N0, ν = 1, . . . ,m− 1.

Proof. Recall that the spaces Vj are of the form (4.11) for some sequence (Kj)j∈N0 of subsets

of Ĝ satisfying conditions (i)–(v) of Theorem 4.4. Moreover, by (4.12) we can assume that
the sequence of scaling functions (ϕj)j∈N0 is orthonormal and given by

(4.22) ϕ̂j = m−j/21Kj .

We can then follow the general construction procedure of Theorem 4.2 by observing that the
first row of the m ×m matrix B contains exactly one non-zero entry, which is equal to 1.
To guarantee that this matrix is unitary it suffices to choose for B a permutation matrix.
Then, one can show that the wavelets defined by (4.6) satisfy (4.21).

Alternatively, we can give a more direct construction of wavelet functions as follows. Since

(kerAj)⊥ = Âj(Ĝ) =
⋃

π∈D(A)

Âjπ + Âj+1(Ĝ),

by (ii) of Theorem 4.4 we have for all j ∈ N0,

|Kj+1 ∩ (η + Âj(Ĝ)| = m for all η ∈ D(Aj).

Hence, we can find disjoint sets K
(0)
j , . . . , K

(m−1)
j such that K

(0)
j = Kj and

(4.23) Kj+1 = Kj ∪K(1)
j ∪ . . . ∪K

(m−1)
j

and

(4.24) |K(ν)
j ∩ (η + Âj(Ĝ))| = 1 for all η ∈ D(Aj), ν = 1, . . . ,m− 1.
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Define wavelet functions ψνj by

(4.25) ψ̂νj = m−j/21
K

(ν)
j
.

By Proposition 4.1 (Taψ
ν
j )a∈kerAj is an orthonormal basis of spaces

W
(ν)
j = {f ∈ L2(G) : supp f̂ ⊂ K

(ν)
j }

satisfying (4.7) by (4.23). Finally, (4.21) follows immediately from (4.24) and (4.25). �
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