Variable Anisotropic Singular Integral Operators
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Abstract. We introduce the class of variable anisotropic singular integral operators
associated to a continuous multi-level ellipsoid cover © of R™ introduced by Dahmen,
Dekel, and Petrushev [13]. This is an extension of the classical isotropic singular
integral operators on R™ of arbitrary smoothness and their anisotropic analogues
for general expansive matrices introduced by the first author [5]. We establish the
boundedness of variable anisotropic singular integral operators 1" on the Hardy spaces
with pointwise variable anisotropy HP(0), which were developed by Dekel, Petrushev,
and Weissblat [15]. In contrast with the general theory of Hardy spaces on spaces of
homogenous type, our results work in the full range 0 < p < 1.

1 Introduction

Calderén-Zygmund operators play an important role in harmonic analysis on R™ and
are the central object of study. They are bounded not only on Lebesgue LP(R™) spaces
for 1 < p < oo, but also on its natural extension for 0 < p < 1, the Hardy HP(R")
spaces. While Hardy spaces were initially defined in the complex variable setting, they
were extended to real-variable setting in the celebrated works of Stein and Weiss [32] and
Fefferman and Stein [17]. Since then, Hardy spaces have been studied in different settings
and domains. Among the most general setting, where Hardy spaces are studied, are certain
metric measure spaces known as spaces as homogeneous type, which were introduced by
Coifman and Weiss [11, 12]. However, due to lack of higher order smoothness and vanishing
moments, such spaces can be meaningfully defined only when p is close to 1, see [2, 23, 24].

In this paper we are interested in developing results for Hardy spaces on R™ which
hold for the entire range of 0 < p < 1. This includes classical isotropic Hardy spaces of
Fefferman and Stein [17], parabolic Hardy spaces of Calderén and Torchinsky [9, 10], and
anisotropic Hardy space associated with expansive matrices [5] which were also studied
in [3, 4, 8, 25, 34, 35]. However, the most general class of (unweighted) Hardy spaces on
R"™ defined for the entire range of 0 < p < 1 are spaces with pointwise variable anisotropy
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developed by Dekel, Petrushev, and Weissblat [15]. More precisely, they correspond to
the largest class of spaces of homogeneous type on R™ equipped with Lebesgue measure
for which Hardy spaces were developed for all 0 < p < 1. Roughly speaking they match
with quasi-distances on R™ for which balls are equivalent to ellipsoids [7]. More precisely,
these spaces are determined by continuous ellipsoid covers of R™, which were introduced
and studied by Dahmen, Dekel, and Petrushev [13].

Several results for spaces with pointwise variable anisotropy were shown including grand
maximal function characterization, atomic decomposition, and classification of Hardy
spaces [15], the duality of Hardy spaces [16], and molecular decomposition [1]. These
results are generalizations of well-known results for Hardy spaces in the classical isotropic
setting of R™, parabolic setting, and anisotropic setting. However, an important miss-
ing ingredient in the setting of continuous ellipsoid covers is a satisfactory definition of
Calderon-Zygmund operators of arbitrary smoothness. In this paper we show this remain-
ing link by providing the definition of Calderén-Zygmund operators which is the extension
of the class of operators in the anisotropic setting [5] and at the same type in the setting
of spaces of homogeneous type [11].

The theory of singular integral operators plays an important role in harmonic analysis
and partial differential equations; see, for example, [18, 19, 31]. In the classical isotropic
setting of R™ we consider Calderén-Zygmund operators T with regularity s of the form

Tf(z)= - K(z,y)f(y)dy, x & supp f, f € CZ(R™),

whose kernel K (z,y) satisfies the bound
|0, K(z,y)| < Clz — y| 1ol for all z # y and multi-indices |a| < s. (1.1)

It is well-known that operators T are bounded on isotropic Hardy spaces HP(R"™) provided
that s > n(1/p — 1) and T preserves vanishing moments 7% (z%) = 0 for |a| < s, see
[30, Proposition 7.4.4], [31, Theorem III.4]. The first author [5] introduced anisotropic
Calderon-Zygmund operators associated with expansive dilations and has shown their
boundedness on anisotropic Hardy spaces, where the anisotropy is fixed and global on R".
An extension of these results to product anisotropic Hardy spaces was done in [27]. In the
context of Hardy spaces with pointwise variable anisotropy [15] we introduce the following
class of singular integral operators adapted to variable anisotropy depending on a point x
in R™ and a scale t in R.

Suppose that © is a continuous ellipsoid cover consisting of ellipsoids 6, ; with center
x € R™ and scale t € R of the form 6, ; = M, ;(B") + x, where M, ; is an invertible matrix
and B" is the unit ball in R™, see Definition 2.1. An ellipsoid cover © defines a spaces of
homogeneous type [13] with quasi-distance pg defined as infimum of ellipsoid volumes

po(z,y) = inf {|0] : z,y € 0}.
0coO
An anisotropic analogue of the bound (1.1) takes the form

{85‘[}((-, My m)|(z, My*,lny)‘ < C/pe(z,y) for all z # y and multi-indices || S(s, |
1.2
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where m = —logy pe(z,y). It can be shown that (1.2) is a generalization of (1.1) when
O is the isotropic cover consists of balls 6, ; = 27'B" 4+ z. Moreover, (1.2) with regularity
s = 1 implies the well-known estimates in the setting of spaces of homogeneous type

|K(z,y)| < C/pe(x,y),

\16
KG) = KGo)| < OO0 i petuy) < 5pelenn)

where & is the triangle inequality constant of pg. The main result of this paper shows
the boundedness of variable anisotropic singular integral operators T' from HP(©) to itself
and from HP(O) to Lebesgue spaces LP(R™) for the entire range of 0 < p < 1, provided
regularity and vanishing moments of T are met analogous to the isotropic case. This
generalizes classical results for isotropic Hardy spaces of Fefferman-Stein [17, 30] and
anisotropic Hardy spaces [5].

The proof of the main theorem is conceptually simple, but technically challenging. The
central idea is to show that 7" maps atoms into uniformly bounded functions in H?(O)
known as molecules. Then, the atomic decomposition of HP(©) yields the boundedness
of T'. The main technical problem with this argument is that boundedness on atoms does
not necessarily imply boundedness of T" unless equivalence of finite and infinite atomic
decompositions is shown [6, 29]. Instead, motivated by the paper of Huang, Liu, Yang,
and Yuan [26], we improve the Calderén-Zygmund decomposition of HP(©) by showing
that atomic decomposition of any f € HP(0©)N LI(R™) also converges in L4(R™) norm for
1<g<oo.

This paper is organized as follows. In Section 2, we first recall notation, definitions, and
properties of continuous ellipsoid cover © and quasi-distance pg that are used throughout
the paper. In Section 3 we define the Hardy space HP(©) by means of the radial grand
maximal function and the nontangential grand maximal function with arbitrary aperture
and recall its characterization by atomic decompositions. In the next section we show
technical improvements in the Calderén-Zygmund decomposition and the atomic decom-
position of variable anisotropic Hardy space HP(©), which were originally established by
Dekel, Petrushev, and Weissblat [15]. Section 5 is devoted to variable anisotropic sin-
gular integral operators (VASIOs). We show that VASIOs are indeed an extension of
the classical isotropic singular integral operators on R” of arbitrary smoothness and their
anisotropic analogues for general expansive matrices. Finally, in Section 6 we prove main
theorems by showing that 7" is bounded from H?(©) to LP(R™) and bounded from HP(©)
to itself.

Finally, we make some conventions on notation. Let N := {1, 2, ...} and Ny := {0} UN.
For any a := (a1,...,0p) € N, |o| := a1 + -+ + o, and 0% := (aixl)al ...(%)a".
Throughout the whole paper, we denote by C' a positive constant which is independent of
the main parameters, but it may vary from line to line. The symbol D < F' means that
D <CF. If DS Fand F <D, we then write D ~ F. For any sets E, FF C R", we use
EC to denote the set R® \ E. Let S be the space of Schwartz functions, 8" the space of
tempered distributions, and CV the space of continuously differentiable functions of order
N.
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2 Anisotropic Continuous Ellipsoid Covers of R"

In this section we recall the properties of continuous ellipsoid covers which were originally
introduced by Dahmen, Dekel, and Petrushev [13]. An ellipsoid £ in R™ is an image of the
Euclidean unit ball B" := {x € R" : |z| < 1} under an affine transform, i.e.,

£ .= Mg(Bn) + c¢,

where M¢ is an invertible matrix and c¢ is the center. For any ellipsoid £ and A > 0, define
a dilated ellipsoid A - £ by
A f = AM&(B”) =+ Ce.

We begin with the definition of continuous ellipsoid covers, which was introduced in
[13, Definition 2.4].

Definition 2.1. We say that
©:={0;,:xcR",teR}

is a continuous ellipsoid cover of R™, or shortly a cover, if there exist constants p(0) :=
{ai1,...,ag} such that:

(i) For every z € R™ and t € R, there exists an ellipsoid 6, ¢ := M, +(B") + z, where
M, + is an invertible matrix and z is the center, satisfying

a127" < |05,4] < a227" (2.1)

(ii) Intersecting ellipsoids from O satisfy a “shape condition”, i.e., for any z, y € R",
teRand s>0,if 0y N0y ¢ys # 0, then

az2” " < 1/ [[(My,45) ™ Maye|| < [[(Ma,e) ™ My, p4s | < a5277° (2:2)
Here, || - || is the matrix norm of M given by || M || := max,—; [Mz|.

The word continuous refers to the fact that ellipsoids 6, ; are defined for all values of
x € R" and t € R. In contrast, a discrete ellipsoid cover is indexed over integer scales t € Z
with discrete choice of centers z € Dy C R"™, which satisfy some additional conditions, see
[13, Definition 2.1], such as (J,ep, 0zt = R".

It is worth adding that for our purposes it is not necessary to assume any measurability
or continuity condition on a continuous ellipsoid cover ©. We say that an ellipsoid cover
O is pointwise continuous if for every ¢ € R, the matrix valued function x — M, is
continuous. That is,

Myt — Myy|| = 0 as |2/ —z| — 0. (2.3)

The condition (2.3) is implicitly used in [15] to guarantee that the superlevel set £ cor-
responding to the grand maximal function, which is given by (4.1), is open. However,
as we will see this assumption is not necessary since it is always possible to construct an
equivalent ellipsoid cover

=:={&,:x e Rt e R}
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such that = is pointwise continuous and = is equivalent to ©. We say that two ellipsoid
covers © and = are equivalent if there exists a constant ¢ > 0 such that for any z € R"”
and t € R, we have

gx,t+c C sz,t C ga:,tfc-

Using the shape condition (2.2), it is easy to see that this is equivalent to the existence of
a constant C' > 0 such that

1
— &, 0, CEpy
Cf,tC tC §xt

Theorem 2.2. Given an ellipsoid cover ©, there exists an equivalent ellipsoid cover =,
which is pointwise continuous.

To prove Theorem 2.2, we need several lemmas.

Lemma 2.3. Suppose A and B are n X n positive definite matrices. Let ¢ > 0 be a
constant. The following are equivalent:

(i) |A7'B] < e,
(i) A=2 < 2B72, where < denotes the partial order among hermitian matrices,
(iii) B(B™) C A(cB™).
Proof. (i) is equivalent to A~!B(B") C ¢B", which is equivalent to (iii). (i) is also equiv-
alent to
<A*2fu,v> = HAAUHQ < HBflsz =c? <B*2v,fu> for all v € R",
which shows the equivalence with (ii). O

Lemma 2.4. For any ellipsoid cover © and fized t € R, there exists a bounded continuous
function v : R™ — (0, 00) such that balls B(x,r(z)) C Oy for all x € R™.

Proof. Fix t € R. For x € R" let r, := ||Mx_t1||*1 Since HMI_tler = 1, we have
M, !r.(B™) C B" and hence

B(z,ry) C 0y =+ M, (B"). (2.4)

If B(z',ry) N B(x,ry) # 0 for 2’ € R™, then 6, N 6,; # 0, and the shape condition
implies that
1M | < 1M Mol M || < as[|1 M5

Hence, é% = éHM;tlH_l <ML ~t = ry. Similarly, we have 7, < asry. Therefore,

1
— 1y <1y < asry, whenever B(z,r;) N B(x',ry) # 0. (2.5)
as

By (2.1) we have |rg|" ~ |B(z,72)| < |04 ~ 27¢ for any x € R™. Applying the Vitali

covering lemma for the cover { B(z, Tl()rx)}xeRn, there exists a sequence {x;};cn in R™ such
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that the balls B(2;, 157s,), @ € N, are mutually disjoint and R" = (J;2; B(x;, 375,). For
simplicity we denote r; := r,,. For j € N we let

1(j) := {’L : B(xi,ri) N B(x]’,’l“j) #* @}
By (2.5) we have
1
B (xi, 10”) C B(zj,7i) C B(xj, (2a5 + 1)r5)
and hence ;¢ ;) B(i, +&7i) C B(wj, (2a5 4+ 1)r;). From this and (2.5), it follows that
J1(j) < Yici(y) |Bl@i, i) - >icr(j) 107 B(xi, 1571))
- miniel(j) |B(£L‘Z,7"z)‘ B ’B(.’I}j, %rj)]

< 10"‘B($j, (2a5 + l)Tj)‘
B |B(2j, 2=75)]

(2.6)

= [10a5(2a5 + 1)]" =: L.

Choose a function ¢ € C°° such that suppp CB*, 0 < ¢p <1 and ¢ =1 on %IB%”. For

every 1 € N, define
ry T — T
¢i() == %Tff) < " > )

where 7§ ;= min{r; : B(z;,r;) N B(xj,7;) # 0} and L is as in (2.6). For z € R" we define

r(x) = Z oi(x).
=1

This is a well-defined continuous function since on each ball B(z;,7;), the above series
has < L non-zero terms corresponding to i € I(j). More precisely, if x € B(x;,r;), then
by (2.5), we have

ry T Tj
T(QC)SZ@(%)SZESZ%TSCES%-
)

i€l(j i€I(4) > i€l ()

This together with (2.4) implies that B(z,r(z)) C B(z,7;) C 054 Finally, note that for
any z € R™ we have r(z) > 0 since z € B(z;, 37;) for some i € N and hence ¢;(z) > 0. O

Next we collect results about ellipsoid covers from [13, 14, 15] which will be used
subsequently.

Lemma 2.5. (i) Let © be an ellipsoid cover. Then there exists J := J(p(©)) > 1 such
that for any x € R™ and t € R,
1
ezv,t - 5 . ex,t—J-
(i) For any x,y € R" and s,t € R with t <'s, if 05,1 N0y s # 0, there exists a constant
v > 0 such that
9%5 - exrtf’}“
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Part (i) of Lemma 2.5 is shown in [15, Lemma 2.3]. Part (ii) is an easy adaptation of
the proof of [13, Lemma 2.8], see also [15, Lemma 2.4]. Note that by increasing v and J if
necessary we can assume that J = . However, we prefer to keep a separate notation for
J and 7 to be consistent with the convention used in [13, 15]. Using Lemma 2.5 we show
the following result.

Lemma 2.6. Let © be an ellipsoid cover. Suppose that there exists a constant ¢ > 0 and
a family of invertible matrices { Ny} such that

(M) Noall [[(No) Mogll S¢ for allz € Rt € R, (2.7)

Then, the family
Ei={&=Np(B")+z: 2 R" teR}

is an ellipsoid cover, which is equivalent to ©.

Proof. By (2.7) we have
Y| Mys|| < ||Npgl| < cf|[Myy||  forall z € R™ ¢ € R.

Hence, €44 ~ 024 ~ 27" and E satisfies (2.1). By Lemma 2.5(i) and (2.7), there exists
a constant p := p(p(0),c) > 0 such that

Ex,t CC- Oy COryp for all x € R",t € R. (2.8)

Take any x, y € R”, t € R and s > 0 such that §, ;N&y4+s # 0. Since O, 4, N0y —ts # 0,
by the right-hand side of (2.2) we have

||(Nz,t)_1Ny,t+S|| = ||(Nm,t)_lMx,t(Mx,t)_lMyanrs(My,tJrS)_lNy,Hs|‘
< ||(Ma) ™ Myps|
= C2"(Mfcat)_lMw,t—M(Mw,t—u)_lMy,t—u+8(My7t—u+S)_1My,t+s"
< 02(a32_a4y)_1a52_a6y||(Mx,t7u)_1My,t7u+8”
< 02(a5/a3)2(“4_a6)”a52_a68 =: a527 %%,
This shows that = also satisfies the right-hand side of the shape condition (2.2). The
left-hand side of (2.2) for Z is proved in a similar manner. Therefore, = is an ellipsoid

cover. Consequently, we have a symmetric counterpart of (2.8). That is, there exists a
constant ' = p/(p(Z),¢) > 0 such that

Or,t CC- ot Capmp for all z € R™, ¢t € R. (2.9)
This shows that the ellipsoid covers © and = are equivalent. O

Proof of Theorem 2.2. Without loss of generality, we can assume that the matrices M ;
defining ellipsoids 6, ; are positive definite. Indeed, it suffices to use the matrix absolute
value, which is defined for a matrix A as |A| := (AA*)'/2. It is immediate that 4 and
its absolute value |A| determine the same ellipsoid A(B™) = |A|(B"™). Hence, by Lemma
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2.3 we can replace matrices M, ; by their absolute values |M, |, which yields the same
ellipsoid cover © satisfying (2.1) and (2.2).

Fix t € R. Let r := r, : R" — (0, co) be the continuous function as in Lemma 2.4.
Choose a sequence {z}} of points in R™ such that balls (J, .y B(zx, 7(21)) = R™. Choose
a partition {Ey }ren of R™ into measurable sets such that Ey C B(zg, r(xg)) for all k € N.
For example, define

B(x1,7(x1)) k=1,
Ep = k—1
B(zy,r(zx) \ U=y Blzi,r(2) k=2
Define Mm,t = My, 1 if x € E}, for some k € N. Finally, define the family
E={& =Ny (B")+2z: 2€R", teR},

using positive definite matrices

o _1/2
Mot = [\3(95717’(37))\ /B(x,r(ac)) <My’t> 2 dy} . (2.10)

Since the function r is bounded we have

|

where k € N is such that y € Ej, and hence zy, € B(y, ||7||o0). Therefore, the vector-valued
integral in (2.10) is well defined with values in positive definite matrices. By the continuity
of the function r we can easily show that

Lo ! / ()"
T _ , Y
1B(a, (@) Jp@a@) ©

is a continuous positive definite matrix valued function. Using the fact that the square
root mapping M — M 1/2 i3 continuous on the space of all positive definite n x n matrices
M, and the inverse mapping M — M~! is continuous on the space of n x n invertible
matrices, we deduce that x — N, ; is also continuous.

It remains to show that = is actually an ellipsoid cover, which is equivalent with ©.
Fix z € R". Take any y € B(z,r(z)) and let ¥ € N be such that y € Ej. Since
Y € 054 N0Oy, + # 0 by the shape condition and Lemma 2.3 we have

(a5)72(Mw,t)72 < (ka,t)iz < (a5)2<Mﬂc,t)72‘

= |(Mpp) | < 1/r(z) < sup  1/r(z) for all y € R,
z€B(y,||r[loo)

Hence,
-2 -2 7 )2 2 -2
(a5) 2 (M) 2 < (My) < (052 (M)
Integrating the above inequality over y € B(z,r(z)) yields
(a5) 72 (M) ™% < (Nog) ™2 < (a5)* (M) ™2

Hence, by Lemmas 2.3 and 2.6 we deduce that = is an ellipsoid cover which is equivalent
with ©. O
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The following lemma is an immediate consequence of Lemma 2.5.

Lemma 2.7. Letz € R", t € R and v be as in Lemma 2.5(ii). Then, the sets 0, ¢_(j11)\
Oz,t—j~, J € Z, are pairwise disjoint and

R™ = 6,0 U | (B 1—i41)y \ O, t—j); (2.11)
Jj€No

R™\ {2} = [ J (00, t—(+1)7 \ On,-5)- (2.12)
jez

Proof. By Lemma 2.5(ii) we have 0. ;—j, C 0, —(j41)y for all j € Z. Hence, 0, ¢_(j11), \
Oz t—jv, J € Z, are pairwise disjoint. Moreover, by Lemma 2.5(i) for any k£ € Ny we have

1
ex,t - 27 : Ox,t—kJ-

Hence,

k
R" = U 2" ex,t C U Gac,t—kJ = U ear,tfj'y C Rn’
keNy keNp J€Np

and the above inclusions are equalities. Likewise,

1

0:p,t+kJ - 27 : Hac,t

implies that

{r} = ﬂ 2% Op,t = ﬂ Or t4+kg = ﬂ O, 14 -

keNy keNp 7€Np

Hence, (2.11) and (2.12) follow immediately. O

Definition 2.8. A quasi-distance on a set X is a mapping p : X x X — [0,00) that
satisfies the following conditions for all x,y, z € X:

(i) plz,y) =0z =y;

(ii) p(z,y) = ply,z);

(iii) For some k > 1,
p(x,y) < K(p(x, 2) + p(y, 2)).

Dekel, Han, and Petrushev have shown that an ellipsoid cover © induces a quasi-distance
pe on R™ see [14, Proposition 2.1]. Moreover, R™ equipped with the quasi-distance pg
and the Lebesgue measure is a space of homogeneous type, [13, Proposition 2.10].

Proposition 2.9. Let © be a continuous ellipsoid cover. The function po : R™ x R® —
[0,00) defined by
pol(z,y) := inf {|6]: 2,y € 6} (2.13)
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s a quasi-distance on R™. Moreover, the Lebesgue measure of balls
Bo(z,7) :={y € R" : po(z,y) <1} (2.14)
with respect to the quasi-distance pg satisfies
|Bpg (x,7)] ~ 1 forallz e R", r >0,
with equivalence constants depending only on p(©).

The following lemma is proved for discrete ellipsoid covers [14, Theorem 2.1] and con-
tinuous ellipsoid covers [15, Theorem 2.9].

Lemma 2.10. Let © be a continuous ellipsoid cover and pe induced by (2.13). There
exist positive constants Cy and Cy depending only on z and p(©) such that

1 1
Colx — z]*a < |po(z,2)| < Cilz — 2|6 for all z,z € R" and pe(z,z) >1

The following result is stated without the proof in [15, Theorem 2.7]. For completeness,
we include its proof.

Proposition 2.11. Let © be a continuous ellipsoid cover and let pg be a quasi-distance
as in (2.13). For any ball B,y (x,r) with x € R™ and r > 0, there exist t1,ty € R such that

‘933,151 - BPe(xvr) - 917752 and |‘95L“,t1| ~ |0x,t2’ ~T
where equivalence constants depend only on p(O).

Proof. By (2.13), any ball B, (x,r) with respect to quasi-distance pg is a union of all
ellipsoids # in © that contain x and |6| <, i.e.,

Bpo(w,r) = {y € R s polwy) <rk = |J o (2.15)
z€heO, |0|<r

We claim that there exists an ellipsoid 6, ¢, € © such that [0, +,| < r and |05 ¢ | ~ r. In
fact, by (2.1), we know that for the two constants a; := log, a; and as := log, ag, it holds
true that

27 <10, 4| <272 for any 2 € R™ and t € R.

Hence, by a substitution = ¢t — a9, we have

<27t

—i+ai—a
27T <0, hg,| <
Taking t; := ¢ + a9 and 5= 2_5, leads to

pi—mly < |, | <

N3

This shows that

02,4, C Bpg(x,7) and |0y ¢ | ~ 7. (2.16)
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Let ¢ € R such that a127" = r. Then for any ellipsoid § = 6, s € © with 0] < r we
have
a127% < |ly 5| <r= a2t < |0 ¢

Hence, t < s. In addition, if x € 6, 4, then by Lemma 2.5(ii)
Oy, s C Oz tys where to : =1t — 7.
Since 0 € © with z € 6 and |0| < r is arbitrary, (2.15) implies that

Bog(x,7) C 0y, and [0y ¢,] ~ 7.

pe
Combining this with (2.16) completes the proof of Proposition 2.11. O
It is often useful to use a non-symmetric variant of the quasi-distance pg as in (2.13).

Proposition 2.12. Let © be a continuous ellipsoid cover. For any x,y € R™ define
pi(z,y) := infyco, ,co |0z,¢|. Then p1(x,y) ~ pe(x,y) with equivalence constant indepen-
dent of the choice of x, y € R™.

Proof. Obviously, pg(x,y) < p1(z,y). So it remains to prove that there exists a constant
C > 0 such that py(z,y) < Cpeo(z,y). Let r = 2pe(z,y). By Proposition 2.11, there exist
two ellipsoids 6, ;, and 0, , such that [0, ¢ | ~ |04 ¢, | ~ r and

em,tl C Bpe ({Ba 7’) C 017,152'
Since y € B, (x,1) C 04,1, by the definition of p;, we conclude that
p1(2,y) < |bz,15| ~ 7 = 2pe(z,y),
which completes the proof of Proposition 2.12. O
Finally, we will need the following useful lemma.
Lemma 2.13. Let z ¢ R", t € R, andy € 0, . Then, for any k € N we have
O, -k 1yy \ Ozt © Oy i (v \ Oy, i (b-1) (2.17)
where v is as in Lemma 2.5(ii).
In particular, if © € 0, 1_(r41)y \ 02,t—ky for some k € N, then
po(z, 2) ~ pe(x, y) ~ 277F1, (2.18)
Proof. Since
Y €0z (or1)y N Oy, -1y 7 0,
by Lemma 2.5(ii) we have 0, ;_(441)y C 0y ¢—(k+2)- Likewise, since
ye ez,tf(kfl)'y N ey, t—(k—1)y # ma

Lemma 2.5(ii) yields 6, ;_(x—1)y C 0. 1—ky. Therefore, by taking complements we deduce
(2.17).

Finally, let x € 0, ;_(141)y \ 02,1k~ for some k € N. By Proposition 2.12 and (2.17) we
have

po(z,2) = pe(z,x) ~ pi(z,2) ~ 27 ~ pi(y,2) ~ po(y,z) = po(z,y).
This yields (2.18). O
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3 Variable Anisotropic Hardy Spaces

In this section we recall the definition and properties of Hardy spaces with pointwise
variable anisotropy which were originally introduced by Dekel, Petrushev, and Weissblat
[15].

Let © be a continuous ellipsoid cover. For any locally integrable function f on R"™, the
Hardy-Littlewood maximal operators Mp o and Mg are defined, respectively, to be

M T) := su
B0 () = 0 B e o o

|f(y)|dy (3.1)

and

Mof(z) =sup—— [ |f(w)\dy, (3.2)

teR ‘917t| Oz, ¢

where B, (z,r) is as in (2.14). By Proposition 2.11, see [15, Lemma 3.2], these two
maximal functions are pointwise equivalent

Mp,, f(x) ~ Mo f(z) for all f € L},.,z € R"™. (3.3)
Definition 3.1. Let N, N e No with N < N. For a function 0 e OV, let

j\vf Q
ol v & = max sup (14 |y|)"|0%(y)|.
H HN7N <N ye n( | ’) ‘ ( )’

|al

Define
Sy = {@ES: ||90HN7N§1}.

For each x € R", t € R and 0, = M, +(B") + = € ©, denote
r,i(y) = |det (M, )| @ (M, 1y) -

Definition 3.2. Let f € &', ¢ € S, and r € (0,00). The nontangential maximal function
with aperture r of f is defined by

MZf(x) :==sup sup |[f*pzt(y)l for all z € R™.
teER yer-0y, ¢

For any IV, N e Ny with NV < ]v, the nontangential grand mazimal function with aperture
r of f is defined by

My f(z) = sup M f(z) forallzeR".
’ YESy §

When aperture » = 1, we obtain the nontangential mazimal function M, f and the non-
tangential grand mazimal function M, 5 f of f, respectively.
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Definition 3.3. Let f € S’ and ¢ € S. The radial mazimal function of f is defined by

MZf(x) :=sup|f * g ¢(z)| for all z € R".
teR

For any N, N € Ny with N < ]V, the radial grand maximal function of f is defined by

My o f(x) = sup MZf(z) forallzeR"
’ $ESN N

Next, we give the pointwise equivalence of the nontangential grand maximal function
M" N.F f and the radial grand maximal function M o - f of f, the proof of which is moti-

vated by [5, p.17, Proposition 3.10].

Theorem 3.4. For any N, N € Ny with N < ]v, there exists a constant C':= C(N, N,r)
such that for all f € S,

o T o n
MN7Nf($)SMN’Nf(m)ECMMﬁf(x) for a.e. x € R".
Proof. The first inequality is obvious. To show the second inequality, note that

M]Z,Nf(x) = sup{\f s g t(x+rMyy):yeB", teR, pe SNJV} (3.4)
= sup {If *6x.0(@)|: 6(2) = p(z+1y), y B t R, € Sy 5}
= sup {M;f(a:) o(z)=pz4+ry), yeB" teR, p € SN,N}'

For ¢(z) = ¢(z + ry) with y € B", we have

1ol y 5 = = Sup Sop (1+ )N 0% (a + ry)| (3.5)
a reR™

= sup sup (1+ |z —ry))V|0%p(x)|
la|<N zeR?

< (147N sup sup (1+[a))V [0%(2) = (1+7)V el y 5
|a| <N zeR™ ’

Combining (3.4) and (3.5), we have

My, (@) <sup {M3f(a): 6 € S0l 5 < (141N | < (L4 n)VM, G (),
which is desired and hence completes the proof of Theorem 3.4. ]

Hence, from Theorem 3.4 and a proof similar to that of [8, Proposition 2.11(i)], we
deduce that, for any f € S'N L},

[fo)l < My 5f(2) <M 5 f(z) < CME 5 f(x)  for z € R™. (3.6)
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Let © be a continuous ellipsoid cover of R"™ with parameters p(0) = {a1, ..

let 0 < p < 1. We define N, = N,(0©) as the minimal integer satisfying

1 1
N,(©) > max (1, aq)n + ’
agp

and then Np = Kfp(@) as the minimal integer satisfying

~ N, 1
N,(©) > ‘141’2@)""_
6

Definition 3.5. Let © be a continuous ellipsoid cover, 0 < p < 1 and M° :

The wvariable anisotropic Hardy space is defined as
HP©):={feS8: M°fe L}
with the quasi-norm || f| gr(ey = [|M° f||,-
Lemma 3.6. Let © be a continuous ellipsoid cover and 0 < p < 1.
(i) The inclusion HP(©) — S’ is continuous;
(ii) HP(O©) is complete.

Proof. To prove (i), for any ¢ € S, by [16, Formula (5.8)], we have

(P <C [ e f@)de < Ol ey

., a6} and

(3.7)

=M .
Np, Np

which implies that the inclusion HP(0) < S’ is continuous. Mimicking the proof of [5,

Proposition 3.12], we can show (ii).

O

As in the classical case, the anisotropic Hardy spaces can be characterized and then
investigated through atomic decompositions. The following Definitions 3.8 and 3.9 come

from [15, Definitions 4.1 and 4.2], respectively.

Lemma 3.7. Let © be a pointwise continuous ellipsoid cover and X\ > 0. Then,

Q={x: M°f(x) > A} is open.
Proof. Let f € 8" and p € Sy 5. It suffices to show that for any ¢ € R,
R" >z f* @zt = f(T2pz+) is a countinous function,

where T,0(2) := p(z — ) and ¢(z) := p(—x) with z € R". Indeed, for any =
exist ¢ € S, 5 and tp € R such that

| * ato ()] > A

(3.8)

€ Q, there
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By (3.8) we deduce that for 2 in a sufficiently small neighborhood of x, | f % . ¢, (z)| > A.
This implies that 2’ €  and hence Q is open.

To prove (3.8) we need to use the following fact. For any ¢ € S and n x n matrix M
define Dyrp(z) := p(Mz), z € R™. Then for a fixed ¢ € S, the mapping

R" x GL,(R) > (z,M) — 7Dy € S (3.9)

is continuous. To show this, it suffices to estimate the semi-norms || - defining the

| |N N
Schwartz class S. Precomposing the mapping (3.9) with continuous mapping

R" > 2 (z,—(My)™") € R" x GL,(R)

yields (3.8). Here, we also used the fact that the inverse map M — M~! is continuous on
GLy(R). O

Definition 3.8. For a continuous ellipsoid cover ©, we say that (p,q,[) is admissible if
0<p<1<gqg<oo p<qandl e Ny, such that [ > N,(0) with N,(©) as in (3.7). A
(p,q,1)-atom is a function a : R™ — R such that

(i) suppa C 8, ¢ for some 8, ; € ©, where x € R" and t € R;
(ii) llally < [6a,e/971/7;
(iil) [gn a(y)y®dy = 0 for all & € Njj such that |o| <.

Definition 3.9. Let © be a continuous ellipsoid cover and (p,q,l) an admissible triple
as in Definition 3.8. The atomic Hardy space H, P (©) associated with © is defined to be
the set of all tempered distribution f € &’ of the form f = Y77, Aia;, where the series
converges in &', {\;}; € C, Y22, [NifP < oo, and {a;}; are (p,q, l) atoms. Moreover, the
quasi-norm of f € Hgl(@) is defined by

1/p
£z (o) = inf (Z \)\z‘\p> ,

i
where the infimum is taken over all admissible decompositions of f as above.

The following theorem due to Dekel, Petrushev, and Weissblat [15, Sections 4.1 and
4.3] shows the atomic characterization of HP(©).

Theorem 3.10. Let © be a continuous ellipsoid cover, 0 < p < 1 < qg < o0, p < q
and N,(©) <1 € Ny with Ny(©) as in (3.7). Then HP(O) = Hgl(@) with equivalent

quasi-norms.
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4 Atomic decomposition of anisotropic Hardy spaces

In this section we show technical improvements in the Calderén-Zygmund decomposition
and the atomic decomposition of variable anisotropic Hardy space HP(©), which were
originally established by Dekel, Petrushev, and Weissblat in the form of Theorem 3.10.
While these are incremental improvements of results in [15], they play a crucial role in the
proofs of Theorems 5.11 and 5.12 in Section 6.

We recall the Calderén-Zygmund decomposition established in [15]. Throughout this
section we fix an ellipsoid cover ©® and we consider a tempered distribution f such that
for every A > 0, [{x : M°f(x) > A\}| < oo, where M° is the grand maximal function as in
Definition 3.5. We shall assume that © is pointwise continuous, that is (2.3) holds. This
condition is implicitly used in [15] to guarantee that the set

Q:={zx: M°f(x) > A} (4.1)

is open, see Lemma 3.7. However, in light of Theorem 2.2 this assumption can be later
removed, for example in the statement of Theorem 4.10, since the Hardy spaces HP(0) and
HP(Z) corresponding to equivalent ellipsoid covers © and E are the same with equivalent
quasi-norms.

By covering arguments [15, Section 4.2], there exist sequences {z;}ien, C €2 and
{ti}ien,, such that

Q= br..0,, (4.2)

i€Np
O, tity N O t;0y =0 Vi # 7, (4.3)
Opiti g oy N =0 VieN, (4.4)
Opitiogoy 1 N0 VieN, (4.5)

where J and « are as in Lemma 2.5. Moreover, there exists a constant L > 0 such that
#{j € Ny : ij7tj_J_—ymgxi7ti_J_—y7é®} <L Vi € Ny, (4.6)

where §F denotes the cardinality of a set E.

Fix ¢ € C* such that supp¢ C 2B", 0 < ¢ < 1 and ¢ =1 on B". For every i € Ny,
define ¢; := ¢(Maz_llt1 (x — x;)). Obviously, ¢; = 1 on 6, +,. By Lemma 2.5(i), we have
supp 52 C xi+2My, +,(B™) C 0y, ¢,—. For every i € Ny, define

G TR
dilz) =4 Tyo@ TS (4.7)
0, if z ¢ Q.

Observe that ¢; is well defined since by (4.2) and (4.6), 1 < ", ¢i(z) < L for every z € (.
Also ¢; € C* and supp¢; C 0O, ¢,—j. By (4.2) and (4.7), we have ), ¢i(x) = 1ao(x),
which implies that the family {¢;}ien, forms a smooth partition of unitary subordinate
to the cover of Q by the ellipsoids {0, +,—J}ien,-
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Let P; denote the space of polynomials of n variables with degree < [, where N,(©) <,
see (3.7). For each i € Ny we introduce an Hilbert space structure on the space P; by

setting
1

N

The distribution f € &’ induces a linear functional on P; given by

(P,Q); : /n P(2)Q(x)¢i(x)dx for any P, Q € P;. (4.8)

Pi3Q— (f,Q)i

By the Riesz Lemma it is represented by a unique polynomial P; € P; such that

(f,Q)i = (P, Q); forany Qe P (4.9)

Definition 4.1. For every i € Ny, define the locally “bad part” b; := (f — P;)¢; and the
“good part” g := f — ) . b;. The representation f = g+ >, b;, where g and b; as above,
is a Calderén-Zygmund decomposition of degree [ and height A associated with M°.

We will use the following three results, which are [15, Lemma 4.8, Lemma 4.11(ii), and
Lemma 4.13], respectively. In particular, Lemma 4.3 guarantees convergence of ) . b;.

Lemma 4.2. There exists a positive constant C' such that

sup |Pi(y)oi(y)| < CA,
yeR”

where ¢; and P; are defined in (4.7) and (4.9), respectively.

Lemma 4.3. Suppose f € HP(©), 0 < p < 1. Then the series »_;b; converges in HP(O)
and there exists a positive constant C, independent of f and i € Ny, such that

Lo (o) e

Lemma 4.4. Suppose . b; converges in S'. Then there exists a positive constant C,
independent of f € S’ and X\ > 0, such that

Mog(x) < CXY v 4 MO f(a)10(w),

where v := 2%IN gnd

k(l’) ': k, x € 9$i7ti—J(k+2) \Gxi,ti_J(kH) for some k € Ny,
’ 07 T E gmi,tif‘]'

The following two lemmas are extensions of [15, Lemmas 4.12 and 4.14] from the setting
of L' to L7 spaces, 1 < ¢ < oo. At the same time, these results are extensions of [8, Lemmas
4.8 and 4.10] to the variable anisotropic setting (albeit without weights).
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Lemma 4.5. If f € LY with 1 < q < co. Then ), b; converges in L. Moreover, there
ezists a positive constant C, independent of f and i, such that || >, |bi|llq < C||fllq-

Proof. When ¢ = 1, this result was shown in [15, Lemma 4.12]. Hence, we only need to

consider the case 1 < ¢ < oc.
When 1 < ¢ < oo, from b; = (f — P;)¢; and Lemma 4.2, it follows that

[ s = [ 1(5(e) = P@pos(olrds (110)
< o0t < | t@e@pa [ B(xm(x)\qdcc)

< C (/ ’f(w)|qu + )‘qwxi7ti—J’> :
owi,ti—‘]

For the set Q as in (4.2), by Lemma 2.5, (4.2), and (4.4) we have
0= U O, t,—7- (4.11)
1€Np

Therefore, by (4.6), (4.10), (4.11), and the LY boundedness of M® (see [15, Theorem 3.8]),
we have

> [, s <o |3 ( [ s Aqwmi,wo
<ot ( [ 17+ via)
<or( [ 1s@pa+ [ orsw)ya)
< [ If@da.

Since suppb; C supp ¢; C 8, +,—s, by Holder’s inequality and (4.6), we deduce that

q 1/q q 1/q
[ ()] (o)
1/q 1/¢74 1/q
L[t () T
1/q
<t <Z/ Ibi(w)lqu)

<c([ i)

where 1/¢+1/¢' = 1. O
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Lemma 4.6. If M°f € LP with 0 < p < 1, then M°g € ﬂ1<q<oo L. Moreover, there
exists a positive constant C1, independent of f and X, such that, when 1 < q < o0,

n

/n(Mog(x))qu < Cl)\q_p/ (M°f(z))Pdx.

If f e LY with 1 < q < oo, then g € L™ and there exists a positive constant Co,
independent of f and A, such that

9lloc < C2A.

Proof. When ¢ = 1, this result was shown in [15, Lemma 4.14]. Hence, we only need to
consider the case 1 < g < oc.
When 1 < ¢ < 0o, by Lemma 4.4, we obtain

a pki@) T °f(x))dx i
)\/R<Z >d+/QC(Mf())d], (4.12)

where k;(r) is as in Lemma 4.4. For any = € 0,, 4, jr+2) \ Uu;, t;:—s(kt1) With k € Ny, by
(3.3), we have

/ [Mog())tdr <

_ 1
o kJ < 0‘9’/ lezi,ti (y)dy
@i, ti—J(k+2)1 SO, ¢, g(k+2)

< CMe(1y,, ,,)(x) ~ Mp, (14, ,,)(2),
where Mp,  and Mg are as in (3.1) and (3.2), respectively.
From the Fefferman-Stein boundedness of the vector-valued maximal function, see [21,

Section 6.6], Mp,, is bounded on LesNa(pasN) space with agN > 1. Hence, v = 2%V
(4.2), and (4.6), yield

q q
ki) dx:/ o—ki(x)JasN | 4o
b o \E

S /n [Z (MBp@(lemi,ti)(x))%N

)

< / ) [Z (16.... (x))“6N] e

g/dmw 2.
Q

By (4.12), we further conclude that

agNq

1/(agN)
] dzx

/ (M°g())da < C [Aqm\ 4 /Q e f@))qu]
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Q

<C [qu /Q (M° f(z))Pdz + ATP / o f(x))pdaz}

< oner / (M° f(x))Pda.
This implies that M°g € ();<,< o LY.

Next suppose that f € L9, 1 < g < oco. By Lemma 4.5, we deduce that g and b;, i € Ny,
are functions and ) b; converges in L9. Thus, for a.e. x € R™,

ng—Zbi=f1Q0+ZPi¢i.

i€Ng

By Lemma 4.2 and (4.6), for every x € €, we have |g(x)| < CA. Moreover, for a.e. = € 0t
by (3.6), we obtain that |g(x)| = |f(x)| < M°f(x) < A. Therefore ||g||cc < CA. O

Motivated by [28, Corollary 28] and [8, Corollary 4.11], we have the following lemma,
which is an extension of [15, Corollary 4.15] from the setting L! to L? spaces, 1 < ¢ < oo.

Lemma 4.7. For any 0 < p <1 and 1 < g < oo, the subspace HP(©) N LY is dense in
H?(O).

Proof. Let f € HP(©). For any A > 0, let f = ¢* + > b} be the Calderén-Zygmund
decomposition of f of degree [ > N,(©) and height A associated with M° as in Definition
4.1. By Lemma 4.3, we know that

s

i

<C [M®f(z)]Pdz — 0 as A — oo,
{z:Me f(z)>A}

HP(©)

which implies ¢* — f in H?(©). Moreover, by Lemma 4.6, we have M°g* € L9, 1 < g <
0o. From this and (3.6), we deduce that ¢* € L9, 1 < ¢ < co. This finishes the proof of
Lemma 4.7. O

Following [15, Section 4.3], for each k € Z, we consider the Calderén-Zygmund decom-
position of f of degree [ > N,(0) at height 2* associated with M®°,

F=g"+> 0,

where

OF i={a: M°f>25),  bji=(f—P"ef, 07 =0, .

Here, sequences {F};cn, C QF and {tF};en, C R satisfy (4.2)-(4.6) for QF, functions
{#k}ien, are defined as in (4.7), and polynomials {P}};cn, are projections of f onto P,
with respect to the inner product given by (4.8).

Next, we define P, j+1 as the orthogonal projection of (f — Pf“)(ﬁf with respect to the
inner product

(P,Q); ! / P(2)Q(x)¢5 ! (x)dx  for all P, Q € P,.

:f¢§+l .
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That is, Pi];-'H is the unique polynomial in P; such that

[ (0 = P )k Wiy = [ P W) )y forall @€ P

In particular, if 6 ¢ _; N6 k1 w1, =0, then PZ-];H =0.
1771 i g
For each k € Z, define the index set

L= {(i,) € No': 6, s 1 vt i1y 7 0}
We will need to employ two additional results [15, Lemmas 4.16 and 4.17], respectively.
Lemma 4.8. The following holds for any k € Z.
(i) For any (i,7) € I, we have 91§+1,t§?+17J C Opk kg _3y—15
(i) There exists L' > 0, which does not depend on k, such that

t{ieNog: (i,j) € Iy} < L' for any j € Ny.
Lemma 4.9. There exists a constant C > 0, such that for every i, j € Ny and k € Z,

sup [PE(2)¢5H (2)] < c2F+1,
zeR™

Moreover, Pi’;-'H =0 if (i,7) & Iy.

Motivated by [26, Proposition 4.10], we have the following extension of Theorem 3.10,
which yields convergence of atomic decompositions in L? norm.

Theorem 4.10. Let 0 < p < 1,1 < g < 00, and |l > Ny(©). Then, for any f € LN
HP(©), there exist a sequence of (p,00,1)-atoms {a¥}rez ieny, a sequence {\F}rez, ien, C
C, and a positive constant C independent of f such that

SO P < Ol e (4.13)

k€eZi€Ng

and

f= Z Z AFak converges in LY. (4.14)

k€Z i€Ng

Proof. Let f € LYN HP(O) with 1 < ¢ < oo and 0 < p < 1. Following the proof of [15,
Theorem 4.19] with [15, Lemma 4.14] being replaced by Lemma 4.6, we obtain the same
conclusion, an atomic decomposition of f, under the assumption f € L? N HP(©) instead
of f € L' N HP(O). More precisely, define a sequence of functions {h¥}rez. ien, by

Wy = fLgueaydt — PRor+ ) PPl el + 3 PEtolth
J€Ng J€Ng
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By Lemma 4.2 and Lemma 4.9 we conclude that
|hf]lse < C2". (4.15)

Moreover, there exist a sequence of (p, 0o, [)-atoms {a?}kez,ieNm which are supported on
ellipsoids {6, Bk 37_1}%2 ieNy» and a sequence {Af}kez,ieNo C C, such that (4.13)

holds, hl’C = )\k k for all 7, j € Ny, and

[= Z Z Arak = Z Z hF  converges in S'. (4.16)

k€Z i€Ng k€Z i€Ng

It remains to prove that the atomic decomposition (4.16) also converges in L? norm.
Since supp qﬁ?“ C Qxf+17tf+l—J and supp qﬁf C Gxi_c’t?_J, by Lemma 4.9 we have

supp h¥ Opk gy U U O k1 ghi1_;
3 K2 ‘7 ) ‘7
J€No, (1, 7)€k

Hence, by (4.2), (4.4), and (4.6) applied at levels k and k+ 1 and by Lemma 4.8, it follows
that

Z ]'supph’C < Z 19 k tk J + Z 19 k+1 k+1 S L]‘Qk + Z Z 19$I§+1’t1§+1_v,
i€Np i€Np (i,5)EIy i j€ENo ieNg,(4,j)el, 7 7
< Lle +LL 1okt < L(l + )1Qk.

In the last step we used Q1 € QF. This together with (4.15) implies that
D |hf] < CL(1 + L)2"1. (4.17)
i€Np

Since f € LY N HP(O), for almost every x € R™, there exists k(x) € Z such that
2k(@) < Me f(x) < 2¥@+1 From this and (4.17), we deduce that, for a.e. x € R,

YN hf@<cLa+L) Y 2

keZieNg k€(—o0,k(z)|NZ
< CL(1 + L)28® 1500y ~ M° f(2).

Therefore, the series ), Zz‘eNO hf converges absolutely pointwise a.e. to some func-

tion ]7 € L. By the Lebesgue dominated convergence theorem we deduce that f =
Y ke DieNy h¥ converges unconditionally in L?. By (4.16) we necessarily have f = f € L4,
which yields (4.14). O

5 Variable Anisotropic Singular Integral Operators

In this section, we introduce the notion of variable anisotropic singular integral operators
associated with a continuous ellipsoid cover © and show that such operators are bounded
from HP(©) to LP and from HP(©) to itself for 0 < p < 1.
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Coifman and Weiss [11, Chapter II1.2] have introduced the general notion of singular
integral operators defined on arbitrary spaces of homogeneous type. By Proposition 2.9 a
continuous ellipsoid cover © induces a quasi-distance pg with respect to which R™ becomes
a space of homogeneous type. This leads to the definition of singular integral operators
associated with a continuous ellipsoid cover ©, which satisfy Hormander’s condition, see
[11, Chapter II1.2] and [31, Chapter L.5].

Definition 5.1. A locally square integrable function K on Q := {(z,y) € R"xR" : x # y}
is called a vartable anisotropic singular integral kernel with respect to a continuous ellipsoid
cover © if there exist two positive constants ¢ > 1 and C such that

[ K@) - Kyl < (5.1)
BBQ (y,cr)

where ¥ € B, (y,7), y € R" and B, (y,r) is as in (2.14).

We say that T is a variable anisotropic singular integral operator (VASIO) of order 0 if
T : L? — L? is a bounded linear operator if there exists a kernel K satisfying (5.1) such
that

Tf(x) = - K(z,y)f(y)dy  forall f€CZ, x¢ supp(f).

The fundamental theorem about singular integral operators, which holds on arbitrary
spaces of homogeneous type, asserts that T is also bounded from L' to weak-L'. Then,
the Marcinkiewicz interpolation theorem implies that T is bounded from L% to LY for
1 < ¢ < 2. Thus, we have the following theorem, see [11, Theorem II1.2.4] and [31,
Theorem I.3].

Theorem 5.2. Let T be a VASIO of order 0 and 1 < ¢ < 2. Then T extends to a bounded
linear operator LY — LY.

Remark 5.3. To get boundedness for entire range of 1 < ¢ < 0o, one needs to impose a
symmetric variant of (5.1) with variables x and y being interchanged, which by the duality
yields the boundedness for 2 < ¢ < oc.

Since we are interested in the boundedness of singular integral operators on the Hardy
spaces HP(©), 0 < p < 1, we need to impose smoothness hypothesis on the kernel K,
which is much stricter than that given by Definition 5.1. To this end we shall extend the
definition of Calderén-Zygmund operators in anisotropic setting which was given in [5,
Definition 9.2].

Definition 5.4. Let s € Ny and let 7' be a VASIO as in Definition 5.1 with kernel K (x,y)
in the class C*® as a function of y. Then we say that T is a VASIO of order s if there exists
a constant C' > 0 such that for any (x,y) € Q and for any multi-index |a| < s we have

|05 [K (- My, m-)] (2, My 1y)| < C/pe(z,y)  where m = —logype(z,y).  (5.2)

More precisely, the left hand side of (5.2) means |8§‘I? (x,My_}n y) |, where K(z,y) =
K(z, My my). The smallest constant C' satisfying (5.2) is called a Calderén-Zygmund
norm of 7', which is denoted by |77 ).
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Next we will show that Definition 5.4 is an extension of the class of Calderén-Zygmund
operators associated with expansive dilations, which was introduced in [5, Definition 9.2].
For this we need the following estimate on higher order derivatives under linear change of
variables, which is stated implicitly in [5, p.25].

Lemma 5.5. Let h be a function in the class C*®, s € Ny, defined on an open subset
U C R Let M : R" — R" be a linear invertible map. Let h be dilation of h by M
defined by h(x) = h(Mx) for x € M~ U. Then, there exists a constant C = C(s,n) > 0
depending only on s and the dimension n such that

|0°[h(M-)] (M~'z)| = )aaﬁ (M—lx)( < | M| sup

&Bh(az)‘ forxz e U, |a| <s.
(5.3)

Proof. For any k = 1,...,s, and 2 € U, let D*h(x) be the total derivative of h at z of
order k, which is a symmetric multilinear functional D¥h(x) : R™ = R" x ... x R* — R.
The norm of multilinear functional is given by

H@Wz(:c)H = sup{‘@kh(m)(vl, o)t Ry =1i =1, .,k}.
For any multi-index a = (a1, ..., ap) € N, |of =k, let o : {1,...,k} — {1,...,n} be the
mapping that takes each value j = 1,...,n exactly a; times. Then, the partial and total
derivates satisfy the relationship

8ah(ﬂj‘) = gkh(‘r)(eo(l)v s 760(k))7

where ey, ..., e, denote the standard basis of R". An inductive application of the chain
rule yields a convenient formula for total derivatives

OFh(z)(v1,. .., v1) = DFh(Mz)(Muy, ..., Muy)
for any vectors vy, ...,v; € R™. Consequently, we have

H@’fﬁ (M_lzn)H < | M| H@'“h(x)H for z € U.
Since all norms in finite dimensional space are equivalent we have

sup ‘aﬁh(x)‘ ~ H@kh(x)H
18|=k

Since the same equivalence holds for h,

)

sup 07 (M) | S |IM]1* [ @*h(2) | S IMI* sup [07h()
|Bl=k |B|=k

and (5.3) follows. O
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Example 5.6. Consider a n x n real matrix A with eigenvalues A satisfying |[A| > 1. By
[5, Lemma 2.2], there exists an ellipsoid A := {z € R" : |Px| < 1}, where P is some
invertible n x n matrix, such that By C Bjy1, where By, := A*A for k € Z. Moreover,
the volume |By| = b*, where b := | det A|. Then we can define a semi-continuous ellipsoid
cover in the sense of [13, Definition 2.5] by

0= {ez,_kl%b — x4 ARPY Bz e R k € Z} —{z+By: zeR" ke Z}). (54)
We can easily turn © into continuous ellipsoid cover by setting for all x € R™, ¢ € R,
0zt = x + By, where k = —[t/log, b].

According to [5, Definition 2.3] a homogeneous quasi-norm p4 associated with expansive
dilation A is defined by

pa(z) = ZblekJrl\Bk (x) for z € R",
kEZ

where b := |det A|. Let pg be the quasi-distance corresponding to the cover © given by
(2.13). A simple calculation shows that

po(z.y) =po((z —y)/2,—(z —y)/2) = bpa((x —y)/2)  forallz,yeR".  (5.5)
In other words, for any k € Z,

r—y

po(x,y) =b" € By \ Br-1. (5.6)
Thus, pe is a translation invariant quasi-distance on R", which reflects invariance of
ellipsoid cover © under translations.

By Definition 5.4, (5.4), and (5.6), a kernel K of VASIO of order s associated to the
ellipsoid cover © satisfies for any (x,y) € Q,

0y {K (-,AkP*1->] (x, PA*ky>’ < C/pe(z,y)=Cb7F, la| < s,

where integer k € Z satisfies z —y € 2(By, \ Bi—1). Hence, by (5.5) and Lemma 5.5, the
kernel K coincides with the kernel of Calderén-Zygmund operators of order s associated
with expansive dilation A

OgIK (-, A%)] (2, 47%y)| < Cloate —y) = b5, Jal <5, (5.7)

where integer k € Z satisfies x — y € By \ By_1, see [5, Definition 9.2].

When A = Al with |A] > 1 we can take an equivalent quasi-norm p given by p(z) = |z|".
Then, it is not difficult to show that the kernel of a Calderén-Zygmund operator of order
s satisfying (5.7) coincides with the classical definition, see [20, Section II1.7], [30, Section
7.4], and [31, Section II1.3]. That is, there exists C' > 0 such that for any (z,y) € ,

0K (z,y)| < Clz —y[™"7%, o] <s.
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Next we show that the definition of singular integral operators in the setting of con-
tinuous ellipsoid covers is consistent with the Calderén-Zygmund operators on spaces of
homogenous type, see Proposition 2.9.

Proposition 5.7. Let K be kernel of VASIO of order 1. Then, there exist positive con-
stants § and C such that for all x # y € R™ and x, y' € Q0 we have

/\10
KGep) = Ko < P00 i o) < ppelen). 69)

In particular, the kernel K satisfies (5.1).

Proof. By (5.2) we have (5.8). Next we prove (5.9). For a fixed z,y € R"” with x # y, let
r:= (k+ 1)pe(x,y). By Proposition 2.11 there exists m € R such that

Bpo(2,7) C Opm and 27"~ O | ~ (5.10)

Define a rescaled kernel K (u,v) := K (u, My mv), u,v € R™
Take any 3’ € R™ such that po(y,y’) < ip@ (z,y). By Lagrange’s mean value theorem,
there exists some £ on the segment between y and 3 such that

K (z,y) — K(z,y)| = ‘f? (2, M, Ly) — K (x, M, 4y/)

= D2 0K (3, My 58) (M, 1y = My /)”

|al=1

< ma)i‘ﬁ (s My, ")) (2, 5 H m (Y — y)‘

Let [ := —logy po(x,&). By Lemma 5.5 and Definition 5.4, we have

K (2,y) — K(2,y)] (5.11)
< maxog [1 (3 Vgt ¥)] (o (Mgt t) 01t | 07kt - )
< || Mg M| m [ M ) (M ) M= )

1
M 1M, mH MLy — )]
< g Moy =)
Since po(y,€) < po(y,y’) (convexity of ellipsoids) we have

pe(z,y) < klpe(z, &) + pe(y,§)] < klpe(x,£) + po(y,y)]

<K [pe(x,f) + iﬂe(x,y)

Hence,
p@(x, y) < QKp@(l', g) (512)
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Likewise,
pe(z,8) < klpe(z,y) + po(y,§)] < (k+1/2)pe(x, y).

Since £ € B, (x,7) C 0y, m we have Oy m N0 # 0. Since pe(z,y) ~ po(r,&) we have
27™ ~ 27" and hence |m — 1| < 1. By (2.2) we deduce that

2—a6(m—l) >
oo < { 619

(1/a3)204t=m) | >m),

and hence ||M§_Z1Mym|] < 1.
By Lemma 2.7 there exists k € Z such that y' € 0, 1 \ 0, (x+1)y- By Proposition 2.12
and (5.10)

27 ~ p1(y, ) ~ pe(y,4) S polz,y) ~ 27
This implies that there exists a constant n > 0

m—ky <.

Since M, kv( —1') € B, the property (2.2) implies that

1 1
‘M%m(y - y')‘ = ’MymM My kv

< (M5 My o | M4 (0 = o)

1 —
= HMy’mM k“/"'??My k,"y-i—’V]My’k'YH ‘ Y, k‘ry(y - y)

< HMy_,}n k’H—”ZH H Y, k'ernMny’YH ‘ Y, k»y(y - y,)

< 2—a6(k'y—m) ~ [pG(ya Y )]
~ [e(z,y))o

Combining this with (5.11), (5.12), and (5.13) yields

L ey, 9] _ lpely:y)™
po(r,y) [pe(z,y)]*e  [pe(w,y)|tas

|K(‘T7y) - K({L‘,y/)‘ 5

Therefore, (5.9) holds with § = as.

Finally, the fact that K satisfies (5.1) follows from general results for spaces of homo-
geneous type. More precisely, we claim that (5.1) with the constant ¢ = 2x. Indeed, take
y' € By (y,r) for some r > 0. By (5.9) and Proposition 2.9 we have

/ K (2,y) — K(z,y)dx
BP@) (y7 2"’Qr)c
7.5

S s dT = / _
/Bp@(y,Q.m’) [p@(zr y 1+6 Z p@(y,2l+1m" \Bpg (y, 2tk1) [p@(l'ay)]1+6

i+1 - i <
Z 2%7“ =) ( 2 m“)‘ ;2 S 1.

=1

dx
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The following lemma is a convenient strengthening of Definition 5.4.

Lemma 5.8. Suppose that T is a VASIO of order s as in Definition 5.4. Then, there
exists a constant C > 0 such that for any z € R", t e R, k €N, x € 0, ;_(r41), \ Otk
and y € 0., we have

Oy [K (+s M t—1v)] <w,M;%_My)‘ < 02tM for |a| <'s.

Here, vy is as in Lemma 2.5(ii) and the constant C' depends only on ||T|| (s as in Definition
5.4 and p(0©) as in Definition 2.1.

Proof. By Lemma 2.13 we have € 0, ;_(r42)y \ 0y, 1—(k—1)y and
po(z, z) ~ polz, y) ~ 275 (5.14)
By Definition 5.4 we have
‘ag(/l[K(7 Myvm')] ((IZ, M;}ny)‘ < C/pe(x, y) < sz7 (515)

where m = —log, pe(z,y). From (5.14) it follows that 2= = pg(z,y) ~ 27*7. Hence,
there exists a constant n > 0

|m — (t — kvy)| <. (5.16)
Define M = ng}nMZ,tfkv- Since Oy, m N6, iy # 0, by (2.2) and (5.16) we deduce that
as m <t —kry,
M| << ..
204 [ag  t — ky < 'm.

Hence, by Lemma 5.5, (5.15), and (5.16), we conclude that for |a| < s,
O (s Mo y)) (2 M )|
= |8; [K ('vMy,mng,}an,t—kw')] (% (MyjinMZ,t—k'y)ilMyjiny)‘
S 1My Moo 105 U My )] M 50)
< (2947 /g3)*2™ < C27(2%47 Jaz)*2t k7
This finishes the proof of Lemma 5.8. Ul

Our ultimate goal is to show that anisotropic Calderén-Zygmund operators 1T are
bounded on HP(O). Generally, we can not expect this unless we also assume that T
preserves vanishing moments. Hence, we adopt the following definition motivated by [5,
Definition 9.4].

Definition 5.9. Let s € N and 1 < ¢ < co. We say that a VASIO T of order s satisfies
T*(z*) =0 for all o] <1,

where | < ags/ayq, if for any f € L? with compact support with vanishing moments
Jgn f(x)z%dz = 0 for all |a| < s, we have

/ Tf(x)xdzr =0 for all |of <.
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When the continuous ellipsoid cover © comes from an expansive dilation A as in Ex-
ample 5.6, then Definition 5.9 overlaps with [5, Definition 9.4]. In the isotropic setting,
when A = AI, A > 1, this definition coincides with the analogous property of vanishing
moments of T investigated by Coifman and Meyer in [30, Chapter 7.4].

The actual value of ¢ is not relevant in Definition 5.9 as we merely need that T : LY — L9
is bounded. However, the requirement that | < ags/a4 is essential to guarantee that the
integrals [, Tf(x)z® dx are well defined for all [a| < I. This is a consequence of the
following lemma.

Lemma 5.10. Let l,s € N, 1 < g < co. Let T be a VASIO of order s. Suppose that
f € L% satisfies supp f C 0. for some z € R", t € R, and fRn )xdz = 0 for all
la| < s. Then, for some C' >0 depending only on ||T||(s and p(©),

ITf ()] < C[[flgl6=,o| /927570490 forw €6, 4 (rsiyy \ bz1kyy k€N (5.17)

In particular, if | < ags/aq, then
/ T f(2) (1 + |xyl) dz < oo (5.18)

RTL
Proof. Take any © € 0, ¢_(r41)y \ 0z,t—ky, K € N, and y € 0, ;. Define the rescaled kernel

I?(u, v) == K(u,M, —yv), u,v € R". By Lemma 5.8, we have, for all o € Nj with
laf <'s,

Oy (M7} )| < 0270, (5.19)

Since supp f C 0, ;, we can write

Tf@)= [ Kepfody= [ K(eM0) i 620

92,t ez,t

Now we expand K into the Taylor polynomial of degree s — 1 (only in y variable) at the

point (z, M % }y?), that is

le¥ T, 1
I?(:E,gj): Z 8K< 2!4275 kv)(

la<s—1

g ML, 2 ) + Ry(D), (5.21)

where y 1= M_- L ryy and y € 6 ;. Then, using (5.19) and (2.2), we see that the remainder

term R satisfies

R < C sup sup [0 K (v, M}, 8)|[7- Mo, 2 (5.22)
£€0;,t |a|=s
t—k 1 s
< C27%7 sup M;t_,wMz,tw

weB”
< Ot (itass),
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Moreover, by Holder’s inequality we have
/9 [F@)ldy < [ £llal6=, e < 277 £lg, (5.23)
z,t

where 1/g+1/¢' = 1. Finally, using (5.20), (5.21), the vanishing moments of f up to order
s —1, (5.22) and (5.23), we obtain that

T()| < /0

which implies (5.17).
To show the second part (5.18) we first choose kg € N large enough such that for any

R (M) fw)| dy < 270 aogifay g,

T € Hzt Koy W€ have pg(x,z) > 1. Then, we split the integral into two parts
/ wﬂ@wl+m§dx:</ +/ )Tﬂ@wL+m§dx:1+u
R 0z,t—kg GE,t—kofy

The first integral is bounded by Hélder’s inequality and the boundedness of T': LY — L9,

1<c/ Tf (o MwﬁC(A

By Lemma 2.10 and Proposition 2.12 we have

1/q
|Tf({I,‘)|q dl‘) wz,tfkofy‘l/q < 0.

zt koy z,t—kgy

|z — 2| S po(z,x)"™ ~ 2(~tHky)as for z € 9z,t (k+1)y \9zt ks k > k.

Hence,

l —t+kvy)l —t+kv)(lag+1
/ 2= 2l dr S 10— a2 G (b ),
'9z t (k+1)'y\‘92 t—ky

We estimate the second integral using (5.17),

II—Z/

k= kU z tf(k+1)'y\9z,t7k'y

Tf@)] (1+ |ol') da

[e.e]
G SERl (11l + o= =) da
k=ko z,tf(k+1)'y\9z,t7k'y
[e.e]
S Ifllgl0z, 710y - 27k rass) (2’”’” + 2(*t+k7)(la4+1)>
k=ko
oo
S (1 llgl6= 071 ST (2700 4 g-tlatitnlan—san)) < o,
k=ko

The last series converges since we have assumed that lay — ags < 0. O
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We are now ready to state the main results of the paper, Theorems 5.11 and 5.12. These
are generalizations [5, Theorems 9.8 and 9.9] to Hardy spaces with pointwise variable
anisotropy.

Theorem 5.11. Let © be an ellipsoid cover with parameters p(©) = {a1,...,as} and
0 < p < 1. Suppose that T is a VASIO of order s such that

s> YMN(©)  where Ny(©) = {max(l’ asn + 1J 41, (5.24)
ae agp
T (%) =0 for all a € Njj, |a| < Np(O). (5.25)

Then, T extends to a bounded linear operator from HP(©) to itself.

Theorem 5.12. Let © be an ellipsoid cover with parameters p(©) = {a1,...,as} and
0 < p < 1. Suppose T is a VASIO of order s with

1p—1
ox Mp=1 (5.26)
a6

Then, T extends to a bounded linear operator from HP(O) to LP.

Remark 5.13. The general techniques used in proving Theorems 5.11 and 5.12 rely on
the analysis of smooth anisotropic singular operators on atoms and molecules. In the case
of isotropic singular operators, Gilbert, Han, Hogan, Lakey, Weiland, and Weiss [22] have
shown direct pointwise estimates without using L? or Fourier methods. In addition, they
have shown boundedness of smooth singular operators with higher regularity acting on
smoothness spaces such as Triebel-Lizorkin spaces. It would be interesting to generalize
their results to the anisotropic setting by considering smooth molecular decomposition of
variable anisotropic singular integral operators as in Definition 5.4. We leave this as an
open problem for interested readers.

6 Proofs of Theorems 5.11 and 5.12

To prove Theorems 5.11 and 5.12, we need the following definition and some lemmas.

Definition 6.1. For [ € Ny, let P; denote the linear space of polynomials of degree < I.
For an ellipsoid # C R"™, let my : L'(6) — P, be the natural projection defined, via the
Riesz lemma, for all f € L!(#) and Q € P,

/mﬂ@@@ﬂwz/ﬂ@QWMw (6.1)
0 0

Lemma 6.2. For any |l € Ny, there exists a positive constant C' depending on | and n
such that for any ellipsoid 6 C R™ and f € L'(0),

1
swhﬁ@ﬂsquV@Wm (6.2)

e
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Proof. Let 6 := M(B") + z for some invertible matrix M and z € R". For a fixed | € Ny,
we choose an orthonormal basis {Q, : || < I} of P; with respect to the L?(B") norm.
Since

T f = (/an(x)Qa(x)da;) Qo forany f € L'(B"),

|| <l

we conclude that that there exists C > 0 such that

< 3 ([

|al<l

FO@] ) Qute)] = O [ If@lan. (63)

sup 7gn f ()
xeB”

Our goal is to show that (6.2) holds with the same constant C' for the ellipsoid §. We
claim that

mof = ((Ag) " o mgn 0 Ag) f, (6.4)
where Ay denotes the affine transform of f defined by

Apf(z) = f(Mz + 2),z € B",z € R".

Indeed, for any @ € Py, by (6.1), we have
/9 ((40) " o 75 © 49) f(@)Q(a)dx = |det M] | mon(Af)(@) QM + 2)d
= | det M| f(Mx 4+ 2)Q(Mx + z)dx = /f(x)Q(x)d:U = /wa(x)Q(x)dx,
Bn 0 0

which implies (6.4) holds true.
From (6.3) and (6.4), it follows that, for any f € L(9),

sup |7 f(z)| = sup ‘((Ag)_l o Tgn © Ag) f(x)‘ = sup |mpn(Agf)(z)]
xelh el reB”

1 1
<Crr |f(Mx—|—z)|dm:C/|f(x)\dx.
IB"| Jpn 0] Jo
This finishes the proof of Lemma 6.2. Ul

The following lemma is a generalization of [5, Lemma 9.3].

Lemma 6.3. Let (p,q,l) be admissible as in Definition 3.8 and 6 > a4l + 1. Suppose that
g is a measurable function on R™ such that

1 a 1
g(x)|4dx < (Cl0,.¢ ’ for some 6, ; € © with z € R*, t e R, (6.5
|0 El k]
th ez t
9(2)] < Cl,o 77278 for 2 € 0,4 (hi1yy \ O,y with k€ N,
(6.6)
/ g(x)x“dr =0 for |a| <. (6.7)

Then, g € HP(O) and ||g|| g» () < C, where C> 0 is a constant independent of g.
q,
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Proof. Given an ellipsoid 6§ € © consider the natural projection 7y : L'(§) — P, given by
(6.1). Define the complementary projection g =1 — 7y, i.e., mgf = f — mpf. By (6.2), we
know that 7y is bounded on L4(0), i.e.,

I76.fll Laoy < Coll fllLaco),

with the constant Cjy independent of § € ©. Moreover,
/%gf(af)xo‘dx =0 forall|al <L
0

We want to represent g as a combination of atoms supported on 0, ;_j-, j € Ng, where
7 is as in Lemma 2.5(ii). Define the sequence of function {g;}72, by

9j = 192, t—jny 10z, t—j4 9

Clearly, suppg; C 0., ¢—j. Since

1_1
llgollq < Collgle. ,llqg < Col0z,e|a»

and go has vanishing moments up to order I, we deduce that gg is a Cy multiple of some
(p,q,1)-atom (namely (Co)~1go).

We claim that g; — ¢ in L' (and hence in &) as j — oo. It suffices to show that
I7o., ;. 9llL10.., ;) — 0 as j — co. Indeed, let {Qq : |a < [} be an orthonormal basis
of P; with respect to the L?(B") norm. By the argument used to show (6.2) we have

702, 1-79 = ((Aez,tfj'»il O Tgn O Aez,t—j'y) g (68)
=5 ([ Ao ole)@ularde) ()
|a|<I
= Z </ zt v + Z)Qa( ) ) (Aez,t,j»y)_lQa
|a|<I

_ ( /9 9(2)Qu (MZ’ (@ —2) )dm) ’det (M L m)\ (A6, )" Qa
jal<t \/¥= t=iv

By (6.7) and the uniform boundedness of coefficients of the polynomials Q (M.
Jj > 0, we also have

1o ) Qall oo, o) —/9 (Ao, ) Qule)| do

z,t—jvy

L

0z, t—jv

= |det(M., ¢—jv)| /IB" |Qa(z)|dx
< Cldet(M.,1—jy)|

-1
2 t—j,0) for
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and

J

From this, we conclude that

9(2)Qq (M;%_Mx)dm =— /c 9(2)Qaq (M;%_Mm>da: —0 as j — oo.

z,t—gy Gz,t—j'y

H’N@z,tijgHLl(GzJ_m) - O as .] — 007

which shows -
g=g0+ Y (941 —g;) inL" (6.9)
=0

In fact, we will prove that we also have convergence in H?(©) by showing that gj+1 — g;
are appropriate multiples of (p, o0, [)-atoms supported on 0, ;_(;41),. Indeed,

ng+1 - g_]”OO = ||192,tf(j+1)'y%9z,t7(j+1)'yg - 19z’t,j.y%6z’t,j.yg||oo (610)

=0, V0309 = L0n oy 0o o1y 9 L0200 0 9l

= H19z,t—(j+1)'v\92,t—j“/g||oo + H19z;t*(j+1)vﬂ-9z7t*(j+1)“/g”oo
+ ||192,t—j'yﬂ-9,z,t—jfyg”00
=: T+ II + III.

For I, by (6.6), we have

—1/po—jvs -1 —jy(s—1
T= [0, oon0ee pdlloo < 102, 71727990 S 1, oy [Th2 701/,

Since

Hlf’z,t—m(A(’z,t—m)ilQaHoo: sup }(A@,t—jw)ilQa(x)‘

€0z, ¢—jy

= sup )Qa (M;Lj,y(x - z))‘
z€0;, t—jy

= sup [Qa(z)] < Oy
TEB”™

for all |o| <, then by (6.7) and (6.8), we have

oot <G Y | [ 00)@a (M1, (0 = 2))da Jder (21, ).

la|<UI1Y Pz =gy

Notice that |Qq(z)| < Colz| for any = € (B")F and some constant Cy > 0. By (2.2) and
(6.6), we have

!
dx

<G @Il =2

z,t—jvy

[, s (e =)

z,t—jy
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z, 1&*(757‘»1)’y\027 t—iy

7; o0
< (0404 PE /
— Jo

i=j

_1 =
< Calf | det (M) 32 [
i— MIt M

2z, t—jy z,tf(i+1)’y(]Bn)

o
-1 —t4j —inS -1 ! -1
S 10,27 Y07 M M | et (M7 00
=7

o0
< \Hz,tl‘%rt‘”(‘s‘” Y 270 gasty - (i-d)
i=j
1 .
< 6., t_m‘—;Q—t—ﬂ@—l—l/p)

—iy0 -1 !
2 ’Mz’t_j,y(a:—z)‘ dx

t—(i+1)v) ‘

1 .
The last series converges since § > a4l + 1. Therefore, IIT < 16, +—j~ ~p9J7(0-1/p),
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Similarly, we also have II < |027t_(j+1)7|_%2_j7(5_1/p). Inserting the estimates of I, II

and III into (6.10) we conclude that for some constant Cy > 0 we have

1 . _
1gj+1 = gilloo < Calbs, i (ji1y,| P27970O71/P),

Since functions g;’s have vanishing moments up to order [, g;y1 — g; is a A; multiple
of a (p,00,l)-atom a; supported on 0, ; (j11),- That is, gj+1 — g; = Aja; and \; =

C42=970=1/p) By (6.9), we have

S =

HQHH;’J(@) < | (Co)? + Z NP = | (Co)P + (C4)p22*jp’y(5fl/p)
=0

Jj=0
The last series converges since [ > N,(0), a4 > ag, and hence,

max(1,as)n + 1
aep

d—1/p>asNp(©) —1/p > a4

This finishes the proof of Lemma 6.3.

—1/p>0.

P

=:C < 0.

O

Remark 6.4. A function g satisfying (6.5), (6.6) and (6.7) is referred to as a molecule
localized around the ellipsoid 6, ;. Lemma 6.3 shows that a molecule g belongs to H?(©)
with HP(©) norm bounded by some constant depending only on (p, ¢, [) and §. We also
remark that our definition of molecule is more restrictive than what normally is understood
as a molecule. For more properties of molecules we refer the interested readers to [33] in
isotropic setting, [35] in weighted anisotropic setting, and [1] in variable anisotropic setting.

Lemma 6.3 can be deduced from [1, Theorem 1.2], but the verification would not be
very enlightening and we opted for a direct proof. Such an argument would rely on two
observations. First, we observe that [1, Theorem 1.2] holds under the assumption that
(p, q,m) is admissible and d > agm + 1 — 1/g, since we automatically have

agm+1—1/q>max(1/p—1/q,asn(1 —1/q)).
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Second, a calculation shows that any function ¢ satisfying (6.5), (6.6), and (6.7) is a
(p,q,1,d)-molecule, as defined in [1], for any d satisfying

d>d+1/q>asl + 1.

The following lemma, which is a generalization of [5, Lemma 9.5], shows that a VASIO
preserving vanishing moments maps atoms into molecules.

Lemma 6.5. Let s e N, 0 <p<1,1<q<oo, T be a VASIO of order s satisfying (5.24)
and (5.25). Then there exists a constant C > 0, depending only on the Calderén-Zygmund
norm ||T| sy of T, such that ||Tal|gre) < C for every (p,q,s — 1)-atom a.

Proof. Let a be a (p,q,s — 1)-atom and suppa C 6, with z € R” and ¢t € R. Since
T : L% — LY is bounded, see Theorem 5.2 and Remark 5.3, we have

! 11 1.1
/ Ta(x)["dr | < lallg <102/ 7 S 1020—]7 7.
ez,t—'y
By Lemma 5.10 for x € 0, ;_(341)y \ 02, ¢k, k € N, we have

1
[ Ta()| S llallgl0s,o| 7927705909 < g, |72 IHaess), (6.11)

Hence, T'a satisfies (6.5) and (6.6) with respect to 6, ;_, and 0 = 14ags. Furthermore, T'a
satisfies (6.7) because T (%) = 0 for all |o| <1 = N,(0©). By (5.24) we have § > 1 + aql.
Therefore, by Lemma 6.3, there exists a constant C > 0 independent of a such that
\|Ta||H§’l(9) < C. By Theorem 3.10, it follows that ||Tal|g»e) S C- O

Proof of Theorem 5.11. Let f € HP(©) N LY. By Theorem 4.10, there exists an atomic
decomposition

f= Z Z Mra¥ converges in L (6.12)

k€eZieNy
such that af’s are (p, 00, s — 1)-atoms, and hence also (p, g, s — 1)-atoms, and
k
DD NP < Ol o) (6.13)
kEZ ieNy

Since T is bounded on L7 (see Theorem 5.2 and Remark 5.3), it follows that T'f =
> kez ZZENO AfTaf in L? and hence

Tf=Y > MNTaj in S (6.14)

k€Zi€Ng

Since T' is a VASIO of order s and T%(z*) = 0 for all |a| < Np(©), by Lemma 6.5, we
obtain [|Ta¥|| yr@) < C'. Recall that 7 norm dominates ¢! norm for 0 < p < 1. Thus, by
(6.13) and (6.14), we have

p
ITF o) = IMOTHIL < 1D D INIM(Taf)|| <Y > INPIM(Taf)]

keZ ieNg P keZ ieNg
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=3 ST NPT [y < €S ST NP < O -

keZ ieNg keZieNg

By the density of LN HP(O) in HP(O©), see Lemma 4.7, and the completeness of HP(O),
see Lemma 3.6(ii), we deduce that T" extends to a bounded linear operator from HP(O)
to H?(O). O

Proof of Theorem 5.12. Let | :== max(Np(©),s—1). Let a be a (p, g, l)-atom with suppa C
0.+, where z € R™ and ¢t € R. We first show
I Tall, < C". (6.15)

By Lemma 5.10 we deduce that (6.11) holds for x € 0, y_(x41)y \ 02,¢—k+, & € N. Hence,

o
/ Ta(z)Pdr =Y / (Ta(z)Pdz (6.16)
68, fm1 7Oz (k107 \Oz, =y
oo [e.e]
S0, S 2R g < S gk (iees=1/n) <
k=1 k=1
The last series converges by the assumption (5.26). By the boundedness of T on L9,
1 < ¢ < o0, and Hoélder’s inequality

/ |Ta(x)|Pdz < (/
ez,tf'y ez,t

This together with (6.16) implies that (6.15) holds true.

Next we proceed exactly as in the proof of Theorem 5.11. By Lemma 4.11, any f €
LINHP(©) admits an atomic decomposition (6.12) into (p, g,)-atoms a¥’s such that (6.13)
holds and T'f = 3 407 > Lien, MTa¥ in L9. Hence there exists a subsequence of the partial

sum sequence {Zf:_ K Efi L AT ak) jeen, which converges almost everywhere to T'f. In
that sense, we have

p/q
ITa(x)qux> 102,01 7P/9 < lal P16, - )P0 S 1

-

Tf= Z Z Mok almost everywhere.
keZi€Ng

By the monotonicity of the fP-norm with 0 < p <1, (6.13), and (6.15), we deduce that
for f € LN HP(O),

p p
77l = |30 0 el | < |3 S et < 303 ke vt

k€eZ i€Ng P k€Z i€Ng P k€Z i€Np

<O NP < CCl oy

k€Z i€Ng

The density of LN HP(©) in HP(O), see Lemma 4.7, implies that T extends to a bounded
linear operator from H?(0O) to LP. O
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