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Abstract. We study the relationship between the concept of a continuous ellipsoid Θ cover
of Rn, which was introduced by Dahmen, Dekel, and Petrushev [7, 8, 11], and the space of
homogeneous type induced by Θ. We characterize the class of quasi-distances on Rn (up to
equivalence) which correspond to continuous ellipsoid covers. This places firmly continuous
ellipsoid covers as a subclass of spaces of homogeneous type on Rn satisfying quasi-convexity
and 1-Ahlfors-regularity.

1. Introduction

Discrete and continuous ellipsoid covers of Rn were introduced by Dahmen, Dekel, and
Petrushev in the construction and analysis of multilevel preconditioners for partition of unity
methods applied to elliptic boundary value problems [7] and in the study of Besov spaces
with pointwise variable anisotropy [8, 9], see also the survey [11]. A continuous ellipsoid cover
consists of ellipsoids θx,t with centers x ∈ Rn and scales t ∈ R satisfying a natural shape
condition. Dekel, Han, and Petrushev [10] have shown that an ellipsoid cover Θ defines a
space of homogeneous type in the sense of Coifman and Weiss [5, 6] with a quasi-distance
ρΘ given by

(1.1) ρΘ(x, y) := inf
θ∈Θ, x,y∈θ

|θ|.

More precisely, Rn equipped with the Lebesgue measure and quasi-distance ρΘ is 1-Ahlfors
regular, i.e., Lebesgue measure of balls satisfy |BρΘ

(x, r)| ∼ r for all x ∈ Rn and r >
0. Subsequently, Dekel, Petrushev, and Weissblat [12] have developed the Hardy spaces
Hp(Θ) associated with a continuous ellipsoid cover Θ for the entire range of 0 < p ≤
1. Among the results shown in this setting are grand maximal function characterization,
atomic decomposition, and classification of Hardy spaces [12], the duality of Hardy spaces
[13], molecular decomposition [1], and boundedness of Calderón-Zygmund singular integral
operators [4]. In contrast with the general theory of Hardy spaces on spaces of homogenous
type [2, 6, 14], these results work in the full range 0 < p ≤ 1. This is actually the largest
class of spaces of homogeneous type on Rn equipped with Lebesgue measure, where such
complete Hp theory has been developed so far.

A natural question arises about the relationship between ellipsoid covers and spaces of
homogeneous type on Rn. What quasi-distances on Rn are induced by continuous ellipsoid
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covers? In this paper we answer this question by characterizing all quasi-distances (up
to equivalence) which correspond to continuous ellipsoid covers via the formula (1.1). In
addition that ρ is 1-Ahlfors regular, we impose that ρ is quasi-convex. That is, there exists
a constant Q ≥ 1 such that for every x ∈ Rn and r > 0 there exists an ellipsoid ξ = ξrx with
center x such that

(1.2) ξrx ⊆ Bρ(x, r) ⊆ Q · ξrx,

where Q · ξ = Q(ξ − x) + x is a dilate of an ellipsoid ξ by a factor Q. The famous maximal
volume ellipsoid theorem of John [3, 16, 19] attests that every convex body in Rn is Q-quasi-
convex with Q = n. Hence, the above definition is a natural generalization of convexity
reminiscent of the concept of a quasi-conformal mapping [15].

The main result of the paper shows that there is one-to-one correspondence between
quasi-convex, 1-Ahlfors-regular quasi-distances and continuous ellipsoid covers in Rn. In
this correspondence we identify equivalent quasi-distances and likewise equivalent ellipsoid
covers. In other words, a quasi-convex, 1-Ahlfors-regular quasi-distance ρ gives rise to a
continuous ellipsoid cover Ξ = {ξrx : x ∈ Rn, r > 0}, where ξrx satisfies (1.2). In turn, a quasi-
distance ρΞ, which is induced by Ξ and given by (1.1), is quasi-convex and 1-Ahlfors-regular,
and ρΞ is equivalent to ρ.

While the methods of the proof are quite elementary and require mostly basic properties
of ellipsoids, some of them could not be found in the existing literature such as Theorem 2.1.
The most demanding arguments revolve around the inner property which guarantees appro-
priate growth of balls Bρ(x, r) as r → ∞. It turns out that this property is automatically
implied by the quasi-convexity and 1-Ahlfors-regularity of ρ. In turn, the inner property
plays a key role in showing that Ξ = {ξrx : x ∈ Rn, r > 0} satisfies the shape condition, which
is the key requirement for Ξ to be a continuous ellipsoid cover.

This article is organized as follows. Section 2 is devoted to proving basic properties of
ellipsoids such as Theorem 2.1. In Section 3 we introduce the notion of a continuous ellipsoid
cover, recall some of its known properties and prove new ones. In Section 4 we study quasi-
convexity and the inner property and show the main characterization result of the paper,
Theorem 4.9. Finally, in Section 5 we give applications and examples of quasi-distances
illustrating our main result.

2. Ellipsoids in Rn

In this section we recall some basic properties of ellipsoids in Rn. An ellipsoid ξ in Rn is
an image of the closed Euclidean unit ball Bn in Rn under an affine map, i.e.,

ξ = Mξ(Bn) + cξ,

where Mξ is an n × n nonsingular matrix and cξ ∈ Rn is the center of ellipsoid ξ. For any
ellipsoid ξ and λ > 0, define a dilated ellipsoid by

λ · ξ := λMξ(Bn) + cξ.

The following elementary theorem shows that if one ellipsoid is contained in the other,
then we have a reverse inclusion relation for a dilated ellipsoid.
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Theorem 2.1. If two ellipsoids η and ξ in Rn satisfy η ⊆ ξ, then

ξ ⊆ 2
|ξ|
|η|
· η.

Moreover, if η and ξ have the same center, then the above holds without the factor 2.

Since we could not find Theorem 2.1 in the literature, we will give its proof using three
more elementary lemmas.

Lemma 2.2. Let D := diag(λ1, λ2, . . . , λn) be a diagonal matrix. If Bn ⊆ D(Bn) + c with
c ∈ Rn, then Bn ⊆ D(Bn).

Proof. Assume that Bn ⊆ D(Bn) + c, c ∈ Rn. We only need to verify |λi| ≥ 1 for any
i = 1, . . . , n. Let e1, . . . , en be a standard basis of Rn. Note that

D(Bn) ⊆ {x = (x1, . . . , xn) ∈ Rn : |xi| ≤ |λi| for all i = 1, . . . , n}.
Since Bn − c ⊆ D(Bn), then the absolute value of i’th coordinate of ei − c or −ei − c is ≥ 1.
Hence, by the above inclusion we have |λi| ≥ 1 for every i = 1, . . . , n. �

Lemma 2.3. Let A be a nonsigular matrix. Let {λi}ni=1 be the eigenvalues of AAT and
D := diag(

√
λ1,
√
λ2, . . . ,

√
λn). If Bn ⊆ A(Bn) + c with c ∈ Rn, then there exists an

orthogonal matrix U such that Bn ⊆ UA(Bn) = D(Bn). In particular, λi ≥ 1 for all
i = 1, . . . , n.

Proof. Since AAT is a positive symmetric matrix, then there exists an orthogonal matrix U
such that UAATUT = UA(UA)T = D2. Therefore,

D(Bn) = {Dx ∈ Rn : xTx ≤ 1} = {x ∈ Rn : xT (D2)−1x ≤ 1}
= {x ∈ Rn : xT (UA(UA)T )−1x ≤ 1} = UA(Bn).

Suppose that Bn ⊆ A(Bn) + c with c ∈ Rn. We have

Bn = U(Bn) ⊆ UA(Bn) + Uc = D(Bn) + Uc.

Hence, by Lemma 2.2, we have Bn ⊆ UA(Bn) = D(Bn). �

Lemma 2.4. If two ellipsoids satisfy η ⊆ ξ, then η−cη ⊆ ξ−cξ, where cη and cξ are centers
of η and ξ, respectively.

Proof. Without loss of generality, we can assume that cη = 0 by using translations. Let

η := Mη(Bn), ξ := Mξ(Bn) + cξ,

for some nonsingular matrices Mη and Mξ. Since

Bn = (Mη)
−1η ⊆ (Mη)

−1ξ = (Mη)
−1MξBn + (Mη)

−1cξ,

by Lemma 2.3 we have Bn ⊆ (Mη)
−1MξBn, which yields the required conclusion. �

Proof of Theorem 2.1. Take any two ellipsoids η := Mη(Bn)+cη ⊆ ξ := Mξ(Bn)+cξ. Without
loss of generality, we may assume that cη = 0 by using translations. Let A = (Mη)

−1Mξ. By
Lemma 2.4, we have

Bn = (Mη)
−1(η) ⊆ (Mη)

−1(ξ − cξ) = ABn.(2.3)
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Let D := diag(
√
λ1,
√
λ2, . . . ,

√
λn), where {λi}ni=1 are the eigenvalues of AAT . By Lemma

2.3, there exits an orthogonal matrix U such that UA(Bn) = D(Bn) and hence

(2.4) U−1D(Bn) = (Mη)
−1(ξ − cξ).

Since | detU | = 1 and λi ≥ 1 for all i = 1, . . . , n, we have

(2.5)
|ξ|
|η|

=
|(Mη)

−1(ξ − cξ)|
|(Mη)−1(η)|

=
|U−1(D(Bn))|

|Bn|
=

n∏
i=1

√
λi ≥ max

1≤i≤n

√
λi.

Therefore, by (2.4) and (2.5) we obtain

(2.6) (Mη)
−1(ξ − cξ) = U−1D(Bn) ⊆ U−1 max

1≤i≤n

√
λiBn = max

1≤i≤n

√
λiBn ⊆

|ξ|
|η|

(Mη)
−1(η).

Moreover, using the assumption η ⊆ ξ, we get

Bn = (Mη)
−1(η) ⊆ (Mη)

−1(ξ) = (Mη)
−1(Mξ(Bn) + cξ).

By this and UA(Bn) = D(Bn), we have

Bn = U(Bn) ⊆ U(Mη)
−1(Mξ(Bn) + cξ) = D(Bn) + U(Mη)

−1cξ.

This implies that Bn − U(Mη)
−1cξ ⊆ D(Bn) and hence

U(Mη)
−1cξ ∈ −D(Bn) ⊆ − max

1≤i≤n

√
λiBn = max

1≤i≤n

√
λiBn.

Combining this with (2.5) yields

(Mη)
−1cξ ∈ max

1≤i≤n

√
λiBn ⊆

|ξ|
|η|

(Mη)
−1(η).

Hence, by (2.6) we have

(Mη)
−1(ξ) ⊆ |ξ|

|η|
(Mη)

−1(η) + (Mη)
−1cξ ⊆ 2

|ξ|
|η|

(Mη)
−1(η).

Applying Mη to both sides we finally obtain ξ ⊆ 2 |ξ||η| · η.

Finally, if η ⊆ ξ have the same center, then we may assume that cη = cξ = 0. Hence, (2.6)

alone implies that ξ ⊆ |ξ|
|η|η. �

3. Ellipsoid covers and quasi-distances on Rn

In this section we recall the properties of a continuous ellipsoid cover Θ, which was orig-
inally introduced by Dahmen, Dekel, and Petrushev [8]. This includes properties of quasi-
distance ρΘ which is induced by the cover Θ. Moreover, we translate the shape condition of
Θ into a geometric form involving only containment of dilates of ellipsoids in Θ.

Definition 3.1. We say that

Θ := {θx,t : x ∈ Rn, t ∈ R}

is a continuous ellipsoid cover of Rn, or shortly a cover, if there exist positive constants
p(Θ) := {a1, . . . , a6} such that:
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(i) For every x ∈ Rn and t ∈ R, there exists an ellipsoid θx,t := Mx,t(Bn) +x, where Mx,t

is a real n× n nonsingular matrix, satisfying

a12−t ≤ |θx,t| ≤ a22−t.(3.7)

(ii) Intersecting ellipsoids in Θ satisfy the shape condition requiring that for any x, y ∈ Rn,
t ∈ R and s ≥ 0, if θx,t ∩ θy,t+s 6= ∅, then

(3.8) a32−a4s ≤ 1/‖(My,t+s)
−1Mx,t‖ ≤ ‖(Mx,t)

−1My,t+s‖ ≤ a52−a6s.

Here, ‖ · ‖ is the matrix norm given by ‖A‖ := max|x|=1 |Ax| for any nonsingular
matrix A.

It is worth emphasizing that we do not assume any measurability or continuity condition
on a continuous ellipsoid cover Θ. Indeed, by [4, Theorem 2.2] there exists an equivalent
ellipsoid cover such that its corresponding matrix valued function x 7→ Mx,t is continuous
for any t ∈ R.

Remark 3.2. The shape condition (ii) in Definition 3.1 has the following equivalent for-
mulation by reversing scales. For any x, y ∈ Rn, t ∈ R and s ≥ 0, if θx,t ∩ θy,t−s 6= ∅,
then

1

a5

2a6s ≤ 1/‖(My,t−s)
−1Mx,t‖ ≤ ‖(Mx,t)

−1My,t−s‖ ≤
1

a3

2a4s.(3.9)

Indeed, (3.9) follows from (3.8) applied to θy,t−s and θx,t in place of θx,t and θy,t+s, respectively.
Reversing this argument, shows the converse implication.

The shape condition (3.8) can be also equivalently restated in terms of dilates of the
ellipsoids in Θ without referring to scale parameter t.

Lemma 3.3. Let Θ = {θx,t : x ∈ Rn, t ∈ R} be a collection of ellipsoids satisfying (3.7).
Then, the shape condition (3.8) holds if and only if there exists constants a′3 and a′5 such
that for any two ellipsoids ξ, η ∈ Θ, if |η| ≤ |ξ| and ξ ∩ η 6= ∅, then

(3.10) a′3

(
|η|
|ξ|

)a4

(ξ − cξ) ⊆ η − cη ⊆ a′5

(
|η|
|ξ|

)a6

(ξ − cξ),

where cξ and cη are the centers of ξ and η, respectively.

Proof. By (3.7) for any t, s ∈ R we have

(3.11)
a1

a2

2−s ≤ |θy,t+s|
|θx,t|

≤ a2

a1

2−s

Hence, if |θy,t+s| ≤ |θx,t|, then s ≥ −s0, where s0 := log2(a2/a1) ≥ 0. As a partial converse,
if s ≥ s0, then |θy,t+s| ≤ |θx,t|.

Suppose that the shape condition (3.8) holds for t ∈ R, s ≥ 0, and θx,t ∩ θy,t+s 6= ∅. First,
we shall show that the same condition also holds for s ≥ −s0, albeit for some new constants
a′3 and a′5. Indeed, if s ≥ 0, then there is nothing new to show. Suppose next −s0 ≤ s ≤ 0.
Then, by the reverse form of (3.8), see Remark 3.2, we have

1

a5

2−a6s ≤ 1/‖(My,t+s)
−1Mx,t‖ ≤ ‖(Mx,t)

−1My,t+s‖ ≤
1

a3

2−a4s.
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Take ã3 = min(a3, 1/a5) and ã5 = max(a5, (1/a3)2(a6−a4)s0). Since a6 ≤ a4, for −s0 ≤ s ≤ 0
we have

ã32−a4s ≤ 1

a5

2−a6s and
1

a3

2−a4s ≤ ã52−a6s.

Therefore, if t ∈ R, s ≥ −s0, and θx,t ∩ θy,t+s 6= ∅, then

(3.12) ã32−a4s ≤ 1/‖(My,t+s)
−1Mx,t‖ ≤ ‖(Mx,t)

−1My,t+s‖ ≤ ã52−a6s.

Now suppose we have two ellipsoids ξ, η ∈ Θ such that |η| ≤ |ξ| and ξ ∩ η 6= ∅. We write
η = θy,t+s and ξ = θx,t for some x, y ∈ Rn and t, s ∈ R. Since |η| ≤ |ξ|, we necessarily
have s ≥ −s0. By the right-hand side inequality of (3.12) we have (Mx,t)

−1My,t+s(Bn) ⊆
ã52−a6sBn. Hence, (3.11) implies that

(3.13) My,t+s(Bn) ⊆ a′5

(
|θy,t+s|
|θx,t|

)a6

Mx,t(Bn),

where a′5 = ã5(a2/a1)a6 . Applying the same argument for the left-hand side inequality of
(3.12) yields

(3.14) a′3

(
|θy,t+s|
|θx,t|

)a4

Mx,t(Bn) ⊆My,t+s(Bn),

where a′3 = ã3(a1/a2)a4 . This shows (3.10).
Conversely, suppose that (3.10) holds for ξ, η ∈ Θ, |η| ≤ |ξ|, and ξ ∩ η 6= ∅. We claim

that the same condition holds when |η| ≤ (a2/a1)|ξ| and ξ ∩ η 6= ∅, albeit for some new
constants ǎ3 and ǎ5. Indeed, if |η| ≤ |ξ|, then there is nothing new to show. Suppose that
|ξ| ≤ |η| ≤ (a2/a1)|ξ|. Then, by (3.10) and by reversing order of inclusions we have

1

a′5

(
|η|
|ξ|

)a6

(ξ − cξ) ⊆ η − cη ⊆
1

a′3

(
|η|
|ξ|

)a4

(ξ − cξ).

Hence, (3.10) holds with constants ǎ3 = min(a′3, 1/a
′
5) and ǎ5 = max(a′5, (1/a3)(a2/a1)a4−a6)

in place of a′3 and a′5, respectively. Now, take any x, y ∈ Rn, t ∈ R, and s ≥ 0 such that
θx,t ∩ θy,t+s 6= ∅. Letting η = θy,t+s and ξ = θx,t, (3.10) yields (3.13) and (3.14). Converting
these inclusions into norm inequalities using (3.11) yields (3.8) for appropriate constants a3

and a5 . �

Remark 3.4. As a consequence of Lemma 3.3 we propose the alternative geometric definition
of an ellipsoid cover Θ, which will be used in our consideration in Section 4. A collection
Θ = {ξrx : x ∈ Rn, r > 0} is a continuous ellipsoid cover if there exist positive constants
p(Θ) := {a1, . . . , a6} such that:

(i) for every x ∈ Rn and r > 0, ξrx is an ellipsoid with center x and volume satisfying

a1r ≤ |ξrx| ≤ a2r,

(ii) for any ellipsoids ξ, η ∈ Θ, such that |η| ≤ |ξ| and ξ ∩ η 6= ∅, we have (3.10).

To translate between two formulations involving scale t ∈ R and “radius” r > 0, it suffices
to take θx, t = ξrx, where r = 2−t, and then apply Lemma 3.3.

The following lemma from [12, Lemma 2.2] is a direct consequence of the shape condition
(3.8).
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Lemma 3.5. Let Θ be a continuous ellipsoid cover. Then there exists c > 0 depending only
on p(Θ) such that for any x ∈ Rn, t ∈ R and λ ≥ 1, we have λ · θx, t ⊆ θx, t−cλ.

The following lemma is a continuous analogue of [8, Lemma 2.8], which was originally
shown for discrete ellipsoid covers. Hence, for the sake of completeness we include its proof.

Lemma 3.6. Let Θ be a continuous ellipsoid cover. Then there exists a constant s∗ ≥ 0
depending only on p(Θ) such that for any ellipsoids θx, t and θy, t+s with θx, t ∩ θy, t+s 6= ∅,
where x, y ∈ Rn, t ∈ R and s ≥ 0, we have θx, t ∪ θy, t+s ⊆ θx, t−` for any ` ≥ s∗,.

Proof. We write θx, t := Mx,t(Bn)+x, θy, t+s := My, t+s(Bn)+y, and let ω := (Mx, t)
−1(θy,t+s−

x). Then by the shape condition (3.8) and s ≥ 0, we have

diam(ω) := sup
z, z′∈ω

|z − z′| = sup
z, z′∈Bn

|(Mx, t)
−1My, t+s(z − z′)|

≤ 2‖(Mx, t)
−1My, t+s‖ ≤ 2a52−a6s ≤ 2a5.

This, together with θx, t ∩ θy, t+s 6= ∅, implies that

(Mx, t)
−1[(θx, t ∪ θy, t+s)− x] = Bn ∪ ω ⊆ (1 + 2a5)Bn.(3.15)

Therefore, we have
θx, t ∪ θy, t+s ⊆ (1 + 2a5) · θx, t

On the other hand, by Lemma 3.5 we have for any λ ≥ 1 + 2a5,

(1 + 2a5) · θx, t ⊆ λ · θx, t ⊆ θx, t−λc.

Hence, Lemma 3.6 holds for s∗ = (1 + 2a5)c. �

Next we move to exploring the relationship between continuous ellipsoid covers and quasi-
distances on Rn.

Definition 3.7. A mapping ρ : Rn ×Rn → [0,∞) is called a quasi-distance if there exists a
positive constant κ ≥ 1 such that for all x, y, z ∈ Rn,

(i) ρ(x, y) = 0⇔ x = y;
(ii) ρ(x, y) = ρ(y, x);

(iii) ρ(x, z) ≤ κ(ρ(x, y) + ρ(y, z)).

Dahmen, Dekel, and Petrushev have shown that an ellipsoid cover Θ induces a quasi-
distance ρΘ on Rn, see [8, Proposition 2.7]. Moreover, Rn equipped with the quasi-distance
ρΘ and the Lebesgue measure is a space of homogeneous type which is Ahlfors 1-regular [8,
Proposition 2.10]. These results can be summarized as follows.

Proposition 3.8. Let Θ be a continuous ellipsoid cover. The function ρΘ : Rn×Rn → [0,∞)
defined by

(3.16) ρΘ(x, y) := inf
θ∈Θ
{|θ| : x, y ∈ θ}

is a quasi-distance on Rn. Moreover, the Lebesgue measure of balls

(3.17) BρΘ
(x, r) = {y ∈ Rn : ρΘ(x, y) < r}

with respect to the quasi-distance ρΘ satisfies

(3.18) |BρΘ
(x, r)| ∼ r for all x ∈ Rn, r > 0,

with equivalence constants depending only on p(Θ).
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The condition (3.18) states the Lebesgue measure is 1-Ahlfors regular with respect the
quasi-distance ρΘ. This immediately implies the doubling property |BρΘ

(x, 2r)| . |BρΘ
(x, r)|,

which is a defining feature of spaces of homogeneous type introduced by Coifman and Weiss
[5, 6].

The following result is stated without the proof in [12, Theorem 2.7]. Its proof can be
found in [4, Proposition 2.10].

Proposition 3.9. Let Θ be a continuous ellipsoid cover and let ρΘ be a quasi-distance as in
(3.16). For any ball BρΘ

(x, r) with x ∈ Rn and r > 0, there exist t1, t2 ∈ R such that

θx, t1 ⊂ BρΘ
(x, r) ⊂ θx, t2 and |θx, t1| ∼ |θx, t2| ∼ r,

where equivalence constants depend only on p(Θ).

Using Proposition 3.9 we can introduce a more convenient variant of a quasi-distance
induced by a continuous ellipsoid cover.

Proposition 3.10. Let Θ be an ellipsoid cover. For any x, y ∈ Rn, define

ρ1(x, y) := inf
y∈θx, t∈Θ

|θx, t| and ρ2(x, y) := inf
x∈θy, t∈Θ

|θy, t|.

Then the map ρ̃Θ(x, y) := min{ρ1(x, y), ρ2(x, y)} is a quasi-distance which is equivalent to
ρΘ(x, y) as in (3.16).

Proof. It suffices to show that

ρΘ(x, y) ∼ ρ1(x, y) for any x, y ∈ Rn.(3.19)

Indeed, if (3.19) holds, then by symmetry we have ρΘ(x, y) ∼ ρ2(x, y), and therefore

ρΘ(x, y) ∼ min{ρ1(x, y), ρ2(x, y)} = ρ̃Θ(x, y).

Since ρ̃Θ(x, y) = ρ̃Θ(y, x), the fact that ρΘ is a quasi-distance (see Proposition 3.8), implies
that ρ̃Θ is also a quasi-distance which is equivalent to ρΘ.

Let x, y ∈ Rn. Obviously, ρΘ(x, y) ≤ ρ1(x, y), so it remains to prove that there exists
a constant C > 0 such that ρ1(x, y) ≤ CρΘ(x, y). Let r := ρΘ(x, y). By Proposition 3.9,
there exist two ellipsoids θx, t1 , θx, t2 with |θx, t1| ∼ |θx, t2 | ∼ r such that

θx, t1 ⊆ BρΘ
(x, 2r) ⊆ θx, t2 .

Since y ∈ BρΘ
(x, 2r), by the definition of ρ1(x, y), it follows that

ρ1(x, y) ≤ |θx, t2| ∼ r = ρΘ(x, y),

which completes the proof of Proposition 3.10. �

4. Quasi-convex quasi-distances on Rn

In this section we show that the quasi-distance ρΘ, induced by a continuous ellipsoid
cover Θ, is not only 1-Ahlfors-regular, but it also satisfies two other crucial properties:
quasi-convexity and the inner property. We also show the converse statement that any
quasi-convex, 1-Ahlfors-regular quasi-distance ρ automatically satisfies the inner property
and generates a continuous ellipsoid cover Ξ. In addition, the quasi-distance ρΞ, induced by
Ξ, is equivalent to ρ. This constitutes the main result of the paper.

We start by recalling properties of convex bodies in Rn. A convex body in Rn is a com-
pact convex set with nonempty interior. Fritz John [16, p. 202, Theorem III] proved that
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every convex body in Rn contains a unique ellipsoid of maximal volume. The dilate by the
dimension n of such ellipsoid contains the original convex body, see [3] and [19, Theorem
3.13].

Theorem 4.1. Let K ⊆ Rn be a convex body. Then there exists a unique ellipsoid ξ ⊆ Rn

of maximal volume such that ξ ⊆ K. Moreover, K ⊆ n · ξ.

Motivated by Theorem 4.1 and the concept of quasiconformal mapping [15] we can gen-
eralize the notion of convexity.

Definition 4.2. Let Q ≥ 1. We say that a subset K ′ ⊆ Rn is Q-quasi-convex with respect
to x ∈ K ′, if there exists an ellipsoid ξ ⊆ Rn with center cξ = x such that

(4.20) ξ ⊆ K ′ ⊆ Q · ξ.

By Theorem 4.1, any convex body in Rn is Q-quasi-convex with respect the center of the
unique maximal volume ellipsoid contained in the convex body, where Q = n. Notice that
we do not impose uniqueness in the above definition. Namely, for a given set K ′ there could
be two different ellipsoids (even of maximal volume) satisfying (4.20).

Definition 4.3. Given a quasi-distance ρ : Rn×Rn → [0,∞), we say that ρ is quasi-convex
if there exists Q ≥ 1 such that for any x ∈ Rn and r > 0, the ball

Bρ(x, r) := {y ∈ Rn : ρ(x, y) < r}
is Q-quasi-convex with respect to x. That is, there exists an ellipsoid ξrx with center x such
that

(4.21) ξrx ⊆ Bρ(x, r) ⊆ Q · ξrx.
In this case we define the corresponding family of ellipsoids

(4.22) Ξρ := {ξrx : x ∈ Rn, r > 0}.

Lemma 4.4. For any continuous ellipsoid cover Θ, the induced quasi-distance ρΘ given by
(3.16) is quasi-convex.

Proof. For any ball BρΘ
(x, r), by Proposition 3.9, there exist two ellipsoids θx,t1 , θx,t2 ∈ Θ and

two constants d2 ≥ d1 > 0, which depend only on p(Θ), such that θx,t1 ⊆ BρΘ
(x, r) ⊆ θx,t2

and
d1r ≤ |θx,t1| ≤ |BρΘ

(x, r)| ≤ |θx,t2 | ≤ d2r.

Since θx,t1 ⊆ θx,t2 , by Theorem 2.1 we conclude that θx,t2 ⊆
|θx,t2 |
|θx,t1 |

θx,t1 ⊆ d2

d1
θx,t1 . Therefore,

we have

θx,t1 ⊆ BρΘ
(x, r) ⊆ d2

d1

θx,t1 .

This proves that the induced quasi-distance ρΘ is quasi-convex with Q = d2/d1. �

We introduce yet another property of a quasi-distance which will play an important role
in our considerations.

Definition 4.5. We say that a quasi-distance ρ on Rn satisfies the inner property if there
exist constants a = a(ρ), b = b(ρ) > 0 such that for any x ∈ Rn, r > 0 and λ ≥ 1,

(4.23) aλb(Bρ(x, r)− x) ⊆ Bρ(x, λr)− x.
9



The inner property is stronger than the reverse doubling property [20] since it immediately
implies that

anλbn|Bρ(x, r)| ≤ |Bρ(x, λr)| for all λ ≥ 1.

While the inner property (4.23) of ρ is formulated in terms of balls, it can also be equivalently
phrased in terms of ellipsoids in Ξρ.

Lemma 4.6. Let ρ be a quasi-distance on Rn, which is quasi-convex. Let ξrx be the corre-
sponding ellipsoids as in Definition 4.3. Then ρ satisfies the inner property if and only if
there exist positive constants a1, b1 > 0 such that for any x ∈ Rn, r > 0 and λ ≥ 1,

(4.24) a1λ
b1 · ξrx ⊆ ξλrx .

Proof. Since ρ is quasi convex, for every x ∈ Rn and r > 0, there exists an ellipsoid ξrx such
that (4.21) holds. By (4.23), it follows that, for any x ∈ Rn, r > 0 and λ ≥ 1,

aλb(ξrx − x) ⊆ aλb(Bρ(x, r)− x) ⊆ Bρ(x, λr)− x ⊆ Q(ξλrx − x).

Hence, (4.24) holds true with a1 = a/Q and b1 = b. Similarly we can show that (4.24)
implies (4.23) with a = a1/Q and b = b1. �

The following lemma implies that intersecting ellipsoids in Ξρ of comparable volume have
similar shapes.

Lemma 4.7. Let ρ be a quasi-distance which is quasi-convex and 1-Ahlfors-regular. That
is, there exists a constant c1 ≥ 1 such that

(4.25)
1

c1

r ≤ |Bρ(x, r)| ≤ c1r for all x ∈ Rn, r > 0.

Let Ξρ be a family of ellipsoids corresponding to ρ as in Definition 4.3 and let c2 ≥ 1. Suppose
that ξ = ξrx, η = ξsy ∈ Ξρ, x, y ∈ Rn, r, s > 0, are such that

(4.26) Bρ(x, r) ∩ η 6= ∅ and |η| ≤ c2|ξ|.
Then there exists a constant c ≥ 1, which depends only on c1, c2, the triangle inequality
constant κ, and the quasi-convexity parameter Q, such that η ⊆ c · ξ.

Proof. By the quasi-convexity of ρ, there exists Q ≥ 1 such that

(4.27) ξ ⊆ Bρ(x, r) ⊆ Q · ξ, η ⊆ Bρ(y, s) ⊆ Q · η.
Hence, by (4.25) we have

(4.28)
1

Qnc1

r ≤ |ξ| ≤ c1r and
1

Qnc1

s ≤ |η| ≤ c1s.

Combining (4.26), (4.27), and (4.28) we have

s ≤ c3r, where c3 := Qn(c1)2c2.

Since Bρ(x, r) ∩ Bρ(y, s) 6= ∅, the triangle inequality of ρ, and the quasi-convex property of
ρ, implies that

η ⊆ Bρ(y, s) ⊆ Bρ(x, κ(r + 2κc3r)) ⊆ Bρ(x, 3κ
2c3r) ⊆ Q · ξ3κ2c3r

x .

By (4.28) we have

|Q · ξ3κ2c3r
x |
|ξ|

=
|Q|n|ξ3κ2c3r

x |
|ξ|

≤ c := Q2n(c1)23κ2c3.
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Since ξ and Q · ξ3κ2c3r
x have the same center, Theorem 2.1 yields

η ⊆ Q · ξ3κ2c3r
x ⊆ |Q · ξ

3κ2c3r
x |
|ξ|

· ξ ⊆ c · ξ,

which completes the proof of Lemma 4.7. �

Next we show that the inner property holds automatically for quasi-convex and 1-Ahlfors-
regular quasi-distances.

Theorem 4.8. Let ρ be a quasi-distance on Rn which is quasi-convex and 1-Ahlfors-regular.
Then ρ satisfies the inner property.

Proof. First, we will show that there exists d = d(ρ) > 1 such that for every x ∈ Rn and
r > 0,

(4.29) d(Bρ(x, r)− x) ⊆ Bρ(x, 2κr)− x.
Indeed, let x ∈ Rn and r > 0. Since ρ is Q-quasi-convex, there exists an ellipsoid ξrx ∈ Ξρ

such that

ξrx − x ⊆ Bρ(x, r)− x ⊆ Q(ξrx − x),

and for any y ∈ Bρ(x, r) there exists an ellipsoid ξry ∈ Ξρ such that

ξry − y ⊆ Bρ(y, r)− y ⊆ Q(ξry − y).

By (4.28) we have
1

(c1)2Q
≤ |ξ

r
x|
|ξry|
≤ (c1)2Q.

Since Bρ(x, r)∩ξry 6= ∅, by Lemma 4.7, there exists a positive constant c such that ξry ⊆ c ·ξrx.
By Lemma 2.4 we have ξry − y ⊆ c(ξrx − x). Hence, by Theorem 2.1 we have

(4.30) c(ξrx − x) ⊆ |cξ
r
x|
|ξry|

(ξry − y) = cn(c1)2Q(ξry − y).

Let d > 1 be such that (d − 1)cn−1(c1)2Q2 = 1. Take any z ∈ d(Bρ(x, r) − x) + x. Let
y ∈ Bρ(x, r) be such that

z = d(y − x) + x = y + (d− 1)(y − x).

By (4.30) and our choice of d we have

(d− 1)Q(ξrx − x) ⊆ (d− 1)Qcn−1(c1)2Q(ξry − y) ⊆ Bρ(y, r)− y.
Since y − x ∈ Q(ξrx − x), we further deduce that

z = y + (d− 1)(y − x) ∈ y + (Bρ(y, r)− y) = Bρ(y, r).

By the triangle inequality

ρ(z, x) ≤ κ(ρ(x, y) + ρ(y, z)) ≤ 2κr.

This implies that z ∈ Bρ(x, 2κr) and hence (4.29) holds.
Now we can verify the inner property of ρ. Take ε > 0 such that d = (2κ)ε. Let λ ≥ 1.

There exists ` ∈ N0 and

(2κ)` ≤ λ < (2κ)`+1.
11



Hence, by (4.29) it follows that

Bρ(x, λr)− x ⊇ Bρ(x, (2κ)`r)− x ⊇ d`(Bρ(x, r)− x) ⊇ d−1λε(Bρ(x, r)− x).

Therefore, the inner property (4.23) holds with a = d−1 and b = ε. �

The main result of the paper shows a 1-to-1 correspondence between equivalence classes
of continuous ellipsoid covers and quasi-convex, 1-Ahlfors-regular quasi-distances on Rn.

Theorem 4.9. (i) For any continuous ellipsoid cover Θ, the induced quasi-distance ρΘ given
by (3.16) is quasi-convex and 1-Ahlfors-regular.

(ii) Conversely, for any quasi-convex and 1-Ahlfors-regular quasi-distance ρ on Rn, the
corresponding family Ξ = Ξρ, given by Definition 4.3, is a continuous ellipsoid cover. More-
over, its induced quasi-distance

(4.31) ρΞ(x, y) := inf
ξ∈Ξ
{|ξ| : x, y ∈ ξ}, x, y ∈ Rn,

is equivalent to the original quasi-distance ρ.

Proof. Part (i) follows by Proposition 3.8 and Lemma 4.4. Moreover, by Theorem 4.8 we
can deduce that ρΘ has the inner property.

To prove (ii), we first verify that a family Ξρ induced by quasi-distance ρ is a continuous
ellipsoid cover. By (4.28), there exists a constant c1 > 0 such that for any x ∈ Rn and r > 0,

(4.32)
1

Qnc1

r ≤ |ξrx| ≤ c1r.

Therefore, by letting θx, t := ξrx with t = − log2 r, we obtain (3.7) for a1 := 1
Qnc1

and a2 := c1.

To show that Ξρ satisfies the shape condition (3.8), by Lemma 3.3 it suffices to verify
(3.10). Consider two ellipsoids ξ = ξrx, η = ξsy in Ξρ, where x, y ∈ Rn, r, s > 0, such that
ξ ∩ η 6= ∅ and |η| ≤ |ξ|. By Lemma 4.7, there exists a constant c > 1 such that η ⊆ c · ξ.
Hence, by Lemma 2.4, we have

(4.33) η − y ⊆ c · ξ − x = c(ξ − x).

Applying Theorem 2.1 yields

c(ξ − x) ⊆ |cξ|
|η|

(η − y) = cn
|ξ|
|η|

(η − y).

Thus,

c1−n |η|
|ξ|

(ξ − x) ⊆ η − y.

This shows the left-hand side inclusion of (3.10) with a′3 := c1−n and a′4 := 1.
Next we show the right-hand side inclusion of (3.10). By Theorem 4.8 quasi-distance ρ

satisfies the inner property. Hence, by Lemma 4.6 there exists positive constants a1 and b1

such that (4.24) holds. Note that we necessarily have a1 ≤ 1 by letting λ = 1. Assume first
that

(4.34)
r

s
> a1

−1/b1 ≥ 1.

Then the inner property (4.24) for λ = r/s, implies

(4.35) ξsy ⊆ a1λ
b1 · ξsy ⊆ ξλsy = ξry.
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Hence, ξrx ∩ ξry 6= ∅. Moreover, by (4.32)

|ξry| ≤ c1r ≤ (c1)2Qn|ξrx|.
Hence, by Lemma 4.7 applied for c2 = (c1)2Qn, there exists a constant c′ such that that
ξry ⊆ c′ · ξrx. Combining this with (4.35) and Lemma 2.4 we have

(4.36) a1

(
r

s

)b1
(ξsy − y) ⊆ c′(ξrx − x).

On other hand, by (4.32) we have

(4.37)
|ξrx|
|ξsy|
≤ (c1)2Qn r

s
.

Therefore, remembering that ξ = ξrx and η = ξsy, (4.36) and (4.37) imply that

η − y ⊆ ((c1)2Qn)b1
c′

a1

(
|η|
|ξ|

)b1
(ξ − x).

This shows the left-hand side inclusion of (3.10) with a′5 := ((c1)2Qn)b1 c
′

a1
and a6 := b1 under

the assumption (4.34).
Next assume that r/s ≤ a1

−1/b1 . Then, by (4.37)(
|η|
|ξ|

)b1
≥ a1((c1)2Qn)−b1 .

Combining this with (4.33) implies

η − y ⊆ ((c1)2Qn)b1
c

a1

(
|η|
|ξ|

)b1
(ξ − x).

Again we have deduced the left-hand side inclusion of (3.10) albeit with a′5 := ((c1)2Qn)b1 c
a1

.
By Lemma 3.3 we conclude that Ξρ is a continuous ellipsoid cover.

Finally we prove the equivalence of ρ and ρΞ. For every x ∈ Rn and t ∈ R we set θ̃x,t = ξrx,
where r = 2−t. We have just shown that

Ξρ = {θ̃x,t : x ∈ Rn, t ∈ R}
is a continuous ellipsoid cover.

Take any x 6= y ∈ Rn. Let r = 2ρ(x, y) and t = − log2 r. By the quasi-convex property of
ρ, there exists a constant Q ≥ 1 such that

θ̃x, t = ξrx ⊆ Bρ(x, r) ⊆ Q · ξrx = Q · θ̃x, t.
By Lemma 3.5, there exists a constant c > 0 such that

x, y ∈ Bρ(x, r) ⊆ Q · θ̃x, t ⊆ θ̃x, t−cQ.

By (3.7), (4.31), and 2−t = r = 2ρ(x, y), it follows that

ρΞ(x, y) ≤ |θ̃x, t−cQ| ≤ a22cQr = a22cQ+1ρ(x, y).(4.38)

On the other hand, by the definition of ρΞ, there exists an ellipsoid ξ r̃z ∈ Ξρ, z ∈ Rn, r̃ > 0,
such that x, y ∈ ξ r̃z and |ξ r̃z | ≤ 2ρΞ(x, y). Moreover, by the quasi-convexity of ρ,

ξ r̃z ⊆ Bρ(z, r̃) ⊆ Q · ξ r̃z .
13



Since x, y ∈ Bρ(z, r̃) and r̃ ≤ c1|Bρ(z, r̃)| (ρ is 1-Ahlfors-regular) we have

(4.39) ρ(x, y) ≤ κ[ρ(x, z) + ρ(z, y)] ≤ 2c1κ|Bρ(z, r̃)| ≤ 2c1κ|Q · ξ r̃z | ≤ 4c1κQ
nρΞ(x, y).

Combining (4.38) with (4.39) yields equivalence of quasi-distances ρ and ρΞ. �

5. Applications and examples

In this section we give applications and examples of quasi-distances illustrating our main
result, Theorem 4.9. As a consequence of results about Hardy Hp(Θ) spaces with variable
anisotropy associated with continuous ellipsoid cover Θ, which were introduced by Dekel,
Petrushev, and Weissblat in [12], we deduce the following result.

Theorem 5.1. Suppose that ρ is a quasi-convex and 1-Ahlfors-regular quasi-distance on Rn.
Then, Rn equipped with ρ and the Lebesgue measure is a space of homogeneous type for which
Hardy space Hp(Rn, ρ) spaces exists for the entire range 0 < p ≤ 1. These spaces admit
grand maximal function characterization, atomic decomposition, molecular decomposition,
and their duals are Campanato spaces. Moreover, there exists a class of Calderón-Zygmund
singular integral operators which are bounded on Hp(Rn, ρ) spaces for 0 < p ≤ 1.

To wit Theorem 5.1 we define Hp(Rn, ρ) as the anisotropic Hardy space Hp(Ξρ), where Ξρ

is a continuous ellipsoid cover corresponding to quasi-distance ρ as in Theorem 4.9. Conse-
quently, Hp(Rn, ρ) = Hp(Ξρ) enjoys all properties of Hardy spaces with variable anisotropy
shown in [1, 4, 12, 13].

Our first example involves a family of ellipses Θ0 := {θx, t : x ∈ R2, t ∈ R} with

θx, t :=

{
z = (z1, z2) ∈ R2 :

(z1 − x1)2

σ2
1

+
(z2 − x2)2

σ2
2

≤ 1

}
where semi-axes σ1 and σ2 are given by the following table:

t x2 σ1 σ2

t ≤ 0 R 2−
t
2 2−

t
2

t > 0 |x2| > 2−
t
3 2−

t
2 2−

t
2

t > 0 2−
t
2 < |x2| ≤ 2−

t
3 2−

5t
6

1
|x2| 2−

t
6 |x2|

t > 0 |x2| ≤ 2−
t
2 2−

t
3 2−

2t
3

We will show that Θ0 is a continuous ellipsoid cover and give the formula of quasi-norm
ρΘ0 induced by Θ0. For this we need an elementary lemma.

Lemma 5.2. Let ai, βi > 0, i = 1, 2, . . . , d, where d ≥ 2. Then the root x > 0 of the

equation
∑d

i=1 aix
βi = 1, satisfies x ∼ b := min1≤i≤d a

−1/βi
i . More precisely,

min
1≤i≤d

d−1/βib < x < b.
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Proof. For y > 0 define f(y) =
∑

1≤i≤d aiy
βi . It is easy to see that f is strictly increasing

and f(x) = 1 < f(b), which implies that x < b. Since

f

(
min

1≤j≤d
d−1/βjb

)
≤ 1

d

d∑
i=1

ai min
1≤j≤d

1

aj
< 1 = f(x),

we deduce that min1≤i≤d d
−1/βib < x. �

Proposition 5.3. Θ0 with is a continuous ellipsoid cover in the sense of Definition 3.1.

Proof. It is obvious that Θ0 satisfies Definition 3.1(i). We only need to show that any two
intersecting ellipsoids θx, t, θy, t+s ∈ Θ0 satisfy Definition 3.1(ii), where t ∈ R and s ≥ 0.
We shall verify two typical cases while other cases are similar or trivial. Denote by σ2 the
vertical semi-axis of θx, t and by σ′2 the vertical semi-axis of θy, t+s.

Case 1. Suppose that 2−t/2 < |x2| ≤ 2−t/3 and |y2| ≤ 2−(t+s)/2, where t > 0 and s ≥ 0.
Then, we have

Mx, t = diag(2−5t/6/|x2|, 2−t/6|x2|), My, t+s = diag(2−(t+s)/3, 2−2(t+s)/3).

By θx, t ∩ θy, t+s 6= ∅, |y2| ≤ 2−(t+s)/2, σ2 = 2−t/6|x2|, σ′2 = 2−2(t+s)/3, |x2| ≤ 2−t/3, t > 0 and
s ≥ 0, we know that

|x2| ≤ |y2|+ σ2 + σ′2 ≤ 2−(t+s)/2 + 2−t/2 + 2−2(t+s)/3 ≤ 3 · 2−t/2.

From this and |x2| > 2−t/2, it follows that

‖(Mx, t)
−1My, t+s‖ = ‖diag(2t/2−s/3|x2|, 2−t/2−2s/3/|x2|)‖ ≤ ‖diag(3 ·2−s/3, 2−2s/3)‖ ≤ 3 ·2−s/3

and

‖(My, t+s)
−1Mx, t‖ = ‖diag(2−t/2+s/3/|x2|, 2t/2+2s/3|x2|)‖ ≤ ‖diag(2s/3, 3 · 22s/3‖ ≤ 3 · 22s/3.

Case 2. Suppose that |x2| ≤ 2−t/2 and 2−(t+s)/2 < |y2| ≤ 2−(t+s)/3, where t > 0 and s ≥ 0.
Then, we have

Mx, t = diag(2−t/3, 2−2t/3), My, t+s = diag(2−5(t+s)/6/|y2|, 2−(t+s)/6|y2|).

By θx, t ∩ θy, t+s 6= ∅, |x2| ≤ 2−t/2, σ2 = 2−2t/3, σ′2 = 2−(t+s)/6|y2|, |y2| ≤ 2−(t+s)/3, t > 0 and
s ≥ 0, we know that

|y2| ≤ |x2|+ σ2 + σ′2 ≤ 2−t/2 + 2−2t/3 + 2−(t+s)/2 ≤ 3 · 2−t/2.

From this and |y2| > 2−(t+s)/2, it follows that

‖(Mx, t)
−1My, t+s‖ = ‖diag(2−t/2−5s/6/|y2|, 2t/2−s/6|y2|)‖ ≤ ‖diag(2−s/3, 3 · 2−s/6)‖ ≤ 3 · 2−s/6

and

‖(My, t+s)
−1Mx, t‖ = ‖diag(2t/2+5s/6|y2|, 2−t/2+s/6/|y2|)‖ ≤ ‖diag(3 · 25s/6, 22s/3)‖ ≤ 3 · 25s/6.

�
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Proposition 5.4. The quasi-distance ρΘ0 induced by the ellipsoid cover Θ0 satisfies

ρΘ0(x, y) ∼



|x− y|2 |x− y| ≥ 1 or |x− y| 23 < |x2|,[
(y1 − x1)2 +

√
(y1 − x1)4 + 4(y2 − x2)2

] 3
4 |x− y| < 1 & |x2| ≤ ϕ(x, y),

max{(x1 − y1)
6
5 |x2|

6
5 , (x2 − y2)6|x2|−6} |x− y| < 1

&ϕ(x, y) < |x2| ≤ |x− y|2/3,

where ϕ(x, y) := 2−
3
4

[
(y1 − x1)2 +

√
(y1 − x1)4 + 4(y2 − x2)2

] 3
4
.

Proof. By Proposition 3.10, it suffice to find the formula for

ρ1(x, y) := inf
y∈θx, t∈Θ

|θx, t|.

It is not hard to verify that ellipses in Θ0 are nested, i.e., θx, t1 ( θx, t2 for any x ∈ R2 and
t1, t2 ∈ R with t1 > t2. Using this and the fact that ellipses in Θ0 are closed, we know
that ρ1(x, y) equals to the area of an ellipse θx, t for some t ∈ R such that y belongs to the
boundary of θx, t, i.e., y ∈ ∂θx, t. Equivalently,

(y1 − x1)2

σ2
1

+
(y2 − x2)2

σ2
2

= 1.(5.40)

We shall consider three cases.
Case 1. Suppose that t ∈ R and θx, t is a ball. Since y ∈ ∂θx, t we have

(y1 − x1)2

2−t
+

(y2 − x2)2

2−t
= 1⇐⇒ |x− y| = 2−

t
2 .(5.41)

By the definition of Θ0, we know this happens if x, y satisfy (5.41) for some t ≤ 0 or for
some t > 0 and |x2| > 2−t/3. Equivalently, we have either |x − y| ≥ 1 or |x − y| < 1 and

|x2| > |x− y|
2
3 . In either of two subcases,

ρ1(x, y) = |θx, t| = π|x− y|2.

Case 2. Suppose that t > 0, σ1 = 2−t/3, and σ2 = 2−2t/3. Since y ∈ ∂θx, t we have

(y1 − x1)2

2−
2t
3

+
(y2 − x2)2

2−
4t
3

= 1.(5.42)

This is equivalent to |x− y| < 1 and |x2| ≤ 2−
t
2 , where

2−
t
2 = 2−

3
4

[
(y1 − x1)2 +

√
(y1 − x1)4 + 4(y2 − x2)2

] 3
4

=: ϕ(x, y).

Therefore, in this case,

ρ1(x, y) = |θx, t| = π2−t = π[ϕ(x, y)]2.

Case 3. Suppose that t > 0, σ1 = 2−5t/6/|x2|, and σ2 = 2−t/6|x2|. Since y ∈ ∂θx, t we have

(y1 − x1)2

[2−
5t
6 |x2|−1]2

+
(y2 − x2)2

[2−
t
6 |x2|]2

= 1.
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Let a = (y1− x1)2|x2|2, b = (y2− x2)2/|x2|2, and z = 2t/3. Since Case 3 is complementary to
Cases 1 and 2, we necessarily have |x− y| < 1, ϕ(x, y) < |x2| ≤ |x− y|2/3, and az5 + bz = 1.

Since a, b > 0 and z > 1, by Lemma 5.2, we have

z = 2
t
3 ∼ min{(x1 − y1)−

2
5 |x2|−

2
5 , (x2 − y2)−2|x2|2}.

Thus, we have

ρ1(x, y) = |θx, t| = π2−t ∼ max{(x1 − y1)
6
5 |x2|

6
5 , (x2 − y2)6|x2|−6}.

Combining Cases 1–3 with (3.19) shows Proposition 5.4. �

By Theorems 4.8 and 4.9 we deduce that ρΘ0 is quasi-convex and 1-Ahlfors-regular quasi-
distance which satisfies the inner property. However, these properties are far from obvious
from the formula for ρΘ0 in Proposition 5.4

Next we will give an example of a quasi-convex quasi-distance ρ, which is not 1-Ahlfors-
regular, but which nevertheless generates a continuous ellipsoid cover. It will be convenient
to relax the assumption of symmetry of quasi-distance in Definition 3.7 by the condition
ρ(x, y) ≤ Cρ(y, x) for any x, y ∈ Rn, see [18, Section I.2.4]. This formally weaker condition
implies that ρ(x, y) ∼ ρ(y, x). Hence, its symmetrization [ρ(x, y) + ρ(y, x)]/2 is a quasi-
distance in the sense of Definition 3.7, albeit for (possibly) increased triangle constant κ.

The following example can be found in the monograph of Stein [18, Section I.2.6]. It is
merely the simplest example of general class of balls and metrics studied by Nagel, Stein,
and Wainger [17]. Let k be a non-negative integer and, for any x ∈ R2 and δ > 0, let

(5.43) Bk(x, δ) := {y ∈ R2 : |x1 − y1| < δ, |x2 − y2| < max{δk+1, |x1|kδ}}.
Then balls {Bk(x, δ) : x ∈ R2, δ ∈ (0, ∞)} are a natural family of balls associated with
the vector fields X1 := ∂/∂x1 and X2 := xk1∂/∂x2. That is, y ∈ Bk(x, δ) if one can join
x to y along a path whose velocity vector at any point is of the form a1X1 + a2X2, with
|a1| ≤ 1 and |a2| ≤ 1, in elapsed time . δ. The balls Bk(x, δ) can be equivalently defined as
Bρk(x, δ) := {y ∈ R2 : ρk(y, x) < δ}, where

(5.44) ρk(y, x) =

 max{|y1 − x1|, min{|y2 − x2|1/(k+1), |y2 − x2|/|x1|k}} if x1 6= 0,

max{|y1 − x1|, |y2 − x2|1/(k+1)} if x1 = 0.

Proposition 5.5. Let k be a non-negative integer and let ρk be as in (5.44). Then ρk is a
quasi-distance which is quasi-convex and satisfies the inner property, but ρk is not 1-Ahlfors-
regular.

Proof. It is not difficult to check that ρk is equivalent to the metric associated with vector
fields X1 and X2, see [17, Definition 1.1]. That is, the distance between x and y is the
infimum of travel times between x and y along paths whose velocity vector at any point is
of the form a1X1 + a2X2, with |a1| ≤ 1 and |a2| ≤ 1. By (5.43) any ball Bρk(x, δ) is actually

a rectangle. Hence, ρk is quasi-convex with Q =
√

2. Moreover, for any λ ≥ 1, δ > 0 and
x ∈ R2, we have

λ (Bρk(x, δ)− x) =
{

(y1, y2) : |y1| < λδ, |y2| < λmax{δk+1, δ|x1|k}
}

(5.45)

⊆
{

(y1, y2) : |y1| < λδ, |y2| < max{(λδ)k+1, λδ|x1|k}
}

= Bρk(x, λδ)− x.
17



Hence, ρk satisfies the inner property as in Definition 4.5 with a = 1 and b = 1. By (5.43)
we have

(5.46) |Bρk(x, δ)| = 4δ2 max{δk, |x1|k}.
Hence, the Lebesgue measure is not 1-Ahlfors-regular with respect to ρk. �

In spite of Proposition 5.5, one can associate with ρk a continuous ellipsoid cover. By the
quasi-convexity of ρk we can consider family of ellipsoids Ξρk = {ξrx : x ∈ Rn, r > 0} as in
Definition 4.3

ξrx ⊆ Bρk(x, r) ⊆ Q · ξrx.
For any x ∈ Rn and t ∈ R define

(5.47) θx, t = ξr(t)x , where r(t) = sup{r > 0 : |ξrx| ≤ 2−t}.
It follows from (5.43) and (5.47) that Θ = {θx, t : x ∈ Rn, t ∈ R} satisfies property (i) in
Definition 3.1. It takes considerably more effort to show that Θ satisfies the shape condition
(ii) using Lemma 3.3. Consequently, the Hardy space Hp(Rn, ρk), which corresponds to
ellipsoid cover Ξρk , satisfies the conclusions of Theorem 5.1. We leave details to an interested
reader.
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