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Abstract. We define homogeneous classes of x-dependent anisotropic
symbols Ṡmγ,δ(A) in the framework determined by an expansive dilation
A, thus extending the existing theory for diagonal dilations. We revisit
anisotropic analogues of Hörmander-Mihlin multipliers introduced by
Rivière [22] and provide direct proofs of their boundedness on Lebesgue
and Hardy spaces by making use of the well-established Calderón-Zyg-
mund theory on spaces of homogeneous type. We then show that x-
dependent symbols in Ṡ0

1,1(A) exhibit Calderón-Zygmund kernels, yet
their L2 boundedness fails. Finally, we prove boundedness results of the
class Ṡm1,1(A) on weighted anisotropic Besov and Triebel-Lizorkin spaces
extending isotropic results of Grafakos and Torres [15].

1. Introduction: definitions, examples, notation

Multiplier operators, and more generally pseudodifferential operators,

continue to attract lots of attention due to their wide applications in the

study of partial differential equations and signal analysis. Several classes of

isotropic pseudodifferential symbols attached to such operators, both in lin-

ear and multilinear setting, are nowadays well understood. Among them we

highlight the prominent role played by the classical Hörmander-Mihlin mul-

tipliers [16], [21], their space dependent counterparts—the Coifman-Meyer

symbols [8], or more generally the so-called classical classes of symbols Smγ,δ
or their homogeneous counterparts Ṡmγ,δ.

We start by recalling the definition of the isotropic classes of homoge-

neous symbols Ṡmγ,δ; see for example the work of Grafakos and Torres [15].

We say that a symbol σ belongs to the class Ṡmγ,δ if

(1.1) |∂αx∂
β
ξ σ(x, ξ)| ≤ Cαβ|ξ|m+δ|α|−γ|β|,

for all multi-indices α, β, all ξ ∈ Rn, and some positive constants Cαβ. In

particular, if the symbol σ is x-independent, we refer to it as a multiplier.

Date: July 29, 2010.

2010 Mathematics Subject Classification. Primary: 47G30, 42B20, 43A85; Secondary:
42B15, 42B35, 42C40.

Key words and phrases. Anisotropic symbol, multiplier operator, pseudodifferential
operator, Calderón-Zygmund operator, space of homogeneous type.

1
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A multiplier σ(ξ) belongs to the class Ṡmγ,0, or simply Ṡmγ , if

(1.2) |∂βξ σ(ξ)| ≤ Cβ|ξ|m−γ|β|,

for all multi-indices β, all ξ ∈ Rn, and some positive constants Cβ. The non-

homogeneous version of these classes is obtained by replacing the quantity

|ξ| with 1 + |ξ|. For the remainder of this paper, the absence of the dot will

refer to the nonhomogeneous version of a given class of symbols.

In the early 1970s Rivière extended the theory of singular integrals to

operators with kernels that satisfy a homogeneity given by a one-parameter

group of transformations. His work [22] anticipated future developments

surrounding what is nowadays known as the Calderón-Zygmund theory on

spaces of homogeneous type. Some of the motivation for the study of such

spaces and operators acting on them comes from partial differential equa-

tions where several differential operators, such as the heat operator, satisfy

an anisotropic homogeneity. Of particular interest was therefore the study

of the boundedness properties of homogeneous multiplier operators; see, for

example, [22], and the works of Madych and Rivière [20] and Seeger [23].

In the context of operators with x-dependent nonhomogeneous anisotropic

symbols, several boundedness results are known, for instance, in the woks

of Garello [13], Lascar [18], Leopold [19], and Yamazaki [29, 30]. As we will

indicate below, the setting used by the latter authors involves diagonal dila-

tions. However, the study of pseudodifferential operators with x-dependent

anisotropic symbols associated with more general expansive dilations has

not been previously explored.

In this paper we introduce and investigate the appropriate notion of

anisotropic class of multipliers Ṡmγ (A), and more generally of anisotropic

class of symbols Ṡmγ,δ(A), associated to an expansive matrix A. We search

for a definition analogous to the isotropic one stated above. We need to

set up first some of the standard notation, which we borrow from Bownik’s

monograph [3]; see also [4], [6]. Given an expansive matrix A, that is a

matrix for which all its eigenvalues λ satisfy |λ| > 1, we can first define a

canonical quasi-norm ρA associated to it. Specifically, if we let P be some

non-degenerate n×n matrix, and | · | the standard norm of Rn, there exists

an ellipsoid ∆ = {x ∈ Rn : |Px| < 1} such that |∆| = 1 and for some r > 1,

∆ ⊂ r∆ ⊂ A∆. Then, we can define a family of dilated balls around the

origin Bk = Ak∆, k ∈ Z, that satisfy

Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk,
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where b = | detA|. The step homogeneous quasi-norm induced by A is de-

fined by

ρ(x) = bj for x ∈ Bj+1 \Bj, and ρ(0) = 0.

It is straightforward to verify that ρ satisfies a triangle inequality up to

a constant and the homogeneity condition ρ(Ax) = bρ(x), x ∈ Rn. It is

known that any two homogeneous quasi-norms associated to a dilation A are

equivalent; therefore, we can talk about a canonical quasi-norm associated to

A, which we denote by ρA. Moreover, endowed with the quasi-norm ρA and

the Lebesgue measure, Rn becomes a space of homogeneous type. Similarly

we shall consider a family of dilated balls B∗k, k ∈ Z, and a canonical quasi-

norm ρA∗ associated with the transposed dilation A∗.

Definition 1.1. We say that a bounded symbol σ(x, ξ) belongs to the

homogeneous anisotropic class Ṡmγ,δ(A) if it satisfies the estimates

(1.3) |∂αx∂
β
ξ [σ(A−k1·, (A∗)k2·)](Ak1x, (A∗)−k2ξ)| ≤ Cα,βρA∗(ξ)

m,

for all multi-indices α, β and (x, ξ) ∈ Rn × (Rn \ {0}). Here, k1, k2 ∈ Z are

given by

(1.4) k1 = bkδc, k2 = bkγc,

where k ∈ Z is such that ρA∗(ξ) ∼ | detA|k.

The derivatives above should be interpreted as

∂αx∂
β
ξ σ̃(Ak1x, (A∗)−k2ξ),

where

σ̃(x, ξ) = σ(A−k1x, (A∗)k2ξ),

and k1, k2 ∈ Z are as in the previous definition.

The notation ∼ has the following interpretation: we pick k to be the

unique integer such that the frequency variable ξ belongs to the annulus

B∗k+1 \ B∗k. We would like to point out that, for some general expansive

matrix A, we need to require estimates that hold uniformly after re-scaling

to scale zero. This is intuitively clear, due to the definition of the quasi-

norm induced by the adjoint matrix. As we shall soon see, however, this

apparently small detail will translate into certain technical difficulties in

our proofs.

When our symbol is x-independent, we will again refer to it as multi-

plier and simply write Ṡmγ (A) for the corresponding class. At a first glance,

Definition 1.1 might seem rather obscure. Nevertheless, it is not hard to see

that in the isotropic case, that is when A = 2In (In is the n × n identity
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matrix), Definition 1.1 recovers the isotropic class Ṡmγ,δ. Indeed, in this case

we have ρA∗(ξ) = |ξ|n and we simply need to observe that our uniform esti-

mates (1.3) are those in (1.1) written for |ξ| ∼ 2k. That is, we have that the

isotropic class Ṡmγ,δ coincides with Ṡ
m/n
γ,δ (2In). Note that the rescaling of pa-

rameter m by a factor of 1/n is an artifact of our definition of a quasi-norm.

To be consistent with the isotropic definition of this class of symbols, one

must require that the quasi-norm associated to A∗ satisfies the homogeneity

condition ρA∗(A
∗ξ) = | detA|1/nρA∗(ξ) instead. When A = 2In this leads to

the quasi-norm ρA∗(ξ) = |ξ| and the Definition 1.1 yields the isotropic class

Ṡmγ,δ.

More generally, suppose that the dilation A is diagonal

A =


λa1 0 . . . 0
0 λa2 . . . 0
...

...
. . .

...
0 0 . . . λan

 ,

where λ > 1, a1, . . . , an > 0 and a1 + · · ·+ an = na. Consider

ρA(x1, . . . , xn) = (|x1|2/a1 + · · ·+ |xn|2/an)a/2.

It is easy to check that ρA is a quasi-norm associated with the dilation A.

In particular, we have the homogeneity condition

ρA(Ax) = ρA(λa1x1, . . . , λ
anxn) = λaρA(x) = | detA|1/nρA(x).

Alternately, we could have chosen

ρA(x1, . . . , xn) = max
1≤j≤n

|xj|a/aj .

Pick now ξ ∈ B∗k+1 \B∗k, for some k ∈ Z, that is ρA∗(ξ) ∼ λak. Then

|∂αx∂
β
ξ [σ(A−k1·, (A∗)k2·)](Ak1x, (A∗)−k2ξ)|

= λ−k1
Pn
j=1 ajαj+k2

Pn
j=1 ajβj |∂αx∂

β
ξ σ(x, ξ)|.

Therefore, using (1.4), we see that estimates (1.3) take the more familiar

form

(1.5) |∂αx∂
β
ξ σ(x, ξ)| . Cα,β[ρA∗(ξ)]

m+δ‖α‖−γ‖β‖,

where we denoted

‖α‖ =
1

a

n∑
j=1

ajαj, ‖β‖ =
1

a

n∑
j=1

ajβj.
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Estimates (1.5) define the so-called homogeneous class Ṡma;γ,δ; the corre-

sponding nonhomogeneous version of this class, Sma;γ,δ, was previously in-

vestigated in [13, 18, 19, 29, 30]. Our definition has the following advan-

tage: for a general matrix A, say one that has some non-trivial Jordan

blocks, the action of A on Rn could be rather complex, and the diago-

nal version employed by these authors does not capture the anisotropy of

all directions. We also recover the nonhomogeneous class introduced by

these authors with a straightforward adaptation of the previous definition.

At least in the diagonal case, this definition is powerful enough to recover

known properties of boundedness, symbolic calculus and microlocal analysis

of classical Hörmander classes of symbols; see again [13, 18, 19, 29, 30] and

the references therein. The relevant boundedness properties of certain non-

homogeneous classes of symbols associated to a general expansive matrix A

are investigated in our complementary work [1]. The anisotropic nonhomo-

geneous class of symbols is simply the smoothed out version at ξ = 0 of the

homogeneous one.

Definition 1.2. We say that a bounded symbol σ(x, ξ) belongs to the

nonhomogeneous anisotropic class Smγ,δ(A) if it satisfies the estimates

(1.6) |∂αx∂
β
ξ [σ(A−k1·, (A∗)k2·)](Ak1x, (A∗)−k2ξ)| ≤ Cα,β(1 + ρA∗(ξ))

m,

for all multi-indices α, β and (x, ξ) ∈ Rn×Rn. Here, k1, k2 ∈ Z are given by

(1.4), where k ∈ N is such that 1 + ρA∗(ξ) ∼ | detA|k.

Associated to any symbol σ(x, ξ) we have a pseudodifferential operator

(1.7) (σ(x,D)f)(x) =

∫
Rn
σ(x, ξ)f̂(ξ)eix·ξ dξ;

here, f̂ = Ff denotes the Fourier transform of f . When the symbol is x-

independent, we simply write σ(D) and refer to it as a multiplier operator.

Because of the ξ = 0 singularity of the symbol, it is natural to consider the

operator σ(x,D) initially defined on the subspace S0(Rn) of the space of

Schwartz function S(Rn), consisting of all functions whose Fourier transform

vanishes to infinite order at zero. Moreover, we can show that for any σ ∈
Ṡmγ,δ(A), σ(x,D) maps S0 continuously to S. We postpone the proof of this

fact, which requires some additional notation specific to the anisotropic

setting, until Section 4; see Lemma 4.9. It is also well known that S is

dense in Lp, 1 ≤ p < ∞, and S ∩ Hp is dense in Hp, 0 < p ≤ 1; a similar

statement holds for S0. For the appropriate definitions of these spaces and

further properties, we refer again to the monograph [3].
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The remainder of this paper will be concerned with homogeneous multi-

pliers or pseudodifferential symbols, therefore allowing for a singularity at

ξ = 0; we reiterate that the definition we provided is appropriate for any

expansive matrix, not just for a diagonal one. We investigate the relevant

properties of certain homogeneous classes of multipliers or symbols in this

anisotropic setting, with the main goal of extending the classical isotropic

results.

Our paper is organized as follows. In Sections 2 and 3 we revisit the

anisotropic Mihlin and Hörmander multipliers, and provide alternate proofs

of their boundedness on Lebesgue and Hardy spaces. Our approach is sim-

pler than the one in [22], mainly because we can appeal now to the well es-

tablished Calderón-Zygmund theory on spaces of homogeneous type. In par-

ticular, the continuity results for these multipliers follow immediately once

we show that their Schwartz kernels satisfy anisotropic Calderón-Zygmund

estimates. In Section 4, we prove that pseudodifferential operators with

symbols in Ṡ0
1,1(A) have anisotropic Calderón-Zygmund kernels. Then, by

making use of wavelets techniques, we show that operators with symbols in

the exotic classes Ṡm1,1(A) are bounded on weighted anisotropic Besov and

Triebel-Lizorkin spaces. This extends the corresponding isotropic results of

Grafakos and Torres [15].

2. Anisotropic Mihlin multipliers

In analogy with its isotropic counterpart, we will define the anisotropic

Mihlin class Ṡ0
1(A) . A multiplier σ ∈ Ṡ0

1(A) satisfies

(2.1) |∂βξ [σ((A∗)k·)]((A∗)−kξ)| ≤ Cβ,

for all multi-indices β, for all ξ ∈ Rn \ {0}, and k ∈ Z such that ρA∗(ξ) ∼
bk = | detA|k. In particular, (2.1) implies that σ is a bounded function. Note

that in the isotropic case A = 2In, the condition (2.1) takes the familiar

form

|∂βξ σ(ξ)| ≤ Cβ|ξ|−|β| for all β.

Example 2.1. Consider the following simple partial differential equation

in the variable function u(x1, x2) on R2:

P (∂)u = Q(∂)f,

where f(x1, x2) is some given Schwartz function on R2, and

P (∂) = ∂6
x1

+ ∂2
x2

+ ∂6
x2
, Q(∂) = ∂6

x1
+ ∂6

x2
.
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By taking the Fourier transform on both sides of this equation, we obtain

(ξ6
1 + ξ2

2 + ξ6
2)û = (ξ6

1 + ξ6
2)f̂

which gives (by taking now the inverse Fourier transform)

u = F−1(σf̂).

Here,

σ(ξ1, ξ2) =
ξ6
1 + ξ6

2

ξ6
1 + ξ2

2 + ξ6
2

is a typical example of homogeneous multiplier to which the anisotropic

setting seems to be more appropriate than the isotropic one. This is despite

the fact that σ does not satisfy any obvious scaling property.

Indeed, a straightforward exercise verifies that σ ∈ Ṡ0
1(A), where

A =

( √
2 0

0 2
√

2

)
.

More precisely, we can check that estimates (1.5) hold with a1 = 1/2, a2 =

3/2, a = 1, n = 2, i.e.,

|∂α1
ξ1
∂α2
ξ2
σ(ξ1, ξ2)| . ρA∗(ξ1, ξ2)

−‖(α1,α2)‖,

where

ρA∗(ξ1, ξ2) = max
i=1,2

(|ξ1|2, |ξ2|2/3).

For example,

|∂ξ1σ(ξ1, ξ2)| =
6|ξ1|5|ξ2|2

(ξ6
1 + ξ2

2 + ξ6
2)2
. min

i=1,2
(|ξ1|−1, |ξ2|−1/3) . ρA∗(ξ1, ξ2)

−‖(1,0)‖.

Let us briefly indicate how the estimate above was obtained. If ρA∗(ξ1, ξ2) =

|ξ1|2, i.e., |ξ1|3 ≥ |ξ2|, then

|ξ1|5|ξ2|2

(ξ6
1 + ξ2

2 + ξ6
2)2
≤ |ξ1|

6|ξ2|2|ξ1|−1

|ξ1|12
≤
(
|ξ2|
|ξ1|3

)2

|ξ1|−1 ≤ |ξ1|−1.

If ρA∗(ξ1, ξ2) = |ξ2|2/3, i.e., |ξ1|3 ≤ |ξ2|, then

|ξ1|5|ξ2|2

(ξ6
1 + ξ2

2 + ξ6
2)2
≤ |ξ2|

5/3|ξ2|2

|ξ2|4
≤ |ξ2|−1/3.

Similar estimates hold for all multi-indices |α| ≤ 2. The results of Sections

2 and 3 will show that the Lp boundedness of the given function f is prop-

agated to the solution u.

Consider then a multiplier operator σ(D) with anisotropic Mihlin symbol

σ(ξ), initially defined on S0. The main result of this section is the following.

Theorem 2.2. If σ ∈ Ṡ0
1(A), then σ(D) extends as a bounded operator

(i) σ(D) : Lp → Lp, p > 1,
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(ii) σ(D) : L1 → L1,∞,

(iii) σ(D) : Hp → Hp, 0 < p ≤ 1,

(iv) σ(D) : Hp → Lp, 0 < p ≤ 1.

In particular, in the isotropic case A = 2In, we recover the well known

result about the Mihlin class that if σ ∈ Ṡ0
1 , then σ(D) is a bounded operator

on all spaces Lp, p > 1.

Our proof will follow the classical approach. We refine the nice argument

in Grafakos’ book [14, Chapter 5], and show first that σ(D) is a Calderón-

Zygmund operator with respect to the dilation A and the canonical quasi-

norm ρA.

Proposition 2.3. Suppose that σ ∈ Ṡ0
1(A). Then, the inverse Fourier trans-

form K = F−1σ is a Calderón-Zygmund kernel, that is

(2.2) |∂α[K(Ak·)](A−kx)| ≤ Cα
ρA(x)

for some Cα > 0, all multi-indices α, and all x ∈ Rn\{0} such that ρA(x) ∼
| detA|k = bk.

With this fact in our hands, the proof of our theorem is immediate.

Proof of Theorem 2.2. Parts (i) and (ii) follow from the general Calderón-

Zygmund theory on spaces of homogeneous type as explained, for example,

in Stein’s book [24], Chapter 1. This is due to the fact that condition (2.2)

implies Hörmander condition (3.2); see Proposition 3.3.

Part (iii) is implied by [3, Theorem 9.8]. We only need to note that the

multiplier operator is a Calderón-Zygmund singular integral of convolution

type

σ(D)f = K ∗ f
which is L2 bounded, because K ∈ L∞. Moreover, as a convolution operator

σ(D) preserves vanishing moments, i.e., (σ(D))∗(xα) = 0 for all α. Finally,

part (iv) is a consequence of [3, Theorem 9.9]. �

To prove the proposition we will need the following elementary lemma,

see [3, 4, 6].

Lemma 2.4. Suppose A is an expansive matrix, and λ− and λ+ are any

positive real numbers such that 1 < λ− < minλ∈σ(A) |λ| and maxλ∈σ(A) |λ| <
λ+ < b = | detA|. Then, there exists c > 0 such that

(1/c)(λ−)j|x| ≤ |Ajx| ≤ c(λ+)j|x| for j ≥ 0,(2.3)

(1/c)(λ+)j|x| ≤ |Ajx| ≤ c(λ−)j|x| for j ≤ 0.(2.4)
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Furthermore, if A is diagonalizable over C, then we may take λ− =

minλ∈σ(A) |λ| and λ+ = maxλ∈σ(A) |λ|.

We are ready to prove our proposition.

Proof of Proposition 2.3. We start by considering the Littlewood-Paley de-

composition ∑
j∈Z

ϕ((A∗)jξ) = 1, ξ 6= 0,

where ϕ is a C∞ function compactly supported away from the origin. Define

σj(ξ) = σ(ξ)ϕ((A∗)jξ),

and note that σj(ξ) 6= 0 if and only ρA∗(ξ) ∼ b−j. Clearly
∑
j∈Z

σj(ξ) converges

boundedly to σ(ξ) for ξ 6= 0; see, for example, Frazier, Jawerth and Weiss’

monograph [12]. If we let

Kj(x) =

∫
Rn
σj(ξ)e

ix·ξ dξ,

then
∑
j∈Z

Kj converges to K in S ′.

Claim 1. For all multi-indices α and for all x ∈ Rn such that ρA(x) ∼ 1,

we have

(2.5)
∑
j∈Z

|∂αKj(x)| ≤ Cα,

for some positive constant Cα.

Notice again that we continue with our paradigm of “rescaling to scale

zero”. It turns out that it suffices to have the estimate (2.5) on the kernel

K, since, as we will see later, we can perform a “rescaling back to scale k”

argument and therefore obtain estimate (2.2).

Let us first prove Claim 1. We denote by DAkf(·) = f(Ak·), the dilation

by Ak for all k ∈ Z of some function f . We can write

Kj = F−1σj = F−1(DA∗jD(A∗)−jσj) = b−jDA−jF−1(D(A∗)−jσj).

Let

fj = D(A∗)−jσj and gj = F−1fj.

It is easy to check that {fj}j∈Z is a subset of the normal class

NR = {φ ∈ C∞ : supp(φ) ⊂ {ξ : R−1 < |ξ| < R}, ‖∂αφ‖L∞ ≤ cα},

where R, cα > 0 is some fixed collection of parameters depending only on

ϕ. Consequently, {gj}j∈Z is a subset of

M = {Φ ∈ C∞ : ‖Φ‖m = sup
|α|≤m

(1 + |x|)m|∂αΦ(x)| ≤ cm},
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where (cm)m∈N is some fixed sequence depending on R and cα.

Therefore, we have

(2.6) K =
∑
j∈Z

Kj =
∑
j∈Z

b−jDA−j(gj),

where {gj}j∈Z ⊂ M. Recall that we are trying to achieve the scale zero

estimate (2.5) of K. We fix s ∈ N and try to find summable estimates on

|∂αDA−j(gj)(x)|, |α| = s, for ρA(x) ∼ 1. We distinguish two cases.

Case 1. “Estimates of flat functions”: j ≥ 0

We use the chain rule and the fact that ‖gj‖s ≤ cs to conclude that

|∂αDA−j(gj)(x)| ≤ Cs‖A−j‖s sup
|β|=s
|∂βgj(A−jx)| ≤ Cs‖A−j‖s.

Clearly, the series
∑
j≥0

b−j‖A−j‖s converges as a geometric series with ratio

strictly less than 1.

Case 2. “Decay estimates at infinity”: j < 0

We use again the chain rule and Lemma 2.4. For some convenient N ∈ N
(to be chosen later), we can write

|∂αDA−j(gj)(x)| ≤ CN,s‖A−j‖s|A−jx|−N ≤ CN,sλ
−js
+ λjN− .

Note that the second inequality implicitly assumes that we work at scale

zero, that is ρA(x) ∼ 1. We also used the fact that gj ∈M. If we now recall

that 1 < λ− < λ+ < b, we can choose N such that

b−1λ−s+ λN− < 1,

which guarantees the convergence of the geometric series
∑
j<0

b−jλ−js+ λjN− .

Hence, by combining the two summable estimates, we conclude that the

scale-zero estimate (2.5) holds:∑
j∈Z

|∂αKj(x)| ≤ Cs, |α| = s.

In order to finish the proof, we only need to prove the following

Claim 2. If K satisfies (2.5), then K also satisfies (2.2).

We use a rather natural rescaling argument. For a fixed k ∈ Z and x ∈ Rn

such that ρA(x) ∼ bk, we need to estimate

∂α[K(Ak·)](A−kx) = ∂α(DAkK)(A−kx).

Note that

DAkK =
∑
j∈Z

b−jDAk−j(gj) = b−k
∑
j∈Z

b−jDA−j(g̃j),
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where g̃j = gj+k ∈M. Consequently, since ρA(A−kx) ∼ 1 (i.e, we are back at

scale zero!), we can repeat the same argument following (2.6) and conclude

that

|∂α[K(Ak·)](A−kx)| ≤ Cαb
−k .

Cα
ρA(x)

.

This shows (2.2) and the proof is complete. �

3. Anisotropic Hörmander multipliers

In this section we revisit the class of anisotropic Hörmander multipli-

ers introduced by Rivière [22]. We show that in the setting of expansive

dilations this class corresponds to anisotropic convolution-type Calderón-

Zygmund operators. As a consequence, we obtain an alternative proof of Lp

boundedness of anisotropic Hörmander multipliers to the original approach

of Rivière.

Definition 3.1. Let σ be a bounded function on Rn \{0}. We say that σ is

an anisotropic Hörmander multiplier of order M (associated to the matrix

A) if it is M -times differentiable and there exists Cα > 0 such that

(3.1)

∫
B∗1\B∗0

|∂αξ (σ(A∗k·))(ξ)|2 dξ ≤ Cα,

for all multi-indices α, |α| ≤M , and k ∈ Z such that ρA∗(ξ) ∼ bk = | detA|k.

Note that in the isotropic case A = 2In, the condition (3.1) takes the

more familiar form

sup
k∈Z

2k(−n+2|α|)
∫

2k<|ξ|<2k+1

|∂αξ σ(ξ)|2dξ ≤ Cα for all |α| ≤M.

We remark immediately that any Mihlin multiplier is a Hörmander multi-

plier. Indeed, if σ ∈ Ṡ0
1(A), then∫

B∗1\B∗0
|∂α(σ(A∗k·))(ξ)|2 dξ =

∫
B∗k+1\B

∗
k

|∂α(σ(A∗k·))((A∗)−kξ)|2b−k dξ

≤
∫
B∗k+1\B

∗
k

Cαb
−k dξ ≤ Cα.

The constant Cα is of course the one appearing in the estimates (2.1) that

define the class Ṡ0
1(A).

Conversely, suppose that σ is a Hörmander multiplier of sufficiently large

order M . Then, by the Sobolev imbedding theorem, ∂β(σ(A∗k·))(ξ) are

bounded on B∗1 \ B∗0 for all multi-indices |β| < M − n/2. Thus, σ satis-

fies Mihlin estimates (2.1) up to that order. Thus, one could easily deduce

an analogue of Theorem 2.2 for Hörmander multipliers with sufficiently large
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order M . Instead, we will show the following more concrete result general-

izing the isotropic Hörmander Multiplier Theorem, see [14, Theorem 5.2.7],

which can also be deduced from [22, Theorem II.1.2].

Theorem 3.2. If σ is an anisotropic Hörmander multiplier of order bn/2c+
1, then σ(D) extends as a bounded operator

(i) σ(D) : Lp → Lp, p > 1,

(ii) σ(D) : L1 → L1,∞.

We follow the strategy outlined in the previous section. The Calderón-

Zygmund theory for spaces of homogeneous type immediately yields Theo-

rem 3.2, once we prove that σ(D) has a Calderón-Zygmund kernel.

Proposition 3.3. Let σ be an anisotropic Hörmander multiplier of order

bn/2c + 1. Then the inverse Fourier transform K = F−1σ satisfies the

anisotropic Hörmander condition

(3.2) sup
y 6=0

∫
ρA(x)≥2cρA(y)

|K(x− y)−K(x)| dx ≤ C,

for some constants c > 1 and C > 0.

Proof. We start by observing that the annulus B∗1 \ B∗0 can be replaced by

any other annulus B∗i+1 \B∗i in Definition 3.1. Indeed,

(3.3)

∫
B∗i+1\B∗i

|∂α(σ(A∗k·))(ξ)|2 dξ = bi
∫
B∗1\B∗0

|∂α(σ(A∗k·))(A∗iξ)|2 dξ

≤ Cbi||(A∗)−i|||α|
∑
|β|=|α|

∫
B∗1\B∗0

|∂β(σ((A∗)k+i·))(ξ)|2 dξ

≤ Cbi||(A∗)−i|||α|
∑
|β|=|α|

Cβ.

With the notation in the proof of Proposition 2.3, we have

σj(ξ) = σ(ξ)ϕ(A∗jξ),

so that σj(ξ) 6= 0 if and only if ρA∗(ξ) ∼ bj = | detA|j. Let

Kj = b−jDA−jF−1(D(A∗)−jσj).

By the product rule and the fact that supp ϕ̂ ⊂ B∗R \B∗−R for some R ∈ N,

we have

(3.4)

∫
Rn
|∂αD(A∗)−jσj(ξ)|2 dξ .

∫
B∗R\B

∗
−R

|∂αD(A∗)−jσ(ξ)|2 dξ

=
R−1∑
i=−R

∫
B∗i+1\B∗i

|∂αD(A∗)−jσ(ξ)|2 dξ .
∑
|β|=|α|

Cβ,
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for all |α| ≤ M := bn/2c + 1, where in the last step we used (3.3). From

(3.4) we infer that∫
Rn
|F−1(D(A∗)−jσj)(x)(1 + |x|)M |2 dx ≤ CM ,

which is equivalent to

(3.5)

∫
Rn
|bjKj(A

jx)(1 + |x|)M |2 dx ≤ CM .

Fix now 0 < ε < M − n/2. From the Cauchy-Schwarz inequality and (3.5)

we see that, for all j ∈ Z, we have

(3.6)∫
Rn
|Kj(x)|(1 + |A−jx|)ε dx = bj

∫
Rn
|Kj(A

jx)|(1 + |x|)ε dx

≤
(∫

Rn
|bjKj(A

jx)(1 + |x|)M |2 dx
)1/2(∫

Rn
(1 + |x|)2ε−2M dx

)1/2

≤ Cε.

Likewise, the estimate∫
Rn
|ξβ∂α(D(A∗)−jσj(ξ))|2 dξ ≤ Cα,β,

yields

bj
∫

Rn
|∂β(DAjKj)(x)(1 + |x|)M |2 dx ≤ CM,β

and a similar argument to the one proving estimate (3.6) yields the following

general estimates on the derivatives of the localized kernels:

(3.7) bj
∫

Rn
|∂β(DAjKj)(x)|(1 + |x|)ε dx ≤ Cβ,ε,

for all j ∈ Z and all multi-indices β. Using the estimates above, we see that∑
j∈ZKj(x) converges to some function K(x) for all x 6= 0; this being the

case, the function K(x) coincides with the distribution F−1σ for x 6= 0.

Indeed, since for j ≥ 0 we have |Kj(x)| ≤ Cb−j, we immediately conclude

that
∑

j≥0Kj(x) is convergent. On the other hand, (3.6) implies that for

any δ > 0 we have ∫
|x|≥δ

∑
j<0

|Kj(x)| dx <∞,

and this implies that the function
∑

j<0Kj(x) is finite almost everywhere

away from the origin.

To prove now that K satisfies the anisotropic Hörmander condition (3.2),

it is sufficient to show that for all y 6= 0, we have∑
j∈Z

∫
ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| ≤ C.
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For a fixed y 6= 0, let k ∈ Z (fixed) be such that ρA(y) ∼ bk. We will break

down our summation into two sums, one over j > k and one over j ≤ k.

By appropriately choosing c > 1 (this choice being determined by the

triangle inequality satisfied by the quasi-norm ρA) and using again (3.6), we

can write∑
j>k

∫
ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx ≤
∑
j>k

∫
ρA(x)≥ρA(y)

2|Kj(x)|

= 2
∑
j>k

∫
ρA(x)≥ρA(y)

|Kj(x)|(1 + ρA(A−jx))ε

(1 + ρA(A−jx))ε
dx

≤ Cε
∑
j>k

sup
x:ρA(x)≥ρA(y)

(1 + ρA(A−jx))−ε

≤ Cε
∑
j>k

(1 + ρA(A−jy))−ε ≤ Cε
∑
j>k

b(j−k)ε . 1.

(3.8)

To estimate the summation over the indices j ≤ k, we will use the Mean

Value Theorem and estimate (3.7). We have∫
ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx

= bj
∫
ρA(x)≥2cbk−j

|DAjKj(x− A−jy)−DAjKj(x)| dx

≤ bj|A−jy|
∫
ρA(x)≥2cbk−j

∫ 1

0

|∇DAjKj(x− θA−jy)| dxdθ

≤ bj|A−jy|
∫ 1

0

∫
ρA(x)≥2cbk−j

|∇DAjKj(x− θA−jy)|(1 + |x− θA−jy|)ε

(1 + |x− θA−jy|)ε
dxdθ

≤ C1,ε
|A−jy|

(1 + |A−jy|)−ε
.

Summing over j ≤ k and taking ε < 1, we conclude that

(3.9)
∑
j≤k

∫
ρA(x)≥2cρA(y)

|Kj(x− y)−Kj(x)| dx . C1,ε

∑
j≤k

b(j−k)(1−ε) . 1.

By combining estimates (3.8) and (3.9), we obtain (3.2). The proof is com-

plete. �

4. The class Ṡ0
1,1(A)

It is well known [24, p. 267] that in contrast with the isotropic Mihlin

class of multipliers Ṡ0
1 , the isotropic class of x-dependent symbols σ(x, ξ) ∈

Ṡ0
1,0 does not yield Lp-bounded pseudo-differential operators

(σ(x,D)f)(x) =

∫
Rn
σ(x, ξ)f̂(ξ)eix·ξ dξ.
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Recall that a symbol σ ∈ Ṡ0
1,0(A) satisfies

|∂αx∂
β
ξ [σ(·, A∗k·)](x, (A∗)−kξ)| ≤ Cα,β,

for all (x, ξ) ∈ Rn × Rn \ {0} and k ∈ Z is such that ρA∗(ξ) ∼ bk. The Lp-

unboundedness is propagated to the more general anisotropic class Ṡ0
1,0(A).

In fact, for each expansive matrix A, one can construct an appropriate sym-

bol σ for which σ(x,D) is unbounded; our examples are simple extensions

of the isotropic ones appearing, for example, in [15].

Example 4.1. Assuming that ϕ is a smooth bump supported away from

the origin consider a sequence of smooth functions (mj(x))j∈Z defined on

Rn such that

(4.1) ||∂α[mj(A
−j·)]||∞ ≤ Cα for all α.

Then, a straightforward calculation using Definition 1.1 shows that the sym-

bol

(4.2) σ(x, ξ) =
∑
j∈Z

mj(x)ϕ((A∗)−jξ)

belongs to the class Ṡ0
1,1(A). Indeed, recall that a symbol σ ∈ Ṡ0

1,1(A) if

(4.3) |∂αx∂
β
ξ [σ(A−k·, A∗k·)](Akx, (A∗)−kξ)| ≤ Cα,β,

for all (x, ξ) ∈ Rn × Rn \ {0} and k ∈ Z is such that ρA∗(ξ) ∼ bk. The

constraint that ρA∗(ξ) ∼ bk reduces the series (4.2) to a finite sum over

|j − k| ≤ R, where R depends on the size of suppϕ. Then, (4.3) follows by

the chain rule.

Example 4.2. Assume that ϕ is as in Example 2 and let (vj)j∈Z be a

bounded sequence in Rn. Define the symbol

σ1(x, ξ) =
∑
j∈Z

eix·(A
∗)jvjϕ((A∗)−jξ).

Since the functions mj(x) = eix·(A
∗)jvj satisfy (4.1) we have that σ1 ∈

Ṡ0
1,1(A). A similar argument shows that the symbol

σ0(x, ξ) =
∞∑
j=0

eix·(A
∗)jvjϕ((A∗)−jξ)

is in the nonhomogeneous class S0
1,1(A). However, one can show that the

operator σ0(x,D) is unbounded on L2, see [1]. Thus, the L2-boundedness of

operators with symbols in Ṡ0
1,1(A) also fails in general.
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4.1. Calderón-Zygmund estimates. A natural approach for proving con-

tinuity results of pseudodifferential operators, when applicable, is via their

singular integral realization. It turns out that the anisotropic homogeneous

forbidden symbols σ ∈ Ṡ0
1,1(A) enjoy a remarkable property: the Schwartz

kernels associated to σ(x,D) satisfy Calderón-Zygmund estimates. The iso-

tropic analogue of this fact is due to Coifman and Meyer [9]. Combined

with the failure of L2 bounds, this shows that, in general, this class yields

unbounded operators on all Lp spaces.

The x-dependence of the symbol σ(x, ξ) implies that the operator σ(x,D)

is of non-convolution type. For f ∈ S, we can write

(σ(x,D)f)(x) =

∫
Rn
K̃(x, y)f(y) dy,

where K̃(x, y) = K(x, x− y), and (in a distribution sense)

K(x, z) =

∫
Rn
σ(x, ξ)eiz·ξ dξ = F−1

2 σ(x, z).

Theorem 4.3. If σ ∈ Ṡ0
1,1(A), then the corresponding kernel K satisfies the

Calderón-Zygmund estimates

(4.4) |∂αx∂βz [K(Ak·, Ak·)](A−kx,A−kz)| ≤ Cα,β
ρA(z)

,

for z ∈ Rn and k ∈ Z such that ρA(z) ∼ bk, for all multi-indices α, β, and

some constants Cα,β > 0.

As an immediate corollary of this result we obtain that the Schwartz

kernel K̃ satisfies the symmetric Calderón-Zygmund condition

|∂αx∂βy [K̃(Ak·, Ak·)](A−kx,A−ky)| ≤ Cα,β
ρA(x− y)

,

for x, y ∈ Rn and k ∈ Z such that ρA(x− y) ∼ bk.

Proof of Theorem 4.3. Our proof is a fine tune-up of the one given for

Proposition 2.3. We start again by considering the Littlewood-Paley de-

composition ∑
j∈Z

ϕ((A∗)jξ) = 1, ξ 6= 0,

where ϕ is a C∞ function compactly supported away from the origin. Define

the symbols

σj(x, ξ) = σ(x, ξ)ϕ((A∗)jξ),
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and note that σj(x, ξ) 6= 0 if and only ρA∗(ξ) ∼ b−j. Clearly
∑
j∈Z

σj(x, ξ)

converges boundedly to σ(x, ξ) for ξ 6= 0. Let

Kj(x, z) =

∫
Rn
σj(x, ξ)e

iz·ξ dξ.

We have the following

Claim 1. For all multi-indices α, β and for all z ∈ Rn such that ρA(z) ∼ 1,

we have

(4.5)
∑
j∈Z

|∂αx∂βzKj(x, z)| ≤ Cα,β

for some positive constant Cα,β.

The proof of Claim 1 follows now a familiar path. For a function of two

variables f(x, y), we denote by DA,Bf(·, ·) = f(A·, B·), the dilation by A in

the first variable and by B in the second one. Thus, we can write

Kj = b−jDA−j ,A−jF−1(DAj ,(A∗)−jσj).

Let

fj = DAj ,(A∗)−jσj and gj = F−1fj.

Then

(4.6) Kj = b−jDA−j ,A−jgj.

It is easy to check that {fj}j∈Z is a subset of the normal class NR consisting

of functions φ ∈ C∞(Rn × Rn) such that

supp(φ) ⊂ Rn × {ξ : R−1 < |ξ| < R} and |∂αx∂
β
ξ φ(x, ξ)| ≤ cα,β, ∀x, ξ,

where R, cα,β > 0 is some fixed collection of parameters depending only

on ϕ. Consequently, {gj}j∈Z is a subset of M which consists of functions

Φ ∈ C∞(Rn × Rn) such that

‖Φ‖m,α = sup
|β|≤m

sup
z∈Rn

(1 + |z|)m|∂αx∂βz Φ(x, z)| ≤ cm,α,

where (cm,α) is some fixed sequence depending on R and the constants cα,β.

Our stated goal is to achieve estimates (4.5). Based on the equality (4.6),

if we fix s1 = |α|, s2 = |β| ∈ N, it suffices to prove summable estimates on

|∂αx∂βzDA−j ,A−jgj(x, z)| for ρA(z) ∼ 1. We split our analysis into two cases.

Case 1. “Estimates of flat functions”: j ≥ 0
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We use the chain rule and the fact that ‖gj‖s,α ≤ cs,α to conclude that:

|∂αx∂βz gj(A−j·, A−j·)(x, z)|

≤ Cs1,s2‖A−j‖s1‖A−j‖s2 sup
|α1|=s1

sup
|α2|=s2

|∂α1
x ∂

α2
z gj(A

−jx,A−jz)|

≤ Cs1,s2‖A−j‖s1+s2 .

Clearly, the series
∑
j≥0

b−j‖A−j‖s1+s2 converges as a geometric series with

ratio strictly less than 1.

Case 2. “Decay estimates at infinity”: j < 0

We use again the chain rule, Lemma 2.4, and the fact that gj ∈ M, to

write for some sufficiently large N

|∂αx∂βz gj(A−j·, A−j·)(x, z)| ≤ CN,s1,s2‖A−j‖s1+s2 |A−jz|−N

≤ CN,s1,s2λ
−j(s1+s2)
+ λjN− .

Note that the second inequality implicitly assumes that we work at scale

zero, that is ρA(z) ∼ 1. Recall also that 1 < λ− < λ+ < b. Therefore, we

can choose N such that

b−1λ−s1−s2+ λN− < 1,

which again guarantees the convergence of the series
∑
j<0

b−jλ
−j(s1+s2)
+ λjN− .

Hence, both cases yield summable estimates and we conclude that∑
j∈Z

|∂αx∂βzKj(x, z)| ≤ Cs1,s2 , |α| = s1, |β| = s2.

This, in turn, clearly implies the zero-scale estimates

(4.7) |∂αx∂βzK(x, z)| ≤ Cα,β,

for all multi-indices α, β and all pairs (x, z) such that ρA(z) ∼ 1.

Finally, we now use the standard re-scaling argument to prove the fol-

lowing claim.

Claim 2. If K satisfies (4.7), then K also satisfies (4.4).

If ρA(z) ∼ bk, for some k ∈ Z fixed, we need to estimate

∂αx∂
β
z [K(Ak·, Ak·)](A−kx,A−kz) = ∂α(DAk,AkK)(A−kx,A−kz).

Note that

DAk,AkK =
∑
j∈Z

b−jDAk−j ,Ak−j(gj) = b−k
∑
j∈Z

b−jDA−j ,A−j(g̃j),

where g̃j = gj+k ∈ M. Consequently, since ρA(A−kx) ∼ 1 (that is, we are

back at scale zero), bkDAk,AkK satisfies (4.7). Thus,

bk|∂αx∂βz [K(Ak·, Ak·)](A−kx,A−kz)| ≤ Cα,β.
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The proof is complete. �

4.2. Anisotropic homogeneous Triebel-Lizorkin and Besov spaces.

The study of pseudodifferential operators with exotic isotropic symbols Ṡ0
1,1

has received lots of attention. For example, using wavelet techniques, Torres

[25, 26] and Grafakos-Torres [15] have studied the properties of this class of

symbols on general spaces of smooth functions. These works suggest that the

right setting for studying the boundedness of pseudodifferential operators

with symbols in the forbidden class Ṡ0
1,1(A) is provided by the anisotropic

homogeneous Triebel-Lizorkin spaces Ḟα,q
p = Ḟα,q

p (Rn, A, µ) or Besov spaces

Ḃα,q
p = Ḃα,q

p (Rn, A, µ). Before stating our result, we recall the definitions and

the molecular characterizations of these spaces. For an extensive treatment

of these spaces, the reader is referred to [4, 5, 6]; see also [2].

Definition 4.4. Let µ be ρA-doubling measure on Rn, i.e., there exists

β = β(µ) > 0 such that

(4.8) µ(x+Bk+1) ≤ | detA|βµ(x+Bk) for all x ∈ Rn, k ∈ Z.

The smallest such β is called a doubling constant of µ.

For α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, we define the anisotropic Triebel-

Lizorkin space Ḟα,q
p = Ḟα,q

p (Rn, A, µ) as the collection of all f ∈ S ′/P such

that

(4.9) ‖f‖Ḟα,qp =

∥∥∥∥(∑
j∈Z

(| detA|jα|f ∗ ϕj|)q
)1/q∥∥∥∥

Lp(µ)

<∞,

where ϕj(x) = | detA|jϕ(Ajx) and ϕ ∈ S(Rn) satisfies (4.10), (4.11)

supp ϕ̂ := {ξ ∈ Rn : ϕ̂(ξ) 6= 0} ⊂ [−π, π]n \ {0},(4.10)

sup
j∈Z
|ϕ̂((A∗)jξ)| > 0 for all ξ ∈ Rn \ {0}.(4.11)

Likewise, we define the anisotropic Besov space Ḃα,q
p = Ḃα,q

p (Rn, A, µ) as the

collection of all f ∈ S ′/P such that

(4.12) ‖f‖Ḃα,qp =

(∑
j∈Z

(| detA|jα||f ∗ ϕj||Lp(µ))
q

)1/q

<∞.

Recall that S ′/P can be identified with the space of all continuous func-

tionals on S0. In [4, 5, 6] it is proved that the inclusion maps Ḟα,q
p ↪→ S ′/P ,

Ḃα,q
p ↪→ S ′/P are continuous, and therefore these spaces are quasi-Banach.

Moreover, the definitions of anisotropic Ḟα,q
p and Ḃα,q

p spaces are indepen-

dent of ϕ. Let Q be the collection of all dilated cubes

Q = {A−j([0, 1]n + k) : j ∈ Z, k ∈ Zn}
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adapted to the action of a dilation A. For Q = Qj,k = A−j([0, 1]n+k) define

scale(Q) = −j and its “lower-left” corner xQ = A−jk. If ϕ is a function on

Rn, we define its wavelet system as

(4.13) ϕQ(x) = |Q|1/2ϕ(Ajx− k), Q = A−j([0, 1]n + k) ∈ Q.

Obviously, if A = 2In we obtain the usual collection of dyadic cubes.

Definition 4.5. The discrete Triebel-Lizorkin sequence space ḟα,qp (A, µ) is

defined as the collection of all complex-valued sequences s = {sQ}Q∈Q such

that

(4.14) ‖s‖ḟα,qp
=

∥∥∥∥(∑
Q∈Q

(|Q|−α|sQ|χ̃Q)q
)1/q∥∥∥∥

Lp(µ)

<∞,

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the di-

lated cube Q. Likewise, the discrete Besov sequence space ḃα,qp = ḃα,qp (A, µ)

is the collection of all complex-valued sequences s = {sQ}Q∈Q such that

‖s‖ḃα,qp =

(∑
j∈Z

∥∥∥∥ ∑
Q∈Q, scale(Q)=j

|Q|−α|sQ|χ̃Q
∥∥∥∥q
Lp(µ)

)1/q

<∞.

We will also need a definition of anisotropic molecules introduced in

[4, 6] generalizing isotropic molecules of Frazier and Jawerth [11, 12]. These

molecules come in two flavors depending whether they are used in the anal-

ysis or synthesis transforms.

Definition 4.6. Suppose α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA-doubling

measure with a doubling constant β ≥ 1. Let 0 < ζ− ≤ 1/n ≤ ζ+ < 1 be

the parameters measuring the eccentricity of the dilation A:

ζ+ :=
lnλ+

ln | detA|
, ζ− :=

lnλ−
ln | detA|

,

where λ− and λ+ are any positive real numbers such that

1 < λ− < min
λ∈σ(A)

|λ| ≤ max
λ∈σ(A)

|λ| < λ+ < | detA|.

Let

(4.15)
J =

{
βmax(1, 1/p, 1/q), for Ḟα,q

p spaces,

β/p+ max(0, 1− 1/p), for Ḃα,q
p spaces,

N = max(b(J − α− 1)/ζ−c,−1).

We say that ΨQ(x) is a smooth synthesis molecule for Ḟα,q
p (or Ḃα,q

p ) sup-

ported near Q ∈ Q with scale(Q) = −j and j ∈ Z, if there exist M > J
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such that

|∂γ[ΨQ(A−j·)](x)| ≤ | detA|j/2

(1 + ρA(x− AjxQ))M
for |γ| ≤ bα/ζ−c+ 1,

(4.16)

|ΨQ(x)| ≤ | detA|j/2

(1 + ρA(Aj(x− xQ)))max(M,(M−α)ζ+/ζ−)
,(4.17) ∫

xγΨQ(x)dx = 0 for |γ| ≤ N.(4.18)

We say that ΦQ(x) is a smooth analysis molecule for Ḟα,q
p (or Ḃα,q

p ) supported

near Q ∈ Q with scale(Q) = −j and j ∈ Z, if there exists M > J such that

|∂γ[ΦQ(A−j·)](x)| ≤ | detA|j/2

(1 + ρA(x− AjxQ))M
for |γ| ≤ N + 1,(4.19)

|ΦQ(x)| ≤ | detA|j/2

(1 + ρA(Aj(x− xQ)))max(M,1+αζ+/ζ−+M−J)
,(4.20) ∫

xγΦQ(x)dx = 0 for |γ| ≤ bα/ζ−c.(4.21)

We say that {ΦQ}Q∈Q is a family of smooth synthesis (analysis) molecules,

if each ΦQ is a smooth synthesis (analysis) molecule supported near Q.

We emphasize that in the context of smooth molecules, ΨQ and ΦQ are

understood as some functions indexed by Q ∈ Q which are not necessarily

given by (4.13). Nevertheless, if ϕ ∈ S has sufficiently many vanishing

moments, then the wavelet system {ϕQ}Q is a family of smooth molecules

(both for synthesis and analysis).

The following result about smooth molecular analysis and synthesis trans-

forms was established in the setting of anisotropic Ḃα,q
p spaces [4, Theorems

5.5 and 5.7] and anisotropic Ḟα,q
p spaces [5, Theorem 5.4]. Theorem 4.7 is

simply a generalization of the corresponding isotropic results of Frazier and

Jawerth [10, 11].

Theorem 4.7. Suppose that A is an expansive matrix, α ∈ R, 0 < p, q ≤
∞, and µ is a ρA-doubling measure. Then there exists a constant C > 0,

such that

(i) If {ΨQ}Q is a family of smooth synthesis molecules for Ḟα,q
p (Rn, A, µ),

then∥∥∥∥∑
Q∈Q

sQΨQ

∥∥∥∥
Ḟα,qp

≤ C‖s‖ḟα,qp
for all s = {sQ}Q ∈ ḟα,qp (A, µ).

(ii) If {ΦQ}Q is a family of smooth analysis molecules, then

‖{〈f,ΦQ〉}Q‖ḟα,qp
≤ C‖f‖Ḟα,qp for all f ∈ Ḟα,q

p (Rn, A, µ).
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Furthermore, the same result holds for Besov spaces Ḃα,q
p .

4.3. Boundedness on anisotropic Ḟα,q
p and Ḃα,q

p spaces. Finally, we are

ready to prove our anisotropic boundedness result extending the isotropic

result of Grafakos and Torres [15].

Theorem 4.8. Let σ ∈ Ṡm1,1(A), 0 < p, q <∞, and

(4.22) (σ(x,D))∗(xγ) = 0 for |γ| ≤ N = max(b(J − α− 1)/ζ−c,−1).

Note that if α > J − 1, then (4.22) is trivially satisfied. Then, the pseudo-

differential operator σ(x,D) (a priori defined on S0) extends as a bounded

operator

(i) σ(x,D) : Ḟα+m,q
p (Rn, A, µ)→ Ḟα,q

p (Rn, A, µ),

(ii) σ(x,D) : Ḃα+m,q
p (Rn, A, µ)→ Ḃα,q

p (Rn, A, µ).

In the statement of the theorem, we need specify how T ∗ acts on polyno-

mials, where T = σ(x,D). Using Lemma 4.9 and a formal duality relation

〈T ∗(xγ), f〉 = 〈T (f), xγ〉, the condition (4.22) means that 〈σ(x,D)(f), xγ〉 =

0 for all f ∈ S0 and |γ| ≤ N . To prove Theorem 4.8, we adapt carefully

the argument in [15] to the anisotropic setting. It is sufficient to prove that

σ(x,D) maps a wavelet system {ϕQ}Q into a family of smooth molecules

{ΨQ}Q (modulo some scalar rescaling). As we shall see shortly, this can

be achieved by some relatively easy computations. We need the following

technical lemma.

Lemma 4.9. Let σ ∈ Ṡmγ,δ(A). Then, σ(x,D) maps S0 continuously into S.

Proof. The homogeneous anisotropic symbol estimate (1.3) combined with

the chain rule and Lemma 2.4 implies that

|∂αx∂
β
ξ σ(x, ξ)| ≤ C|α|,|β|ρA∗(ξ)

m ·

{
(λ+)kδ|α|(λ−)−kγ|β| if k ≥ 0,

(λ−)kδ|α|(λ+)−kγ|β| if k < 0,

for all multi-indices α, β, and ξ ∈ Rn \ {0}, where k ∈ Z is such that

ρA∗(ξ) ∼ bk. Thus, we can rewrite the above as

|∂αx∂
β
ξ σ(x, ξ)| ≤ C|α|,|β| ·

{
ρA∗(ξ)

m+(ζ+)δ|α|−(ζ−)γ|β| if ρA∗(ξ) ≥ 1,

ρA∗(ξ)
m+(ζ−)δ|α|−(ζ+)γ|β| if ρA∗(ξ) < 1.

Applying [3, Lemma 3.2] this implies polynomial growth/decay estimates

as ξ → 0 and ξ →∞,

|∂αx∂
β
ξ σ(x, ξ)| ≤ C|α|,|β| ·

{
|ξ|(m+(ζ+)δ|α|−(ζ−)γ|β|)/ζ± if |ξ| ≥ 1,

|ξ|(m+(ζ−)δ|α|−(ζ+)γ|β|)/ζ∓ if |ξ| < 1.
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Here ζ± means ζ+ or ζ− if the exponent is negative or positive, respectively,

and similarly for ζ∓. However, for the rest of the argument it is unimportant

what the exact exponents are. That is, we shall only use the fact that

(4.23) |∂αx∂
β
ξ σ(x, ξ)| ≤ Cα,β min(1, |ξ|−d1) max(1, |ξ|d2)

for some exponents d1 = d1(α, β) > 0 and d2 = d2(α, β) > 0 depending

on multi-indices α and β. In fact, the rest of the proof follows directly the

standard argument as in [15, Lemma 2.1]. One should emphasize here that

we must impose a stronger topology on S0 than the induced topology of S0

as a closed subspace of the Schwartz class S.

Indeed, let f ∈ S0 and N ∈ N. Let ∆ξ be the Laplacian in ξ variable.

Using the identity

(I −∆ξ)
N(eix·ξ) = (1 + |x|2)Neix·ξ

and the bound (4.23), the integration by parts yields

(σ(x,D)f)(x) =

∫
eix·ξ

(I −∆ξ)
N

(1 + |x|2)N
(σ(x, ξ)f̂(ξ))dξ.

This formula works since f ∈ S0 and thus f̂ and all of its partial derivatives

vanish to infinity order at the origin. Moreover, the differentiation under

the integral is allowed resulting in

(∂αxσ(x,D)f)(x) =

∫
(I −∆ξ)

N

(
∂αx

(
eix·ξ

(1 + |x|2)N
σ(x, ξ)

)
f̂(ξ)

)
dξ

for any multi-index α. Applying the product rule, the bound (4.23), and the

fact that f ∈ S0 yields

|(∂αxσ(x,D)f)(x)| ≤ C
||f ||M

(1 + |x|2)N−|α|
,

for sufficiently large M . Here,

||f ||M = sup
|β|≤M

sup
ξ∈Rn
|∂β f̂(ξ)|(|ξ|M + |ξ|−M) <∞

are seminorms defining the topology of a locally convex space S0. Since α

and N are arbitrary, the above shows that σ(x,D) : S0 → S is continuous.

�

Proof of Theorem 4.8. Let ϕ ∈ S be such that

(4.24) supp ϕ̂ ⊂ [−π, π]n \ {0},∑
j∈Z

|ϕ̂((A∗)jξ)|2 = 1 for all ξ 6= 0.
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Hence, ϕ is a Parseval wavelet for L2(Rn). By the combination of [7, Lemma

2.12] with [6, Lemma 2.8] we have

f =
∑
Q∈Q

〈f, ϕQ〉ϕQ for any f ∈ S0,

with the unconditional convergence in S. Therefore, by Lemma 4.9 the

action of the pseudodifferential operator σ(x,D) can be expressed as

(4.25) σ(x,D)f =
∑
Q∈Q

〈f, ϕQ〉σ(x,D)ϕQ for f ∈ S0.

Assume for a moment that there exists a constant C > 0 such that

(4.26) σ(x,D)ϕQ = C|Q|−mΨQ for all Q ∈ Q

where {ΨQ}Q is family of smooth synthesis molecules for Ḟα,q
p or Ḃα,q

p . Then,

by Theorem 4.7(i) the analysis transforms f 7→ (〈f, ϕQ〉)Q is bounded as

Ḟα+m,q
p → ḟα+m,q

p . Clearly, the multiplication map (sQ)Q 7→ (|Q|−msQ)Q is

an isometry as ḟα+m,q
p → ḟα,qp . Thus, by (4.25), (4.26), and Theorem 4.7(ii)

we have that ||σ(x,D)f ||Ḟα,qp ≤ ||f ||Ḟα+m,q
p

for all f ∈ S0. Since S0 is a dense

subspace of Ḟα,q
p if p, q < ∞, this yields the required conclusion. The same

argument works for Ḃα,q
p spaces.

Thus, it remains to establish (4.26) by computing the action of σ(x,D)

on a fixed wavelet ϕQ associated to a dilated cube Q = Qj,k. For x ∈
Rn, x 6= 0, let x̃ = Ajx−k, and b = | detA|. We have the following sequence

of equalities:

(σ(x,D)ϕQ)(x) =

∫
σ(x, ξ)ϕ̂Q(ξ)eix·ξ dξ

=

∫
σ(x, ξ)b−j/2ϕ̂((A∗)−jξ)e−ik·(A

∗)−jξeix·ξ dξ

=

∫
σ(x,A∗jξ)bj/2ϕ̂(ξ)e−ik·ξeix·A

∗jξ dξ

= bj/2
∫
σ(A−j(x̃+ k), A∗jξ)ϕ̂(ξ)eix̃·ξ dξ.

Therefore,

(4.27) (σ(x,D)ϕQ)(x) = bj/2(σQ(x,D)ϕ)(Ajx− k),

where we denoted

(σQ(x,D)f)(x) =

∫
σ(A−j(x+ k), A∗jξ)f̂(ξ)eix·ξ dξ.

For a fixed multi-index γ, we can write

(4.28)

(∂γσQ(x,D)ϕ)(x) =

∫
eix·ξϕ̂(ξ)

∑
δ≤γ

Cδ(iξ)
δ∂γ−δx [σ(A−j(·+k), A∗j·)](x, ξ) dξ.
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Fix now β. An integration by parts in (4.28) then gives

(∂γσQ(x,D)ϕ)(x) =
∑
δ≤γ

Cδ

∫
eix·ξ|x|−|β|

∑
|β1|+|β2|=|β|

∂γ−δx ∂β1

ξ [σ(A−j(·+ k), A∗j·)](x, ξ)∂β2

ξ ((iξ)δϕ̂(ξ)) dξ.
(4.29)

By the support assumption (4.24), the above integral runs only over ξ ∈ Rn

with ρA∗(ξ) ∼ 1. Let ξ = (A∗)−jξ′ and x = Ajx′. Then, ρA∗(ξ
′) ∼ bj and

since σ ∈ Ṡm1,1(A), we have

|∂γ−δx ∂β1

ξ [σ(A−j·, A∗j·)](Ajx′, (A∗)−jξ′)| ≤ Cβ1,γ,δb
jm.

Therefore, by taking absolute values on both sides of (4.29) and using the

triangle inequality, we get

|(∂γσQ(x,D)ϕ)(x)| ≤ Cβ,γ|x|−|β|bjm.

Since the multi-index β is arbitrary, by the quasi-norm estimate

(1 + ρA(x))ζ− ≤ C(1 + |x|) for all x ∈ Rn,

we can obtain the anisotropic version of this estimate

(4.30) |(∂γσQ(x,D)ϕ)(x)| ≤ CM,P (1 + ρA(x))−Mbjm for |γ| ≤ P,

where M,P > 0 are some fixed integers. More precisely, we let P = bα/ζ−c+
1 and M > max(J, (J − α)ζ+/ζ−).

Recall now that Q = A−j((0, 1]n + k) and define

(4.31) ΨQ(x) = (CM,P )−1bj/2−jm(σQ(x,D)ϕ)(Ajx− k),

so that by (4.27)

σ(x,D)(ϕQ) = CM,P |Q|−mΨQ.

It remains to verify that ΨQ is a molecule. By (4.30), (4.31), and

ΨQ(A−j·) = (CM,P )−1bj/2−jm(σQ(x,D)ϕ)(· − k)

we have that

|∂γ[ΨQ(A−j·)](x)| ≤ bj/2(1 + ρA(x− AjxQ))−M for |γ| ≤ P.

By our choice of M , this simultaneously yields (4.16) and (4.17). Finally, the

condition (4.18) is a direct consequence of the vanishing moment hypothesis

(4.22). Thus, we conclude that ΨQ is a smooth synthesis molecule, which

finishes the proof. �
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[1] Á. Bényi and M. Bownik, Anisotropic classes of nonhomogeneous pseudodifferential
symbols, preprint.

[2] L. Borup and M. Nielsen, On anisotropic Triebel-Lizorkin type spaces, with applica-
tions to the study of pseudo-differential operators, J. Funct. Spaces Appl. 6 (2008),
107–154.

[3] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164
(2003), no. 781, 122pp.

[4] M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math.
Z. 250 (2005), 539–571.

[5] M. Bownik, Anisotropic Triebel-Lizorkin spaces with doubling measures, J. Geom.
Anal. 17 (2007), 387–424.

[6] M. Bownik and K.-P. Ho, Atomic and molecular decompositions of anisotropic
Triebel-Lizorkin spaces, Trans. Amer. Math. Soc. 358 (2006), 1469–1510.

[7] M. Bownik, B. Li, D. Yang, and Y. Zhou, Weighted anisotropic product Hardy spaces
and boundedness of sublinear operators, Math. Nachr. 283 (2010), 392–442.
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