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Abstract

In this paper we show that any shift-invariant Bessel sequence with
an at most countable number of generators can be extended to a tight
frame for its closed linear span by adding another shift-invariant sys-
tem with at most the same number of generators. We show that in
general this result is optimal, by providing examples where it is impos-
sible to obtain a tight frame by adding a smaller number of generators.
An alternative construction (which avoids the technical complication
of extracting the square root of a positive operator) yields an extension
of the given Bessel sequence to a pair of dual frame sequences.

AMS Subj. Classification: 42C15, 42C40.
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1 Introduction

Frames are known to be a very useful tool in signal processing and other areas
where a convenient expansion in terms of basis-like elements is needed. In
fact, the so-called tight frames immediately lead to such an expansion. Gen-
eral frames also lead to a signal expansion, but it is only useful in practice if
a convenient dual frame can be found. The purpose of this paper is to con-
sider extensions of shift-invariant Bessel sequences in L2(R) to tight frames,
respectively, dual frame pairs. We show that any shift-invariant Bessel se-
quence with an at most countable number of generators can be extended
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to a tight frame for its closed linear span by adding another shift-invariant
system with at most the same number of generators. In practice it might
be inconvenient that the construction involves extracting the square root of
a positive operator. We therefore also describe a slightly modified construc-
tion, which avoids this technical issue and yields an extension of the given
Bessel sequence to a pair of dual frame sequences.

The paper is motivated by the results by Li and Sun in [10], where it is
shown that any Bessel sequence in a separable Hilbert space can be extended
to a tight frame by adding some elements (see [3] by Casazza and Leonhard
for a finite-dimensional version). In particular, any Gabor frame can be
expanded to a tight frame by adding another Gabor system with just one
window function. Here, we consider the similar question for shift-invariant
systems. From [5] (or see Proposition 7.1.10 in [4]) we know that a shift-
invariant system with one generator can at most be a frame for a proper
subspace of L2(R). We therefore first consider the question of extending shift-
invariant Bessel systems to frames for its closed linear space. The question
of extending the system to a frame for all of L2(R) is handled by adding a
shift-invariant system with more than one generator.

The structure of this paper is as follows. In the rest of this section we
will review the necessary parts from frame theory. In Section 2 we present
the results about extensions of a shift-invariant Bessel system to frames for
the corresponding subspace. A concrete example illustrating the results is
given. Finally, Section 3 deals with extensions to a frame for all of L2(R).

In the rest of this Section we review the needed facts from frame theory.
Let H denote a separable Hilbert space. A sequence {fi}i∈I in H is called a
frame if there exist constants A,B > 0 such that, for any f ∈ H,

A ‖ f ‖2≤
∑
i∈I

|〈f, fi〉|2 ≤ B ‖ f ‖2 . (1)

A and B are called lower and upper frame bounds respectively. The sequence
{fi}i∈I is a Bessel sequence if at least the upper bound in (1) is satisfied. A
frame is said to be tight if we can choose A = B.

For any frame {fi}i∈I there exists at least one dual frame, i.e., a frame
{gi}i∈I for which

f =
∑
i∈I

〈f, gi〉fi,∀f ∈ H. (2)
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In order to apply frames in practice it is essential to be able to construct a
dual frame explicitly. For the case of a tight frame {fi}i∈I with bound A, it
is known that the sequence {A−1fi}i∈I is a dual frame, so the representation
(2) takes the convenient form

f =
1

A

∑
i∈I

〈f, fi〉fi,∀f ∈ H. (3)

A frame {fi}i∈I necessarily spans all of H. In this paper we will encounter
sequences {fi}i∈I that do not necessarily span all of H, but form frames for
the space span{fi}i∈I . A sequence {fi}i∈I which is a frame for the space
span{fi}i∈I is called a frame sequence. For more information about frames
we refer to the book [4].

For y ∈ R, the translation operator Ty acting on f ∈ L2(R) is defined by

(Tyf)(x) = f(x− y), x ∈ R.

We will consider an at most countable collection of functions {gn}n∈I in
L2(R) and the associated shift-invariant system {Tkgn}k∈Z,n∈I . Frame prop-
erties for such systems were first considered by Ron and Shen in [12]. The
case of one generator is treated in Li and Benedetto in [1]. Note that a se-
quence {Tkg}k∈Z at most can be a frame for a proper subspace of L2(R); see
[5].

2 Extensions of {Tkgn}k∈Z,n∈I to frame sequences

Consider an at most countable collection of functions {gn}n∈I in L2(R).
Throughout the note we let

V := span{Tkgn}k∈Z,n∈I . (4)

We will assume that {Tkgn}k∈Z,n∈I is a Bessel sequence. Our purpose is to
extend {Tkgn}k∈Z,n∈I to a tight frame for V by adding another shift-invariant
system {Tkhn}k∈Z,n∈I . We first state Theorem 3.3 from [2]. As a guide to the
reader who is not familiar with the techniques in [2] we include an elementary
proof for the case of one generator in the appendix.

Lemma 2.1 Let {gn}n∈I be an at most countable family of functions in
L2(R). Then there exists a collection of functions {ϕn}n∈I such that {Tkϕn}k∈Z,n∈I
is a tight frame for V with frame bound A = 1.
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We are now ready to show the announced extension of a shift-invariant
Bessel sequence to a tight frame.

Proposition 2.2 Let {gn}n∈I be an at most countable family of functions in
L2(R) and assume that {Tkgn}k∈Z,n∈I is a Bessel sequence with bound B > 0.
Then there exist functions {hn}n∈I in V such that

{Tkgn}k∈Z,n∈I ∪ {Tkhn}k∈Z,n∈I

is a tight frame for V with bound B.

Proof. Consider the linear operator

S1 : L2(R)→ L2(R), S1f :=
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn. (5)

Then S1 is bounded, and the operator

S2 : V → V, S2 := BI − S1

is positive, i.e. S2 ≥ 0. Thus, S2 has a unique positive square root, to be
denoted by S

1/2
2 . We can write any f ∈ V as

f =
1

B
[S1f + (BI − S1)f ] =

1

B

[
S1f + S

1/2
2 S

1/2
2 f

]
.

Using the frame decomposition associated with the frame sequence {Tkϕn}k∈Z,n∈I
from Lemma 2.1 (on the element S

1/2
2 f) we arrive at

f =
1

B

[
S1f + S

1/2
2

∑
k∈Z,n∈I

〈S1/2
2 f, Tkϕn〉Tkϕn

]

=
1

B

[ ∑
k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈f, S1/2
2 Tkϕn〉S1/2

2 Tkϕn

]
.

It is a standard result that the operator S2 commutes with the translation
operators Tk. Since S

1/2
2 is a limit of polynomials in S2 in the strong operator

topology, it follows that also S
1/2
2 commutes with Tk. Thus, for any f ∈ V

we arrive at

f =
1

B

[ ∑
k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈f, TkS1/2
2 ϕn〉TkS1/2

2 ϕn

]
.
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Letting hn := S
1/2
2 ϕn ∈ V, it follows that

||f ||2 = 〈f, f〉 =
1

B

[ ∑
k∈Z,n∈I

|〈f, Tkgn〉|2 +
∑

k∈Z,n∈I

|〈f, Tkhn〉|2
]
.

This completes the proof. �

In particular, a Bessel sequence {Tkg}k∈Z generated by one function can
be extended to a tight frame sequence by adding shifts of just one function h.
In the following example, we calculate the function h explicitly in a concrete
case. A more general result will appear in Theorem 2.6.

Example 2.3 Consider the orthonormal system {Tkχ[0,1]}k∈Z. Then an ap-
plication of the general Example 5.1.10 in [4] shows the following:

• The system {Tkχ[0,1] +Tk+1χ[0,1]}k∈Z is a Bessel sequence in L2(R) with
bound B = 4;

• {Tkχ[0,1] + Tk+1χ[0,1]}k∈Z is not a frame sequence.

• V := span{Tkχ[0,1] + Tk+1χ[0,1]}k∈Z = span{Tkχ[0,1]}k∈Z.

Note that Tkχ[0,1] + Tk+1χ[0,1] = Tk(χ[0,1] + T1χ[0,1]) = Tkχ[0,2]. Letting
g := χ[0,2], we therefore have an example of a Bessel sequence {Tkg}k∈Z
which does not form a frame sequence.

We will now construct a function h ∈ V such that {Tkg}k∈Z∪{Tkh}k∈Z is
a tight frame for V with bound 4. It is clear that functions in V are constant
on intervals [k, k + 1], k ∈ Z. Thus, we can write any candidate for h as

h =
∑
j∈Z

ajTjχ[0,1]

for some coefficients aj ∈ C. It turns out that real-valued solutions exist, so
we will assume that aj ∈ R. Now, if {Tkg}k∈Z ∪{Tkh}k∈Z is a tight frame for
V with bound 4, we have for any f ∈ V that

4f =
∑
k∈Z

〈f, Tkg〉Tkg +
∑
k∈Z

〈f, Tkh〉Tkh

=
∑
k∈Z

〈f, Tkχ[0,2]〉Tkχ[0,2] +
∑
k∈Z

〈f, Tk
∑
j∈Z

ajTjχ[0,1]〉Tk
∑
j∈Z

ajTjχ[0,1]. (6)
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Considering the function f := χ[0,1], some elementary calculations show that
the sequence {aj}j∈Z must satisfy the following conditions:

4 = 2 +
∑
k∈Z

a2k;

0 = 1 +
∑
k∈Z

akak−1;

0 = 1 +
∑
k∈Z

akak+1;

0 =
∑
k∈Z

akak+j, j ∈ Z \ {0,±1}.

This set of equations is solved by a0 = 1, a1 = −1 and ak = 0 for k 6= 0, 1.
Thus, the function

h = χ[0,1] − T1χ[0,1]

satisfies (6) for the function f = χ[0,1]. It follows by standard manipulations
that (6) therefore also holds for any function of the type Tjχ[0,1], j ∈ Z, and
therefore for any f ∈ span{Tjχ[0,1]}j∈Z. By continuity, we conclude that (6)
holds for all f ∈ V, as desired. �

With Proposition 2.2 at hand it is natural to ask for the minimal numbers
of generators we have to add to a shift-invariant system in order to obtain a
tight frame. We will now show that the result in Proposition 2.2 is optimal,
in the sense that we can not expect to obtain a tight frame by adding a
smaller number of generators than stated in the Proposition. In order to
show this we will use techniques from [2].

Let T : L2(R)→ L2(T, `2(Z)) be a fiberization mapping given by

T f(ξ) = (f̂(ξ + k))k∈Z for f ∈ L2(R), ξ ∈ T.

Here, we identify the torus T = R/Z with its fundamental domain T = [0, 1).
By Plancherel’s Theorem T is an isometric isomorphism.

Now, consider an at most countable family of functions {gn}n∈I in L2(R).
For any ξ ∈ T, define a subspace

J(ξ) = span{T gn(ξ) : n ∈ I} ⊂ `2(Z).

The mapping ξ 7→ J(ξ) is called a (measurable) range function associated to
{gn}n∈I . By [2, Theorem 2.3] we have the following result.
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Theorem 2.4 Let {gn}n∈I be an at most countable family of functions in
L2(R), and 0 < A ≤ B < ∞. Then, {Tkgn}k∈Z,n∈I is a frame sequence
with bounds A and B (or a Bessel sequence with bound B > 0), if and only
if {T gn(ξ)}n∈I is a frame for J(ξ) with uniform bounds A and B for a.e.
ξ ∈ T (resp., a Bessel sequence with bound B > 0).

The example below illustrates the announced optimality of Proposition
2.2.

Example 2.5 Let I = {1, . . . , N} for some N ∈ N or I = N. For each n ∈ I
define gn ∈ L2(R) by ĝn(ξ) = (ξ − n)χ[n,n+1](ξ). Observe that for ξ ∈ [0, 1),

T gn(ξ) = (ĝn(ξ + k))k∈Z = ((ξ + k − n)χ[n,n+1](ξ + k))k∈Z = ξen, (7)

where {en} is the canonical basis in CN (resp. `2(N)). Thus, {T gn(ξ)}n∈I is a
scalar multiple (by ξ) of an orthonormal basis for the space J(ξ) = span{en :
n ∈ I}, which defines a range function associated to {gn}n∈I . By Theorem
2.4, {gn}n∈I is a Bessel sequence with bound 1. However, {gn}n∈I is not a
frame sequence, since the lower frame bound of {T gn(ξ)}n∈I approaches 0
as ξ → 0. Furthermore, we claim that {gn}n∈I can not be extended to a
frame by adding fewer generators than that of {gn}n∈I . For simplicity we
shall consider only the case where I finite; the case I = N follows by a trivial
modification.

Take any functions {hn}n∈I′ such that I ′ = {1, . . . , N ′} for some N ′ < N .
For each ξ ∈ T, define the frame operator S2(ξ) corresponding to a system
of fibers {T hn(ξ)}n∈I′ . Observe that S2(ξ) is a bounded positive operator
of rank at most N ′. By (7), the frame operator of {T gn(ξ)}n∈I is S1(ξ) =
ξPN , where PN is the orthogonal projection of `2(Z) onto span{e1, . . . , eN}.
Hence, the frame operator of their union {T gn(ξ)}n∈I∪{T hn(ξ)}n∈I′ is simply
S1(ξ) + S2(ξ). Since N ′ < N , there exists a unit norm vector v = v(ξ) ∈
span{e1, . . . , eN} such that S2(ξ)v = 0. Thus,

〈(S1(ξ) + S2(ξ))v, v〉 = 〈ξPNv, v〉 = ξ.

This shows that the lower frame bound of a frame sequence {T gn(ξ)}n∈I ∪
{T hn(ξ)}n∈I′ is at most ξ, Thus, it approaches 0 as ξ → 0. By Theorem
2.4, {Tkgn}k∈Z,n∈I ∪ {Tkhn}k∈Z,n∈I′ is not a frame sequence.

This example shows the optimality of Proposition 2.2. Finally, note that
the functions {hn}n∈I given by ĥn(ξ) = (1− ξ + n)χ[n,n+1](ξ) fulfill the con-
clusion of this proposition. That is, {Tkgn}k∈Z,n∈I ∪ {Tkhn}k∈Z,n∈I is a tight
frame sequence with bound 1. �
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It turns out that the result obtained un Example 2.3 via explicit calcu-
lations is a special case of a general result that can be deduced using the
fiberization technique:

Theorem 2.6 Let φ ∈ L2(R) be such that {Tkφ}k∈Z is an orthonormal se-
quence. Let g =

∑
k∈Z akTkφ be a finite linear combination with real co-

efficients ak. Then, there exists a generator h ∈ L2(R) of the same form
h =

∑
k∈Z bkTkφ, with all but finitely many bk’s zero, such that {Tkg}k∈Z ∪

{Tkh}k∈Z is a tight frame for the space V := span{Tkg}k∈Z = span{Tkφ}k∈Z.

Proof. Let Φ(ξ) = T φ(ξ) = (φ̂(ξ + k))k∈Z ∈ `2(Z) for a.e. ξ ∈ T. Since
{Tkφ}k∈Z is an orthonormal sequence, we have ||Φ(ξ)|| = 1 a.e. Clearly,
T g(ξ) = m(ξ)Φ(ξ), where m is a trigonometric polynomial given by m(ξ) =∑

k∈Z ake
−2πikξ. By Theorem 2.4, {Tkg}k∈Z is a frame sequence if and only

if infξ∈T |m(ξ)| > 0. In this case, the (optimal) frame bounds of this systems
are A = infξ∈T |m(ξ)|2 and B = supξ∈T |m(ξ)|2. The presence of the exponent
2 is an artifact of the definition (1). Moreover, since m(ξ) 6= 0 for a.e. ξ, the
range functions corresponding to the principal SI spaces generated by φ and
g are the same. Thus, by [2, Proposition 1.5]

V := span{Tkg}k∈Z = span{Tkφ}k∈Z.

We shall prove that there exists a generator h =
∑

k∈Z bkTkφ, with all
but finitely many bk’s zero, such that {Tkg}k∈Z ∪ {Tkh}k∈Z is a tight frame
sequence with bound B. Indeed, we have T h(ξ) = m̃(ξ)Φ(ξ), where m̃(ξ) =∑

k∈Z bke
−2πikξ. By Theorem 2.4, the required property for g and h holds

if and only {T g(ξ), T h(ξ)} is a tight frame sequence with bound B for a.e.
ξ ∈ T. Since these two vectors are multiples of Φ(ξ) this is equivalent to

|m(ξ)|2 + |m̃(ξ)|2 = B for a.e. ξ ∈ T.

Observe that M(ξ) = B−|m(ξ)|2 is a non-negative trigonometric polynomial
with real coefficients. By the Fejér-Riesz lemma, see [6, Lemma 6.1.3] and
[9], there exists a trigonometric polynomial m̃(ξ) =

∑
k∈Z bke

−2πikξ such that
M(ξ) = |m̃(ξ)|2 for all ξ ∈ T. In turn, this polynomial yields the coefficients
for the required generator h.

Finally, observe that we can allow coefficients ak to be complex. Indeed,
a complex coefficient variant of the Fejér-Riesz lemma, see [11, Theorem
A.11.3], yields the polynomial m̃ with complex coefficients bk. �
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We can quickly deduce Example 2.3 via Theorem 2.6. Indeed, suppose
that φ = χ[0,1] and g = χ[0,2] = χ[0,1] + T1χ[0,1]. Then, m(ξ) = 1 + e−2πiξ and
|m(ξ)|2 = |1 + e−2πiξ|2 = 2 + 2 cos(2πξ). By choosing m̃(ξ) = 1 − e−2πiξ we
have |m̃(ξ)|2 = 2− 2 cos(2πξ). Thus,

|m(ξ)|2 + |m̃(ξ)|2 = 4 for ξ ∈ T.

Consequently, by letting h = χ[0,1] − T1χ[0,1], {Tkg}k∈Z ∪ {Tkh}k∈Z is a tight
frame sequence with bound 4.

In general, the construction of the function h in Proposition 2.2 involves
the extraction of the square root of a positive operator. This can be avoided
by constructing a pair of dual frames instead of a tight frame:

Corollary 2.7 Let {gn}n∈I be an at most countable family of functions in
L2(R) and assume that {Tkgn}k∈Z,n∈I is a Bessel sequence. Then there exist
functions {ϕn}n∈I , {ψn}n∈I ∈ V such that {Tkgn}k∈Z,n∈I ∪{Tkϕn}k∈Z,n∈I and
{Tkgn}k∈Z,n∈I∪{Tkψn}k∈Z,n∈I form a pair of dual frames for V. Explicitly, we
can take {ϕn}n∈I as in Lemma 2.1 and let ψn := (I − S1)ϕn with S1 defined
as in (5).

Proof. Let S1 be defined by (5). For any f ∈ V , applying the frame de-
composition associated with the frame sequence {Tkϕn}k∈Z,n∈I from Lemma
2.1 we can write f as follows:

f = S1f + (I − S1)f

=
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈(I − S1)f, Tkϕn〉Tkϕn

=
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈f, (I − S1)
∗Tkϕn〉Tkϕn. (8)

It is clear that (I − S1)
∗ = I − S1. Now, for any h ∈ V , from Lemma 7.2.1

in [4] we have

(I − S1)Tkh = Tkh− S1Tkh = Tkh− TkS1h = Tk(I − S1)h.

Hence
(I − S1)Tk = Tk(I − S1).
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Put ψn := (I − S1)ϕn. Then (8) becomes

f =
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈f, (I − S1)Tkϕn〉Tkϕn

=
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈f, Tk(I − S1)ϕn〉Tkϕn

=
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn +
∑

k∈Z,n∈I

〈f, Tkψn〉Tkϕn.

This proves that {Tkgn}k∈Z,n∈I∪{Tkϕn}k∈Z,n∈I and {Tkgn}k∈Z,n∈I∪{Tkψn}k∈Z,n∈I
form a pair of dual frames for V. �

3 Extensions of {Tkgn}k∈Z,n∈I to frames for L2(R)
So far we have only considered extensions of a shift-invariant system to a
frame for the Hilbert space spanned by the given system. The next result
deals with extensions to frames for L2(R).

Proposition 3.1 Suppose that {Tkgn}k∈Z,n∈I is a Bessel sequence in L2(R)
with the upper bound B. For any λ ≥ B, there is a sequence {hm}m∈Z such
that {Tkgn}k∈Z,n∈I ∪ {Tkhm}m,k∈Z is a tight frame for L2(R) with the bound
λ.

Proof. Let

S1f =
∑

k∈Z,n∈I

〈f, Tkgn〉Tkgn, ∀f ∈ L2(R). (9)

Since {Tkgn}k∈Z,n∈I is a Bessel sequence with bound B, S1 is self-adjoint and
positive and satisfies

〈S1f, f〉 ≤ B‖f‖22, ∀f ∈ L2(R).

For any λ ≥ B, define S2 : L2(R)→ L2(R) by

S2 = λI − S1.

Then S2 is positive and commutes with Tn. From Lemma 2.4.4 in [4] we know

that S
1/2
2 exists, is self-adjoint and can be expressed as a limit of a sequence
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of polynomials in S2. Accordingly, S
1/2
2 commutes with Tn.

Take {TkΨm}m,k∈Z to be a tight frame for L2(R) with frame bound 1.
Like in the proof of Proposition 2.2 we see that

S2f = S
1/2
2 S

1/2
2 f

= S
1/2
2

∑
m,k∈Z

〈S1/2
2 f, TkΨm〉TkΨm

=
∑
m,k∈Z

〈f, S1/2
2 TkΨm〉S1/2

2 TkΨm.

=
∑
m,k∈Z

〈f, TkS1/2
2 Ψm〉TkS1/2

2 Ψm.

Put hm = S
1/2
2 Ψm. Since S1 + S2 = λI, it follows that

{Tkgn}k∈Z,n∈I ∪ {Tkhm}m,k∈Z

is a tight frame for L2(R) with frame bound λ. �

We remark that most of the results of this paper hold for shift-invariant
systems in L2(Rd) for any dimension d ≥ 1. This is because the theory of
SI spaces trivially extends to the higher dimensional setting by replacing the
lattice of shifts Z by Zd. The only result that does not immediately extends
to the higher dimensional setting is Theorem 2.6, which uses in a crucial way
the Fejér-Riesz lemma whose application is restricted to the one dimensional
setting, see [7, 8].

A Appendix A

The full proof of Lemma 2.1 (Theorem 3.3 in [2]) is quite involved. In order
for the reader to get insight into the basic idea we give an elementary proof
for the case of one generator below.

Lemma A.1 Let g ∈ L2(R) and assume that {Tkg}k∈Z is a Bessel sequence
with bound B > 0. Then there exists a function ϕ ∈ V such that {Tkϕ}k∈Z
is a tight frame for V.
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Proof. Consider the function

G(γ) :=
∑
k∈Z

|ĝ(γ + k)|2. (10)

It is well known that G is bounded, G(γ) ≤ B, see, e.g., Lemma 7.1.4 in [4].
Let N := {γ ∈ R

∣∣ G(γ) = 0}, and define the function Φ by

Φ(γ) :=

{
ĝ(γ)

G(γ)1/2
, if γ /∈ N,

0, if γ ∈ N.

Then ∫ ∞
−∞
|Φ(γ)|2 dγ =

∫
R\N

∣∣∣∣ ĝ(γ)

G(γ)1/2

∣∣∣∣2 dγ
=

∑
k∈Z

∫
[0,1]\N

∣∣∣∣ ĝ(γ + k)

G(γ + k)1/2

∣∣∣∣2 dγ.
Since G is 1-periodic, this implies that∫ ∞

−∞
|Φ(γ)|2 dγ =

∫
[0,1]\N

1

G(γ)

∑
k∈Z

|ĝ(γ + k)|2 dγ =

∫
[0,1]\N

dγ < 1.

Thus Φ ∈ L2(R). We can therefore define a function φ ∈ L2(R) by φ̂ := Φ.
Clearly,

∑
k∈Z |φ̂(γ + k)|2 = 0 if γ ∈ N. For γ /∈ N,

∑
k∈Z

|φ̂(γ + k)|2 =
∑
k∈Z

∣∣∣∣ ĝ(γ + k)

G(γ + k)1/2

∣∣∣∣2 = 1.

By Theorem 7.1.7 in [4] this implies that the set {Tkφ}k∈Z is a tight frame
for

W := span{Tkφ}k∈Z, (11)

with frame bound 1. We also note that ĝ = G1/2φ̂. By Lemma 7.1.11 in [4]
this implies that g ∈ W. Since W is a shift-invariant and closed subspace of
L2(R), we conclude that

V ⊆ W. (12)
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Let P denote the orthogonal projection of L2(R) onto V. Directly from the
frame definition it follows that {PTkφ}k∈Z is a tight frame for V, also with
frame bound 1. We will now show that the operators P and Tn commute for
all n ∈ Z; taking ϕ := Pφ this will conclude the proof.

First, for any function f ∈ span{Tkg}k∈Z and any n ∈ Z, we have that
Tnf ∈ span{Tkg}k∈Z. Thus,

PTnf = Tnf = TnPf.

By continuity, this implies that PTn = TnP on the subspace V. Now, if
f ∈ V ⊥ and g ∈ L2(R) is arbitrary,

〈PTnf, g〉 = 〈Tnf, Pg〉 = 〈f, T−nPg〉 = 0

because Pg ∈ V and V is shift-invariant. Thus PTnf = 0. By a similar
proof, TnPf = 0, which shows that PTn = TnP on V ⊥, as desired. �
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