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The Schur–Horn theorem for unbounded
operators with discrete spectrum

Marcin Bownik, John Jasper and Bart!lomiej Siudeja

Abstract

We characterize diagonals of unbounded self-adjoint operators on a Hilbert space H that
have only discrete spectrum, that is, with empty essential spectrum. Our result extends the
Schur–Horn theorem from a finite dimensional setting to an infinite dimensional Hilbert space,
analogous to Kadison’s theorem for orthogonal projections [‘The Pythagorean theorem. I. The
finite case’ and ‘The Pythagorean theorem. II. The infinite discrete case’, Proc. Natl. Acad. Sci.
USA 99 (2002) 4178–4184, 5217–5222], Kaftal and Weiss [‘An infinite dimensional Schur–Horn
theorem and majorization theory’, J. Funct. Anal. 259 (2010) 3115–3162] results for positive
compact operators, and Bownik and Jasper [‘The Schur–Horn theorem for operators with finite
spectrum’, Trans. Amer. Math. Soc. 367 (2015) 5099–5140; ‘Diagonals of self-adjoint operators
with finite spectrum’, Bull. Pol. Acad. Sci. Math. 63 (2015) 249–260; ‘The Schur–Horn theorem
for operators with three point spectrum’, J. Funct. Anal. 265 (2013) 1494–1521] characterization
for operators with finite spectrum. Furthermore, we show that if a symmetric unbounded operator
E on H has a nondecreasing unbounded diagonal, then any sequence that weakly majorizes this
diagonal is also a diagonal of E.

1. Introduction

The classical Schur–Horn theorem characterizes diagonals of Hermitian matrices in terms of
their eigenvalues. An infinite dimensional extension of this result has been a subject of intensive
study in recent years. This line of research was jumpstarted by the influential work of Kadison
[17, 18], who discovered a characterization of diagonals of orthogonal projections on separable
Hilbert space, and by Arveson and Kadison [6], who extended the Schur–Horn theorem to
positive trace class operators. This has been preceded by earlier work of Gohberg and Markus
[13] and by Neumann [25]. The Schur–Horn theorem has been extended to compact positive
operators by Kaftal and Weiss [20] and Loreaux and Weiss [23] in terms of majorization
inequalities [19]. Lebesgue type majorization was used by Bownik and Jasper [10, 11, 16] to
characterize diagonals of self-adjoint operators with finite spectrum operators. Other notable
progress includes the work of Arveson [5] on diagonals of normal operators with finite spectrum
and Antezana, Massey, Ruiz and Stojanoff’s results [1]. Finally, there is a rapidly growing body
of literature on the corresponding problems for von Neumann algebras [2–4, 8, 12, 21, 26].

The goal of this paper is to prove an infinite dimensional variant of the Schur–Horn theorem
for unbounded self-adjoint operators with discrete spectrum. This represents a new direction in
extending the Schur–Horn theorem to infinite dimensional setting since previous results dealt
only with bounded operators.

Assume that an unbounded self-adjoint operator E on a separable Hilbert space H is bounded
from below and has discrete spectrum. That is, the essential spectrum σess(E) = ∅, and hence,
every point λ ∈ σ(E) is an isolated eigenvalue of finite multiplicity. Since E is bounded from
below, its eigenvalues can be listed by a nondecreasing sequence λ = {λi}i∈N according to
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their multiplicities. Since σess(E) = ∅, we must necessarily have limi→∞ λi = ∞, and thus E
is unbounded from above.

Consequently, E is diagonalizable, that is, there exists an orthonormal basis {vi}i∈N of
eigenvectors Evi = λivi for all i ∈ N, and the domain of E is given by

D =

{
f ∈ H :

∑

i∈N
|λi|2|⟨f, vi⟩|2 < ∞

}
. (1.1)

In order to emphasize this point, we will use the notation E = diagλ to denote the operator
which has eigenvalues λ and domain (1.1) as above.

If {ei}i∈N ⊂ D is any other orthonormal basis of H, then the diagonal di = ⟨Eei, ei⟩ of E
with respect to {ei} satisfies

n∑

i=1

λi !
n∑

i=1

di for all n ∈ N. (1.2)

In particular, the same inequality holds true when {di}i∈N is replaced by its nondecreasing
rearrangement {d↑i }i∈N. The necessity of condition (1.2) is often attributed to Schur [27]. Our
main result says that (1.2) is also sufficient, thus generalizing Horn’s theorem [15].

Theorem 1.1. Suppose that λ = {λi}i∈N and {di}i∈N are two nondecreasing and
unbounded sequences. Let E = diagλ be a self-adjoint operator with eigenvalues λ and eigen-
vectors {vi}i∈N. If the majorization inequality (1.2) holds, then there exists an orthonormal
basis {ei}i∈N, which lies in the linear span of {vi}i∈N, such that di = ⟨Eei, ei⟩ for all i ∈ N.

The remarkable consequence of our main theorem is that majorization inequality (1.2) is the
only condition that a sequence {di}i∈N must satisfy in order to be diagonal of diagλ. Moreover,
the required diagonal is achieved with respect to an orthonormal basis {ei}i∈N, whose elements
are finite linear combinations of eigenvectors {vi}i∈N. In particular, it is possible that λi = di
for all but finitely many i ∈ N, the trace condition is violated, that is,

∑∞
i=1(di − λi) ̸= 0, but

yet the conclusion of Theorem 1.1 still holds.
Despite the simplicity of the statement of Theorem 1.1, its proof is far from trivial as it needs

to deal with two major cases. The majorization inequality (1.2) can be equivalently stated as

δk =
k∑

i=1

(di − λi) " 0 for all k ∈ N.

After dealing with elementary reductions in Section 2, the first case deals with the conservation
of mass scenario

lim inf
k→∞

δk = 0.

The second case deals with vanishing mass at infinity scenario

α = lim inf
k→∞

δk > 0.

This further splits in two subcases: δk " α for sufficiently large k, and δk < α for infinitely
many k, shown by Theorems 4.2 and 4.3, respectively.

The proofs of these cases require careful application of an infinite sequence of convex moves,
also known as T -transforms [20], to guarantee that the limiting orthonormal sequence is a
basis. In addition, we need to ensure that the constructed basis is contained in the dense
domain D. This constraint was not present in earlier work on bounded operators and requires
new techniques of moving from a prescribed diagonal into a desired diagonal configuration. Our
methods work not only for self-adjoint operators with discrete spectrum as in Theorem 1.1,
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but also for unbounded symmetric operators (possibly with continuous spectrum) as in
Theorem 2.1. Indeed, ‘eigenvalue to diagonal’ Theorem 1.1 is an immediate consequence of
a more general ‘diagonal to diagonal’ Theorem 2.1.

We end the paper by giving several examples illustrating Theorem 1.1 in Section 5.
Laplacians, or more generally elliptic differential operators, provide a broad and interesting
class of operators falling into the scope of this paper.

2. Diagonal to diagonal elementary reductions

In this section, we show several reductions that are employed in the proof of Theorem 1.1. To
achieve this, we formulate a generalization of Theorem 1.1 for unbounded symmetric operators
which are not necessarily diagonalizable. Recall that a linear operator E defined on a dense
domain D ⊂ H is symmetric if

⟨Ef, g⟩ = ⟨f,Eg⟩ for all f, g ∈ D.

Theorem 1.1 is an immediate consequence of the following diagonal to diagonal theorem.

Theorem 2.1. Let E be a symmetric operator defined on a dense domain D ⊂ H. Let
d = {di}i∈N and λ = {λi}i∈N be two nondecreasing unbounded sequences satisfying (1.2). If
there exists an orthonormal sequence {fi}i∈N ⊂ D such that

⟨Efi, fi⟩ = λi for all i ∈ N,

then there exists an orthonormal sequence {ei}i∈N ⊂ span{fi}i∈N such that span{ei}i∈N =
span{fi}i∈N and

⟨Eei, ei⟩ = di for all i ∈ N.

In the special case, when {fi}i∈N is an orthonormal basis of eigenvectors with eigenvalues
{λi}i∈N of a self-adjoint operator E = diagλ, Theorem 2.1 immediately yields Theorem 1.1.
To facilitate statements of reduction results, we shall make some formal definitions.

Definition 2.2. Let λ = {λi}i∈I and d = {di}i∈I be two real sequences, where I is
countable. Let E be unbounded (here it means not necessarily bounded) linear operator defined
on a dense domain D of a Hilbert space H. We say that an operator E has diagonal λ if there
exists an orthonormal sequence {fi}i∈I contained in D such that

⟨Efi, fi⟩ = λi for all i ∈ I.

We say that E has diagonal d, which is finitely derived from diagonal λ, if there exists an
orthonormal sequence {ei}i∈I in D satisfying ⟨Eei, ei⟩ = di for all i ∈ I,

span{ei}i∈N = span{fi}i∈N and ∀k ∈ I ek ∈ span{fi}i∈I . (2.1)

For our purposes, it is more natural to define a majorization order using nondecreasing
rearrangements instead of more classical nonincreasing rearrangements, see [24]. Suppose
{λi}Ni=1 and {di}Ni=1 are two real sequences. Let {λ↑

i }Ni=1 and {d↑i }Ni=1 be their nondecreasing
rearrangements. We say that {di} # {λi} if and only if

N∑

i=1

d↑i =
N∑

i=1

λ↑
i and

n∑

i=1

λ↑
i !

n∑

i=1

d↑i for all 1 ! n ! N. (2.2)
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The classical Schur–Horn theorem [15, 27] characterizes diagonals of self-adjoint (Hermitian)
matrices with given eigenvalues. It can be stated as follows, where HN is an N dimensional
Hilbert space over R or C, that is, HN = RN or CN .

Theorem 2.3 (Schur–Horn theorem). There exists a self-adjoint operator E : HN → HN

with eigenvalues {λi}Ni=1 and diagonal {di}Ni=1 if and only if {di} # {λi}.

As a consequence of Theorem 2.3 we have the following block diagonal lemma.

Lemma 2.4. Let E be a symmetric operator defined on a dense domain D ⊂ H. Suppose
that {di}i∈I and {d̃i}i∈I are two sequences of real numbers such that:

(i) there exists a collection of disjoint finite subsets {Ij}j∈J of the index set I,

(ii) {di}i∈Ij # {d̃i}i∈Ij for each j ∈ J ,

(iii) d̃i = di for all i ∈ I \
(⋃

j∈J Ij
)
.

Suppose that E has diagonal {d̃i}i∈I with respect to an orthonormal sequence {fi}i∈I . Then,
{di}i∈I is a finitely derived diagonal of E. That is, there exists an orthonormal sequence {ei}i∈I

satisfying (2.1) with respect to which E has diagonal {di}i∈I .

Proof. Let Pj be the orthogonal projection of H onto finite dimensional block subspace
Hj = span{fi : i ∈ Ij}. Observe that a finite dimensional self-adjoint operator Ej := (PjE)|Hj

has diagonal {d̃i}i∈Ij with respect to {fi}i∈Ij . By (ii) and the Schur–Horn theorem, there
exists a unitary operator Uj on Hj such that UjEj(Uj)∗ has diagonal {di}i∈Ij with respect to
{fi}i∈Ij . Define an orthonormal basis {ei}i∈I by

ei =

{
Ujfj i ∈ Ij ,

fi i ∈ I \
(⋃

j∈J Ij
)
.

For i ∈ Ij we have

⟨Eei, ei⟩ = ⟨E(Uj)∗fi, (Uj)∗fi⟩ = ⟨PjE(Uj)∗fi, (Uj)∗fi⟩ = ⟨UjEj(Uj)∗fi, fi⟩ = di.

The same identity holds trivially for i ̸∈ ∪j∈JIj , which shows that E has diagonal {di} with
respect to {ei}. This completes the proof of the lemma. $

As an application of Lemma 2.4 we can show the special case of Theorem 2.1.

Lemma 2.5. Let E be a symmetric operator defined on a dense domain D ⊂ H. Let
d = {di}i∈N and λ = {λi}i∈N be two nondecreasing sequences such that

δk :=
k∑

i=1

(di − λi) " 0 for all k ∈ N. (2.3)

Suppose that there are infinitely many k ∈ N such that δk = 0. If λ is diagonal of E, then d is
a finitely derived diagonal of E.

Proof. Set k1 = 0 and let {kj}∞j=2 be a strictly increasing sequence in N such that δkj = 0
for all j " 2. For each j ∈ N set Ij = {kj + 1, . . . , kj+1}. For each j ∈ N and k ∈ Ij

k∑

i=kj+1

(di − λi) = δk − δkj = δk " 0.
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Since δkj+1 = 0 we have {di}i∈Ij # {λi}i∈Ij . By our assumption, E has diagonal λ with respect
to some orthonormal sequence {fi}i∈N. By Lemma 2.4 there is an orthonormal sequence {ei}i∈N
satisfying (2.1) with respect to which E has diagonal d. $

In the proof of Theorem 2.1 it is convenient to make the reducing assumption (2.4) about
nondecreasing sequences λ and d.

Theorem 2.6. If Theorem 2.1 holds under an additional assumption

δk =
k∑

i=1

(di − λi) > 0 for all k ∈ N, (2.4)

then it holds in a full generality.

Proof. Suppose that E has diagonal λ with respect to orthonormal sequence {fi}i∈N. The
case when δk = 0 for infinitely many k ∈ N is covered by Lemma 2.5. Hence, we can assume
that there are finitely many k ∈ N such that δk = 0. Let N ∈ N be the largest such integer.
Define the spaces

H0 = span{fi}Ni=1 and H1 = span{fi}∞i=N+1.

Applying Theorem 2.1 to the sequences {di}∞i=N+1 and {λi}∞i=N+1, and noting that for
k " N + 1

k∑

i=N+1

(di − λi) = δk − δN = δk > 0

we obtain an orthonormal basis {ei}∞i=N+1 of H1 such that ⟨Eei, ei⟩ = di for all i " N + 1.
Then the operator E has diagonal

λ1, . . . ,λN , dN+1, dN+2, . . .

with respect to orthonormal basis {f1, . . . , fN , eN+1, eN+2, . . .} of H0 ⊕H1. Since δN = 0 we
have {di}Ni=1 # {λi}Ni=1. Applying Lemma 2.4 we obtain an orthonormal sequence {ei}∞i=1 with
respect to which E has diagonal d and (2.1) holds. $

We end this section with a basic linear algebra lemma about convex moves of 2 × 2 Hermitian
matrices. Lemma 2.7 generalizes the corresponding well-known result for matrices with zero
off-diagonal entries.

Lemma 2.7. Let E be a symmetric operator on D ⊂ H. Assume that real numbers d1, d2,
d̃1, d̃2 satisfy

d̃1 ! d1, d2 ! d̃2, d̃1 ̸= d̃2, and d̃1 + d̃2 = d1 + d2. (2.5)

If there exists an orthonormal set {f1, f2} ⊂ D such that ⟨Efi, fi⟩ = d̃i for i = 1, 2, then there
exists

d̃2 − d1

d̃2 − d̃1

! α ! 1

and θ ∈ [0, 2π) such that ⟨Eei, ei⟩ = di for i = 1, 2, where

e1 =
√
αf1 +

√
1 − αeiθf2 and e2 =

√
1 − αf1 −

√
αeiθf2. (2.6)

Moreover, if H is a real Hilbert space, then eiθ = ±1. If the inequalities in (2.5) are strict, then
α < 1.
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Proof. Set

β := ⟨Ef1, f2⟩.

Choose θ ∈ [0, 2π) such that e−iθβ ! 0. For x ∈ [0, 1] define

ex1 =
√
xf1 +

√
1 − xeiθf2 and ex2 =

√
1 − xf1 −

√
xeiθf2.

We calculate

⟨Eex1 , e
x
1⟩ = xd̃1 + (1 − x)d̃2 + 2e−iθβ

√
x(1 − x)

so that

⟨Ee1
1, e

1
1⟩ = d̃1 " d1

and for α0 = (d1 − d̃2)/(d̃1 − d̃2), since e−iθβ ! 0 we have

⟨Eeα0
1 , eα0

1 ⟩ = α0(d̃1 − d̃2) + d̃2 + 2e−iθβ
√

α0(1 − α0)

= d1 − d̃2 + d̃2 + 2e−iθβ
√

α0(1 − α0) ! d1.

Since x /→ ⟨Eex1 , e
x
1⟩ is continuous on [α0, 1] there is some α " α0 such that ⟨Eeα1 , e

α
1 ⟩ = d1.

Finally, using the assumption that d̃1 + d̃2 = d1 + d2, we have

⟨Eeα2 , e
α
2 ⟩ = (1 − α)d̃1 + αd̃2 − 2e−iθβ

√
α(1 − α)

= d̃1 + d̃2 −
(
αd̃1 + (1 − α)d̃2 + 2e−iθβ

√
α(1 − α)

)

= d̃1 + d̃2 − ⟨Eeα1 , e
α
1 ⟩ = d̃1 + d̃2 − d1 = d2.

This completes the proof of the lemma. $

3. Conservation of mass scenario

In this section, we will establish Theorem 2.1 under additional conservation of mass assumption

lim inf
k→∞

δk = 0, where δk =
k∑

i=1

(di − λi). (3.1)

It is remarkable that we achieve this goal without assuming that the sequence {λi} is
unbounded. This requires a careful application of an infinite sequence of convex moves, also
known as T -transforms [20], to the original orthonormal basis of eigenvectors {fi}i∈N. The key
Lemma 3.1 guarantees that the limiting orthonormal sequence is complete.

Lemma 3.1. Let {fi}i∈N be an orthonormal set, and let {αi}i∈N be a sequence in [0, 1]. Set
ẽ1 = f1 and inductively define for i ∈ N,

ei =
√
αi ẽi +

√
1 − αifi+1 and ẽi+1 =

√
1 − αiẽi −

√
αifi+1. (3.2)

If for each n ∈ N
∞∏

i=n

(1 − αi) = 0, (3.3)

then {ei}i∈N is an orthonormal basis for span{fi}i∈N and (2.1) holds. In particular, if αi < 1
for all i and

∑∞
i=1 αi/(1 − αi) = ∞, then {ei}i∈N is an orthonormal basis for span{fi}i∈N.
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Proof. By induction, we see that for each i ∈ N,

{e1, e2, . . . , ei−1, ẽi, fi+1, fi+2, . . .}

is an orthonormal sequence. Hence, {ei}i∈N is orthonormal and it is enough to show that
fj ∈ span{ei}i∈N for all j ∈ N. Note that ei ∈ span{fj}i+1

j=1 and ẽi ∈ span{fj}ij=1. Thus,
⟨fj , ei⟩ = 0 for i ! j − 2 and ⟨fj , ẽi⟩ = 0 for i ! j − 1. Also note that for each n ∈ N the
sequence {e1, e2, . . . , en, ẽn+1} is an orthonormal basis for span{fi}n+1

i=1 . Thus, for n " j − 1
we have

1 − |⟨fj , ẽn+1⟩|2 =
n∑

i=1

|⟨fj , ei⟩|2. (3.4)

If we set α0 = 1, then

⟨fj , ẽj⟩ = −√
αj−1

for all j ∈ N. For n " 0 we have

⟨fj , ẽj+n⟩ =
√

1 − αj+n−1⟨fj , ẽj+n−1⟩,

so that, by induction for n " 0 we have

⟨fj , ẽj+n⟩ = −

⎛

⎝αj−1

j+n−1∏

k=j

(1 − αj+k)

⎞

⎠
1/2

. (3.5)

Letting n → ∞ in (3.5), we see from (3.3) that limn→∞⟨fj , ẽn⟩ = 0. Hence, (3.4) implies that
for each j ∈ N

∞∑

i=1

|⟨fj , ei⟩|2 = 1,

That is, fj ∈ span{ei}i∈N, which completes the proof.
Finally, consider the case that αi < 1 for all i ∈ N, and

∑∞
i=1 αi/(1 − αi) = ∞. In this case,

we have
k∑

i=n

αi

1 − αi
!

k∏

i=n

(
1 +

αi

1 − αi

)
=

1
∏k

i=n(1 − αi)
.

Letting k → ∞ we obtain (3.3). $

Lemma 3.2. If {tn} is a positive nonincreasing sequence with limit zero, then

∞∑

n=1

tn − tn+1

tn+1
= ∞.

Proof. Since (tn − tn+1)/tn+1 = tn/tn+1 − 1, we may assume tn+1/tn → 1 as n → ∞. Since
tn/tn+1 " 1 we have

k∑

n=1

tn − tn+1

tn+1
=

k∑

n=1

(
tn

tn+1
− 1

)
"

k∑

n=1

log
(

tn
tn+1

)
= log(t1) − log(tk+1) → ∞ as k → ∞.

$

Next, we prove the first preliminary version of Theorem 2.1 under the additional assumption
that {δk} is strictly decreasing to 0. However, we do not assume in Lemma 3.3 that {di} is
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arranged in nondecreasing order. Also in all subsequent results in Section 3 we do not assume
that {λi} is an unbounded sequence.

Lemma 3.3. Let λ = {λi}i∈N be a nondecreasing sequence. Let E be a symmetric operator
with diagonal λ as in Definition 2.2. If d = {di}i∈N is a sequence such that the following two
properties hold:

λ1 ! dn < λn for all n " 2, (3.6)

d1 = λ1 +
∞∑

i=2

(λi − di) < λ2, (3.7)

then E has diagonal d, which is finitely derived from λ.

Proof. For each n ∈ N set

tn =
∞∑

i=n

(λi − di).

Note that t1 = 0, and {ti}∞i=2 is a positive, nonincreasing sequence with limit zero since
∞∑

i=1

(λi − di) = 0.

For each n ∈ N set

λ̃n := dn − tn+1 = λn − tn.

From (3.6) for each n " 2, we have

λ̃n < dn < λn ! λn+1.

From (3.7) we have

λ̃1 = λ1 < d1 < λ2.

Thus, for all n ∈ N we have

λ̃n < dn, λ̃n+1 < λn+1 and λ̃n + λn+1 = dn + λ̃n+1. (3.8)

We conclude that for all n ∈ N

α̃n :=
λn+1 − dn

λn+1 − λ̃n

=
λn+1 − dn

λn+1 − dn + tn+1
∈ (0, 1).

By Lemma 3.2 we have
∞∑

n=1

α̃n

1 − α̃n
=

∞∑

n=1

λn+1 − dn
tn+1

"
∞∑

n=1

λn − dn
tn+1

=
∞∑

n=1

tn − tn+1

tn+1
= ∞. (3.9)

Let {fn}n∈N be an orthonormal sequence with respect to which E has diagonal λ. We shall
now define an orthonormal sequence {en}n∈N as in Lemma 3.1 for an appropriate choice of the
sequence {αn}n∈N.

We have ⟨Ef1, f1⟩ = λ1 = λ̃1, and ⟨Ef2, f2⟩ = λ2. By Lemma 2.7 there exist α1 ∈ [α̃1, 1) and
θ2 ∈ [0, 2π) such that vectors

e1 =
√
α1f1 +

√
1 − α1e

iθ2f2 and ẽ2 =
√

1 − α1f1 −
√
α1e

iθ2f2

form an orthonormal basis for span{f1, f2} and

⟨Ee1, e1⟩ = d1 and ⟨Eẽ2, ẽ2⟩ = λ̃2.



156 MARCIN BOWNIK, JOHN JASPER AND BART!LOMIEJ SIUDEJA

Now, we may inductively assume that for some n " 2 we have an orthonormal basis
{e1, . . . , en−1, ẽn} for span{fj}nj=1 such that

⟨Eej , ej⟩ = dj for j ! n− 1 and ⟨Eẽn, ẽn⟩ = λ̃n.

Using (3.8), by Lemma 2.7 there exist αn ∈ [α̃n, 1) and θn+1 ∈ [0, 2π) such that the vectors

en =
√
αnẽn +

√
1 − αne

iθnfn+1 and ẽn+1 =
√

1 − αnẽn −
√
αne

iθn+1fn+1

form an orthonormal basis for span{ẽn, fn+1} and

⟨Een, en⟩ = dn and ⟨Eẽn+1, ẽn+1⟩ = λ̃n+1.

The fact that αn < 1 for all n ∈ N is a consequence of strict inequalities in (3.8).
Observe that the above procedure yields an orthonormal sequence {en}∞n=1 that is obtained

by applying Lemma 3.1 to {eiθnfn}n∈N with {αn}n∈N and {θn}n∈N as already defined and
θ1 = 0. Since for all n ∈ N, αn ∈ [α̃n, 1), by (3.9) we have

∞∑

n=1

αn

1 − αn
"

∞∑

n=1

α̃n

1 − α̃n
= ∞.

Hence, by Lemma 3.1 {en}n∈N is an orthonormal basis for span{fn}n∈N. By (3.2) each vector
en is a linear combination f1, . . . , fn+1. Therefore, E has diagonal d, which is finitely derived
from λ. $

The following is the second preliminary version of the main result of this section. The final
result of this section, which is Theorem 3.6, will be identical with the exception of the two
extra assumptions: d1 < λ2 and δk > 0 for all k ∈ N.

Lemma 3.4. Let d = {di}i∈N and λ = {λi}i∈N be nondecreasing sequences such that (2.3)
and (3.1) hold. Let E be a symmetric operator with diagonal λ. If λ2 > d1 and δk > 0 for all
k ∈ N, then E has diagonal d, which is finitely derived from λ.

Proof. Inductively define the sequence {mj} as follows. Set m1 = 1 and for j " 2 set
mj = min{n > mj−1 : δn < δmj−1}.

For each j ∈ N and i = mj + 1, . . . ,mj+1 set

d̃i =
δmj+1 − δmj

mj+1 −mj
+ λi.

Also set d̃1 = d1 and define

δ̃k :=
k∑

i=1

(d̃i − λi).

By induction, for each j ∈ N and k = mj + 1, . . . ,mj+1 we have

δ̃k = δmj +
δmj+1 − δmj

mj+1 −mj
(k −mj). (3.10)

In particular, we have

δ̃mj = δmj for all j ∈ N. (3.11)

Since δk " δmj > δmj+1 for all mj < k < mj+1, we have

δmj +
k∑

i=mj+1

(d̃i − λi) = δ̃k = δmj +
δmj+1 − δmj

mj+1 −mj
(k −mj) ! δmj ! δk = δmj +

k∑

i=mj+1

(di − λi).

Combining this with (3.11) shows that {di}
mj+1
i=mj+1 # {d̃i}

mj+1
i=mj+1 for each j ∈ N.
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Using δmj+1 − δmj < 0, (3.10), and (3.11) we deduce that the sequence {δ̃k}k∈N is decreasing
and limk→∞ δ̃k = 0. Moreover, we have d̃1 = d1 < λ2 and λ1 ! d̃n for all n " 2. Applying
Lemma 3.3 to the sequences λ and d̃ := {d̃i}i∈N shows that E has diagonal d̃, which is finitely
derived from λ.

Finally, since the sets Ij = {mj + 1, . . . ,mj+1} are disjoint, and {di}i∈Ij # {d̃i}i∈Ij ,
Lemma 2.4 shows that E has diagonal d, which is finitely derived from d̃, and hence finitely
derived from λ. $

Lemma 3.5. Let d = {di}i∈N and λ = {λi}i∈N be nondecreasing sequences such that such
that (2.3) and (3.1) hold. Let E be a symmetric operator defined on a dense domain D. If the
following two conditions hold:

(i) there exists N ∈ N such that δN ! δk for all k ! N ,

(ii) E has diagonal d̃ := {d̃i}i∈N, where

d̃i :=

⎧
⎪⎨

⎪⎩

λ1 + δN i = 1,
λi i = 2, . . . , N,

di i > N,

(3.12)

then E has diagonal d, which is finitely derived from d̃.

Proof. Let I1 = {1, . . . , N}. In light of Lemma 2.4 it is enough to show that {di}i∈I1 #
{d̃i}i∈I1 . Let {d̃ ↑

i }Ni=1 denote the nondecreasing rearrangement of {d̃i}Ni=1, then for k =
1, . . . , N

k∑

i=1

d̃ ↑
i !

k∑

i=1

d̃i = δN +
k∑

i=1

λi =
k∑

i=1

di + δN − δk !
k∑

i=1

di.

Together with the observation that both of the inequalities above become equality when k = N
demonstrates the desired majorization. $

We are now ready to show Theorem 1.1 under the additional hypothesis (3.1), but without
the assumption that {λi} is unbounded.

Theorem 3.6. Let d = {di}i∈N and λ = {λi}i∈N be nondecreasing sequences such that (2.3)
and (3.1) hold. Let E be a symmetric operator with diagonal λ as in Definition 2.2. Then, E
has diagonal d, which is finitely derived from λ.

Proof. By Theorem 2.6 we may assume that δk > 0 for all k ∈ N. We also claim that λ is not
a constant sequence. On the contrary, suppose λi = L for all i ∈ N. Since d is nondecreasing
and lim infk→∞ δk = 0 we conclude that di ↗ L as i → ∞. The assumption that δ1 > 0 implies
d1 > L, which is a contradiction.

Since λ is not constant, there is some M ∈ N such that λ1 < λM . Choose N > M such that

δN ! δk for all k ! N (3.13)

and δN < λM − λ1. Since λM ! λN+1 we also have

λN+1 > δN + λ1. (3.14)
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Define the sequence d̃ = {d̃i}i∈N as in (3.12). Define the sequences {ci} and {µi} by

ci =

{
d̃1 i = 1,

d̃i+N−1 i " 2,
and µi =

{
λ1 i = 1,
λi+N−1 i " 2.

Note that

δ̃k :=
k∑

i=1

(ci − µi) = δN+k−1 for all k ∈ N.

Hence, δ̃k > 0 for all k ∈ N and by (3.14) we have c1 = δN + λ1 < λN+1 = µ2. By our
hypothesis, E has diagonal {µi} with respect to orthonormal sequence {fi}i=1,i>N . Applying
Lemma 3.4 yields an orthonormal basis {ẽi}i=1,i>N of span{fi}i=1,i>N with respect to which
E has diagonal {ci}, which is finitely derived from {µi}. Letting ẽi = fi for 2 ! i ! N , yields
an orthonormal sequence {ẽi}i∈N with respect to which E has diagonal d̃. By (3.13) we can
apply Lemma 3.5 to obtain a desired orthonormal sequence {ei}i∈N, with respect to which E

has diagonal d. Moreover, d is finitely derived from d̃, and hence from λ. $

4. Mass vanishing at infinity scenario

In this section, we will show Theorem 2.1 under complementary assumption to (3.1). This
involves a construction of an infinite sequence of convex moves continually transforming a
diagonal sequence, where some of the mass must necessarily vanish at infinity. First, we handle
the strong domination case λk ! dk for every k ∈ N. Equivalently, the sequence {δk}k∈N is
assumed to be nondecreasing in Lemma 4.1.

Lemma 4.1. Let E be a symmetric operator defined on a dense domain D. Let d = {di}∞i=1

and λ = {λi}∞i=1 be nondecreasing unbounded sequences with di " λi for every i. If there exists
an orthonormal sequence {fi}i∈N ⊂ D such that

⟨Efi, fi⟩ = λi for all i ∈ N,

then there exists an orthonormal sequence {ei}i∈N satisfying (2.1) and

⟨Eei, ei⟩ = di for all i ∈ N.

Proof. Without loss of generality we can assume that sequences d and λ consist of positive
terms. This can be seen by adding a positive multiple of the identity to E, which corresponds to
translating these sequences by a positive constant. This process can be reversed by subtracting
the same multiple of the identity.

Suppose that I is an infinite subset of N. For any such subset we define inductively an
increasing sequence {ik}∞k=1 in I by letting i1 = min I and choosing ik ∈ I large enough to
have

λik > 2dik−1 k " 2. (4.1)

In addition, we require that I \ {ik : k ∈ N} is infinite. This is possible since the sequence {λi}
is not bounded. Now recursively define another sequence by xi1 = λi1 and

xik+1 = λik+1 + xik − dik k " 1.

Note that xi2 ! λi2 and xi2 − di1 > 0 (using condition (4.1)). By induction we get that for any
k " 1

xik ! dik < xik+1 ! λik+1 . (4.2)
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Furthermore,

α̃k :=
λik+1 − dik
λik+1 − xik

>
λik+1/2
λik+1

=
1
2
. (4.3)

Now we are ready to start constructing an orthonormal sequence {eik}∞k=1.
We have ⟨Efi1 , fi1⟩ = xi1 , and ⟨Efi2 , fi2⟩ = λi2 . By Lemma 2.7 there exist α1 ∈ [α̃1, 1] and

θ2 ∈ [0, 2π) such that vectors

ei1 =
√
α1fi1 +

√
1 − α1e

iθ2fi2 and ẽi2 =
√

1 − α1fi1 −
√
α1e

iθ2fi2

form an orthonormal basis for span{fi1 , fi2} and

⟨Eei1 , ei1⟩ = di1 and ⟨Eẽi2 , ẽi2⟩ = xi2 .

Now, we may inductively assume that for some k " 2 we have an orthonormal basis
{ei1 , . . . , eik−1 , ẽik} for span{fij}kj=1 such that

⟨Eeij , eij ⟩ = dij for j ! k − 1 and ⟨Eẽik , ẽik⟩ = xik .

Using (4.2), by Lemma 2.7 there exist αk ∈ [α̃k, 1] and θk+1 ∈ [0, 2π) such that the vectors

eik =
√
αkẽik +

√
1 − αke

iθkfik+1 and ẽik+1 =
√

1 − αkẽik −
√
αke

iθk+1fik+1

form an orthonormal basis for span{ẽik , fik+1} and

⟨Eeik , eik⟩ = dik and ⟨Eẽik+1 , ẽik+1⟩ = xik+1 .

This completes the inductive step, and thus we have an orthonormal sequence {eik}∞k=1.
Observe that this is exactly the orthonormal sequence obtained by applying Lemma 3.1 to

{eiθkfik}k∈N with {αk}k∈N and {θk}k∈N as already defined with θ1 = 0. By (4.3) we have αk >
1/2 for all k ∈ N. Hence, by Lemma 3.1 {ei}i∈I1 is an orthonormal basis for H1 = span{fi}i∈I1 ,
with respect to which E has diagonal {di}i∈I1 , where I1 = {ik : k ∈ N}. Moreover, diagonal
{di}i∈I1 is finitely derived from {λi}i∈I1 .

In the initial step, we run the above construction starting with the full index set I = N to
obtain the required diagonal subsequence indexed by I1. Then, we repeat the above construction
inductively with respect to the unused index set I = N \ (I1 ∪ . . . ∪ Ik−1), k " 2, to obtain the
required diagonal subsequence indexed by Ik. Since we always include the smallest unused
element in I and we leave out infinitely many unused indices, the family {Ik}k∈N is a partition
of N. Thus, we obtain an orthogonal decomposition

span{fi}i∈N =
∞⊕

k=1

Hk, where Hk = span{fi}i∈Ik .

For each subspace Hk we have constructed an orthonormal basis {ei}i∈Ik , with respect to
which E has diagonal {di}i∈Ik , that is finitely derived from {λi}i∈Ik . This defines the required
orthonormal basis {ei}i∈N of span{fi}i∈N with respect to which E has diagonal d. $

We are now ready to show Theorem 2.1 in the case when sequence {δk}k∈N as in (2.3),
eventually stays above its lim infk→∞ δk.

Theorem 4.2. Let E be a symmetric operator defined on a dense domain D. Let d = {di}∞i=1

and λ = {λi}∞i=1 be nondecreasing unbounded sequences such that (2.3) holds. Assume that
there exists M " 0 such that

δk " α := lim inf
i→∞

δi for all k " M.

If λ is a diagonal of E, then d is a finitely derived diagonal of E.
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Proof. By Lemma 2.6 we may assume δk > 0 for all k ∈ N. Fix N ∈ N such that
N > maxk!M−1{kα/δk,M}. Hence,

δk " kα

N
for k ! M − 1.

Define

d̃i =

⎧
⎨

⎩
di −

α

N
i = 1, . . . , N,

di i " N + 1.

Observe that

k∑

i=1

(d̃i − λi) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δk − kα

N
" 0 k ! M − 1,

δk − kα

N
" α− kα

N
" 0 M ! k ! N,

δk − α " 0 k " N + 1.

The last equation implies that lim infk→∞
∑k

i=1(d̃i − λi) = 0. We may apply Theorem 3.6 to
deduce that E has diagonal {d̃i}i∈N, which is finitely derived from λ. Since di " d̃i for all i ∈ N,
Lemma 4.1 yields the desired diagonal {di}i∈N. $

Finally, we are left we the case when the sequence {δk}k∈N dips infinitely many times below
its lim infk→∞ δk.

Theorem 4.3. Let E be a symmetric operator defined on a dense domain D. Let d = {di}i∈N
and λ = {λi}i=1∈N be nondecreasing unbounded sequences such that (2.3) holds. Assume that

δk < α := lim inf
i→∞

δi for infinitely many k.

If λ is a diagonal of E, then d is a finitely derived diagonal of E.

Proof. We define inductively the index sequence {mj}∞j=0 as follows. Let m0 = 0. For j " 1
set

mj = min{n > mj−1 : ∀k " n δn ! δk}.

That is, the sequence {mj} records consecutive global minima of the tail {δn}n>mj−1 . In
particular, using the convention that δ0 = 0, we have

δmj−1 ! δmj ! δk for all mj−1 < k ! mj , j " 1. (4.4)

Define the sequence {d̃i}i∈N by

d̃i =

{
λi + (δmj − δmj−1) for i = mj , j " 1,
λi otherwise.

(4.5)

Set

δ̃k =
k∑

i=1

(d̃i − λi).

For j " 1, set Ij = {mj−1 + 1, . . . ,mj}. By (4.4) and (4.5), for any k ∈ Ij we have

δmj−1 +
k∑

i=mj−1+1

(di − λi) = δk " δmj " δmj−1 +
k∑

i=mj−1+1

(d̃i − λi)
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with equalities when k = mj . This shows that {di}i∈Ij # {d̃i}i∈Ij . Since the sets {Ij}j∈N form
a partition of N, we can apply Lemma 2.4 to reduce the problem to showing that E has
diagonal {d̃i}i∈N. This case is already covered by Lemma 4.1 since the sequence {δ̃i}i∈N is
nondecreasing. $

Theorem 2.1 now follows immediately by combining Theorems 4.2 and 4.3.

5. Remarks and examples

5.1. Diagonals and eigenvalues of inverse operators

It is worth observing how our main result, Theorem 1.1, is related to the result of Kaftal and
Weiss [20] who characterized the diagonals of positive compact operators. The earlier result of
Arveson and Kadison [6] characterized diagonals of positive trace class operators. In the case
of positive compact operators that are not trace class, the trace condition is not present both
in [20] and in Theorem 1.1. Hence, one might attempt to deduce Theorem 1.1 from [20].

For simplicity assume that the first eigenvalue of E is λ1 > 0. Then, the inverse E−1 is a
compact positive operator with eigenvalues 1/λ1 " 1/λ2 " . . . ↘ 0. Conversely, the inverse of
positive self-adjoint operator with trivial kernel is unbounded with discrete spectrum. However,
the diagonal does not behave in such controlled way when taking inverses. Thus, Theorem 1.1
does not follow from [20] in any obvious way. For the converse direction, Theorem 3.6 implies a
special case of [20] when lim infk→∞ δk = 0. Nevertheless, it is possible to deduce majorization
for sums of inverses from the majorization of sums of eigenvalues as follows.

We say that a sequence {ai}i∈N is (weakly) majorized by a sequence {bi}i∈N, and write
{ai} ≺ {bi}, if

n∑

i=1

ai !
n∑

i=1

bi for all n ∈ N.

Note that unlike (strong) majorization order #, we do not alter the order of elements of the
sequences. Recall the classical Hardy–Littlewood–Pólya majorization theorem [14, § 3.17].

Theorem 5.1 (Hardy–Littlewood–Pólya majorization). Assume that {ai} and {bi} are
nondecreasing sequences of positive real numbers such that {ai} ≺ {bi}. Then for any concave
increasing function Φ : R+ → R we have {Φ(ai)} ≺ {Φ(bi)}. Similarly, when {ai} and {bi} are
nonincreasing, then the result holds for convex increasing functions Φ.

Let ai = λi and bi = di with the sequences coming from the unbounded operator E as in
Theorem 1.1. Now choose Φ(x) = −1/x to get that {1/di} ≺ {1/λi}. Therefore, whenever {di}
is a possible diagonal for E, the sequence of inverses is a valid diagonal for the compact operator
E−1. Interestingly, the inverse procedure does not work. Even if {d̃i} is majorized by {1/λi},
the sequence of inverses {1/d̃i} does not need to majorize {λi}, since Φ(x) = −1/x is not
convex.

As another consequence of Hardy–Littlewood–Pólya majorization we get that whenever {di}
is a valid diagonal for E, the sequence of eigenvalues {e−λit} of the heat operator e−tE majorizes
{e−dit}. Therefore the heat operator associated with E admits diagonal {e−dit}.

5.2. Examples using Laplacians

Elliptic differential operators provide a broad and interesting class of operators falling into the
scope of this paper. In particular, Laplace operators on domains Ω ⊂ Rd imposed with various
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boundary conditions can be closed in L2(Ω) leading to essentially self-adjoint operators with
discrete spectrum. This follows from classical considerations involving compactness of their
inverses and compactness of the Sobolev embeddings. For more details, see Bandle [7] or
Blanchard–Brüning [9].

To be more specific, consider two Laplace operators defined (weakly) on Sobolev spaces, via
the corresponding quadratic forms:

• Neumann Laplacian ∆N : domain H1(Ω), quadratic form ⟨∆Nu, v⟩ =
∫
Ω ∇u ·∇v dA;

• Dirichlet Laplacian ∆D: domain H1
0 (Ω), quadratic form

∫
Ω ∇u ·∇v dA.

It turns out that the eigenfunctions for these operators satisfy appropriate classical boundary
conditions: Neumann ∂nu = 0 on ∂Ω, and Dirichlet u = 0 on ∂Ω, respectively. See Chapters 5
and 6 of Laugesen [22] for a nice overview.

Let µj and λj denote the eigenvalues (in nondecreasing order) for the Neumann and Dirichlet
Laplacians, respectively. It is easy to see (via operator domain inclusion) that for any j we
have µj ! λj , see [7] or [22, Chapter 10]. Therefore we have two sequences exhibiting strong
domination as in Lemma 4.1.

Interestingly, these operator are not self-adjoint, or even symmetric, according to the theory
of unbounded operators. They are defined on a dense subspace H1(Ω) of L2(Ω); however, their
adjoints have much smaller domain. One can however consider the same operators restricted to
H2(Ω). Assuming that Ω is somewhat smooth (locally Lipschitz boundary is enough), elliptic
regularity theory implies that domain of the adjoint is now the same as for the operator.
Hence we get self-adjoint operators on H2(Ω) which agree with the weak formulation on their
domains. See [22, Chapters 18 and 19] for a detailed exposition.

5.2.1. Dirichlet eigenvalues and Neumann Laplacian. We can ask for an orthonormal
basis of L2(Ω) such that the diagonal entries of the Neumann Laplacian equal the Dirichlet
eigenvalues λj " µj . Theorem 1.1 asserts that such a basis must exist.

In the simplest possible case of an interval, Ω = [0,π], the Dirichlet eigenfunctions equal
{uj = sin(jx)}j"1 and they form an orthonormal basis of L2. These functions certainly belong
to H1(Ω) (or even H2(Ω)), so we already have the required orthonormal basis for L2(Ω)
(Fourier sine series). However, we are acting on these functions using Neumann Laplacian.
This is irrelevant for the quadratic form definition, but the pointwise action is not simply the
second derivative. In order to compute the Neumann Laplacian of sin(jx) we must first find the
Fourier cosine series expansion of that function, since {cos(jx)}j"0 is the orthonormal basis
formed by the eigenfunction of the Neumann Laplacian. Therefore our transformations amount
to constructing a cosine series for sine functions.

5.2.2. Domain monotonicity for Dirichlet Laplacian. It is also easy to see that if Ω1 ⊂ Ω2,
then λj(Ω1) " λj(Ω2), simply because H1

0 (Ω1) ⊂ H1
0 (Ω2) (by setting functions equal 0 outside).

If Ω1 is a relatively compact subset of Ω2 then the eigenfunctions of the Dirichlet Laplacian on
Ω1 are concentrated on a compact subset of Ω2, hence they cannot form an orthonormal basis
for L2(Ω2). Theorem 1.1 still asserts that there is an orthonormal basis of L2(Ω2) such that
the diagonal of the Dirichlet Laplacian on Ω2 equals {λj(Ω1)}. However, it is not at all clear
how to find such a basis.
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