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We show that problems of existence and characterization of wavelets for non-expanding

dilations are intimately connectedwith the geometry of numbers;more specifically, with

a bound on the number of lattice points in balls dilated by the powers of a dilationmatrix

A ∈ GL(n,R). This connection is not visible for the well-studied class of expanding

dilations since the desired lattice counting estimate holds automatically. We show that

the lattice counting estimate holds for all dilations A with |detA| �= 1 and for almost

every lattice � with respect to the invariant probability measure on the set of lattices.

As a consequence, we deduce the existence of minimally supported frequency (MSF)

wavelets associated with such dilations for almost every choice of a lattice. Likewise,

we show that MSF wavelets exist for all lattices and almost every choice of a dilation A

with respect to the Haar measure on GL(n,R).

1 Introduction

A wavelet system is a collection of dilates and translates of a function ψ ∈ L2(Rn) given

by {|detA|j/2 ψ(Aj · −γ )}j∈Z,γ∈�, where A is an invertible n × n real matrix and � is a full
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rank lattice in Rn. The study of wavelets in higher dimensions is generally restricted to

the class of expanding dilations A, often additionally assumed to preserve the integer

lattice, AZn ⊂ Zn. Recall that a real n× n matrix is expanding, or expansive, if all of its

eigenvalues λ satisfy |λ| > 1. This is due to the fact that many classical results initially

established for dyadic dilations A = 2 Id, first in dimension n = 1, and then in higher

dimensions, often extend to the setting of expanding dilations. This includes existence

of several classes of wavelets: well-localized wavelets in time and frequency, mini-

mally supported frequency (MSF) wavelets, Haar-type wavelets, and Parseval wavelet

frames. For example, Dai et al. [8, 9] have shown the existence of MSF wavelets for all

expanding dilations with real coefficients. In addition, wavelet expansions associated

with expanding dilations characterizemany classical function spaces such as: Lebesgue,

Hardy, Lipschitz, Sobolev, Besov, and Triebel–Lizorkin spaces.

In contrast, much less attention has been devoted to the study of wavelets

associated with general invertible dilations. Speegle in his thesis raised the problem

of existence of MSF wavelets for non-expanding dilations, and the first example of

a wavelet of this kind appeared in [3]. Laugesen [17] and Hernández et al. [11] then

initiated a systematic study of wavelets ψ ∈ L2(Rn) in two distinct settings: amplify-

ing dilations for ψ and dilations expanding on a subspace, respectively. In particular,

Hernández et al. [11] introduced an important concept, known as the local integrability

condition (LIC), that yields characterization results for Parseval wavelet frames for non-

expanding dilations, see [10, 15]. Soon after, Speegle [22] achieved breakthrough results

giving necessary and sufficient conditions for the existence of MSF wavelets for non-

expanding dilations. Based on Speegle’s work, Ionascu andWang [12] proved a beautiful

result that gives a complete characterization of dilations admitting MSF wavelet in the

dimension n = 2. The corresponding problem in higher dimensions n ≥ 3 remains

open.

In this paper we show that problems of existence and characterization of

wavelets for non-expanding dilations are intimately connected with the geometry of

numbers and, more specifically, with the problem of bounding the number of lat-

tice points lying inside balls dilated by powers of a dilation matrix A. The existence

of a link between wavelets for non-expanding dilations and diophantine approxima-

tion was already manifested in the papers of Speegle [22] and Ionascu and Wang

[12]. However, this link is completely invisible in the standard setting of expand-

ing dilations, where the desired lattice counting estimate, see Definition 1.1, holds

automatically.
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Definition 1.1. Suppose A is an n × n invertible matrix such that |detA| > 1. We say

that a pair (A,�) satisfies the lattice counting estimate if

#
∣∣� ∩ Aj(B(0, r))

∣∣ ≤ Cmax(1, |detA|j) for all j ∈ Z, (1.1)

where B(0, r) denotes the open ball of radius r > 0 centered at 0. �

We remark that if (1.1) holds for some r = r0 > 0, then it holds for all r > 0. This

can be deduced from Lemma 4.5, which guarantees the existence of large arithmetic

progressions in the intersection of a lattice with a symmetric convex body. Of course,

the constant C in (1.1) will depend on r.

In the context of wavelets we shall consider the lattice counting estimate in

Fourier domain for the transpose dilation B = AT and the dual lattice

�∗ = {x ∈ Rn : 〈x,y〉 ∈ Z for all y ∈ �}

that takes the form

#
∣∣�∗ ∩ Bj(B(0, r))

∣∣ ≤ Cmax(1, |detB|j) for all j ∈ Z. (1.2)

It is well-known [7, 11, 17] that an orthonormal wavelet ψ ∈ L2(Rn), or more

generally a Parseval frame wavelet, associated with an expanding dilation A satisfies

the Calderón formula

∑
j∈Z

|ψ̂(B−jξ)|2 = 1 for a.e. ξ ∈ Rn. (1.3)

This equation, together with the off-diagonal equations (5.1) for α �= 0, constitutes char-

acterizing equations of Parseval wavelets. As an immediate consequence of our results,

we show that the same characterization of Parseval frame wavelets is true under the

lattice counting estimate (1.2). Moreover, we show that the lattice counting estimate is

essential for establishing wavelet characterizing equations. More precisely, (1.2) char-

acterizes the pairs of dilations and lattices (B,�∗) for which a rather technical LIC

is actually equivalent with the much less technical integrability of the Calderón sum∑
j∈Z

|ψ̂(B−jξ)|2, that is known to plays a key role in characterization of frame wavelets.

We also show that the lattice counting estimate holds not only for expanding

dilations, including those expanding on a subspace, it is even ubiquitous in a proba-

bilistic sense. That is, for any dilation A with |detA| > 1, almost any choice of lattice

� yields the lattice counting estimate. It also holds for any fixed lattice � and almost
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every choice of a dilation A. These results are shown using techniques introduced by

Skriganov [20] in his study of the logarithmically small errors in the lattice problem

for polyhedra. In particular, our arguments rely on diophantine characteristic of a lat-

tice, introduced by Skriganov [20], and on several result in the geometry of numbers on

intersection of convex bodies with lattices.

An interesting consequence of our ubiquity results is the existence of MSF

wavelets for almost all random choices of dilations and lattices (A,�). That is, for any

fixed lattice �, which by standard arguments reduces to the key case � = Zn, there

exists an MSF wavelet for almost every choice of a dilation A ∈ GL(n,R). Likewise, for

any choice of a dilation A ∈ GL(n,R), outside the exceptional case |detA| = 1 for which

MSF wavelets do not exist by the work of Larson et al. [16], almost every (with respect

to appropriate invariant measure on the set of all lattice) choice of a lattice � yields an

MSF wavelet. Hence, MSF wavelets exists not only for all expanding dilations as was

shown in [8], but also for all invertible dilations A and a generic choice of a lattice �.

Consequently, the pairs (A,�) that do not admit MSF wavelets form a thin and rather

pathological exceptional set which is challenging to characterize beyond the known case

[12] of the dimension n = 2.

2 Dilations expanding on a subspace

In this section we investigate the properties of the class of dilations that are expanding

on a subspace, that were introduced by Hernández et al. [11]. For this class of dila-

tions wavelet characterization results, such as the characterization of Parseval wavelet

frames, are known to hold, see [11, Theorem 5.3] and [10, Theorem 1.1]. Guo and Labate

[10] corrected an error in the proof of the characterization result from [11] by redefining

the class of dilation matrices expanding on a subspace. We give an explicit characteri-

zation of dilations that are expanding on a subspace.We also show that they correspond

exactly to those dilationsA that satisfy the lattice counting estimate (1.1) for all possible

choices of a lattice �.

Following Guo and Labate [10] we adopt the following definition.

Definition 2.1. Given A ∈ GL(n,R) and a non-zero linear subspace F ⊂ Rn, we say that

A is expanding on F if there exists a complementary (not necessarily orthogonal) linear

subspace E of Rn with the following properties:

(i) Rn = F + E and F ∩ E = {0},
(ii) F and E are invariant under A, that is, A(F) = F and A(E) = E,
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(iii) ∃c ≥ 1 ∃γ > 1∀j ≥ 0 :
∣∣Ajx

∣∣ ≥ (1/c)γ j |x| for all x ∈ F ,

(iv) ∃k > 0∀j ≥ 0 :
∣∣Ajx

∣∣ ≥ k |x| for all x ∈ E. �

Remark 1. If A expanding on a subspace, then all eigenvalues satisfy |λ| ≥ 1. Indeed,

eigenvalues λ of A|F must satisfy |λ| > 1, whereas eigenvalues λ of A|E satisfy |λ| ≥ 1.

Hence, we can take E to be the (real) eigenspace associated with eigenvalues of modulus

one; herewe take the real and imaginary parts of eigenvectors associatedwith a complex

conjugate pair of eigenvalues. �

Since E is invariant under A, condition (iv) in Definition 2.1 is equivalent to the

existence of k > 0 such that, for all j ≥ 0, we have |x| ≥ k
∣∣A−jx

∣∣ for all x ∈ E. This is

equivalent to saying that the discrete time mapping x → A−1x,E → E, has a Lyapunov

stable (sometimes called a marginally stable) fixed point at x = 0. It is well-known

that this discrete time mapping is Lyapunov stable if and only if all eigenvalues of A−1

are no greater than one, and eigenvalues of modulus one have Jordan blocks of order

one, that is, the algebraic and geometric multiplicity agree. We thereby obtain a simple

characterization of the class of dilation matrices that are expansive on a subspace.

Proposition 2.2. Let A ∈ GL(n,R) be given. Then A is expanding on a subspace if and

only if

(i) all eigenvalues of A have modulus greater than or equal to 1, and

(ii) at least one eigenvalue has modulus strictly greater than 1, and

(iii) all eigenvalues of modulus equal to 1 have Jordan blocks of order one. �

Proof. To prove the “only if”-direction, assume towards a contradiction that the eigen-

value λ of A−1, |λ| = 1, has an algebraic multiplicity strictly greater than its geometric

multiplicity. Let v1 be an eigenvector and v2 a generalized eigenvector of A−1 associated

with λ such that

A−1v1 = λv1 and A−1v2 = λv2 + v1.

Assume that λ is non-real; the case λ = ±1 can be handled similarly. Then λ is also

an eigenvalue with eigenvector v1 and generalized eigenvector v2. Take x = v2 + v2 =
2�v2 ∈ Rn. By Remark 1, we can take E to be the span of the basis vectors associated

with eigenvalues of modulus one from the real Jordan form of A−1. Then x ∈ E and

A−jx = 2j�(λj−1v1)+ 2�(λjv2).
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We see that the orbit
{
A−jx

}∞
j=1

⊂ E is unbounded, hence (iv) in Definition 2.1 cannot hold.

Thus, all eigenvalues λ of A with |λ| = 1 have Jordan blocks of order one. Moreover, at

least one eigenvalue λ of A satisfies |λ| > 1 in light of (iii). The proof of the “if”-direction

is a simple verification of properties (i)–(iv) in Definition 2.1. �

It was shown in [10] that eigenvalues alone do not give the complete picture of

when the wavelet characterization results hold. The interaction of a dilation A and a

lattice � has to be taken into account to get themore optimal result. In fact, the following

result combining [10, Lemma 3.2] and [10, Lemma 3.3] motivates the definition of lattice

counting estimate (1.1), see also [1, Lemma 2.8].

Lemma 2.3. Let A ∈ GL(n,R) be expanding on a subspace of Rn, and let r > 0. Then

(A,�) satisfies the lattice counting estimate (1.1) for any full-rank lattice � ⊂ Rn. �

We finish this section by showing that the converse of Lemma 2.3 holds. Hence,

the class of dilations expanding on a subspace consists precisely of those dilations for

which the lattice counting estimate holds for every choice of a lattice.

Theorem2.4. Suppose thatA ∈ GL(n,R) and |detA| > 1. Then, (A,�) satisfies the lattice

counting estimate (1.1) for all full-rank lattices � ⊂ Rn if and only if A is expanding on

a subspace. �

Proof. Lemma 2.3 shows the “if”-implication. To show the converse implication,

assume that (A,�) satisfies (1.1) for all lattices �. We will show that the properties

(i)–(iii) in Proposition 2.2 hold.

On the contrary, suppose that (i) fails, that is, there exists an eigenvalue λ of A

such that |λ| < 1. Then, there exists one-dimensional eigenspace V if λ is real, or two-

dimensional invariant spaceV corresponding to a pair of complex conjugate eigenvalues

λ and λ. In either case, we have |Av| = |λ||v| for all v ∈ V . Choose a full rank lattice � in

V and extend it to a full rank lattice in Rn. Then,

#|� ∩ Aj(B(0, r))| ≥ #|� ∩ Aj(V ∩ B(0, r))| = #|� ∩ V ∩ B(0, |λ|jr)| → ∞ as j → −∞.

This contradicts (1.1). Hence, (i) holds and so does (ii) since |detA| > 1.

Finally, suppose that (iii) fails. That is, there exists a Jordan block of order ≥ 2

corresponding to an eigenvalue |λ| = 1. If λ is real, then λ = ±1 and there exists a two-

dimensional invariant subspace V such that A|V has a matrix representation

[
λ 1

0 λ

]
.



Wavelets for Non-expanding Dilations 7

For simplicity assume λ = 1. The case λ = −1 is similar. Then,

(A|V )j =
[
1 j

0 1

]
. (2.1)

Choose α ∈ R\Q and define a lattice � in V of the form � = Z(0, 1)+Z(1,α). Then, for any

N ∈ N, we can find γ = (γ1, γ2) ∈ � such that γ1 < 0 and 0 < γ2 < 1/N . Let j = �γ1/γ2� < 0.

Since the image of the unit square [0, 1]2 under (2.1) is a parallelogram with vertices

(0, 0), (1, 0), (j, 1), and (j + 1, 1), it contains line segments going through the origin with

slopes m such that 1/j ≤ m ≤ 1/(j + 1). In particular, the slope m of the line R(γ1, γ2)

lies in this range. Since 0 < γ2 < 1/N , at least N points of the lattice � lie in the above

parallelogram. Thus,

sup
j<0

#|� ∩ (A|V )j(B(0, r))| = ∞. (2.2)

Extending the rank 2 lattice � to a full rank lattice yields a pair (A,�) that fails the

lattice counting estimate (1.1) for j < 0, which is a contradiction.

If λ = eiθ is not real, then there exists a four-dimensional invariant subspace V

such that A|V has a matrix representation

[
R(θ) I

0 R(θ)

]
, where R(θ) =

[
cos θ sin θ

− sin θ cos θ

]
.

Here, I and 0 are the 2×2 identity matrix and the 2×2 zero matrix, respectively. Hence,

by conjugating we can find a basis of V in which

A|V =
[
R(θ) R(θ)

0 R(θ)

]
.

Observe that

(A|V )j =
[
R(θ j) jR(θ j)

0 R(θ j)

]
. (2.3)

Let B2 be the unit ball in R2. Since R(θ) is a rotation matrix, the image of B2 × B2 under

the matrix (2.3) is the same as the image of the same set under the matrix

[
I jI

0 I

]
.
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By permuting the basis elements, the above matrix consists of two blocks of the form

(2.1). By the same argument as in the real case we can find a lattice � satisfying (2.2).

Again this contradicts (1.1) and completes the proof of Theorem 2.4. �

3 The LIC

In this section we investigate the LIC that was originally introduced by Hernández et al.

[11]. While this condition can be studied in full generality of generalized shift-invariant

(GSI) system,we restrict our attention towavelet systems.We show that the integrability

of the Calderón formula implies the LIC precisely for pairs (B,�∗) satisfying the lattice

counting estimate (1.2). As a consequence, in Section 5 we shall extend characterization

results for Parseval and dual frames to thismore general (than expanding on a subspace)

setting.

Definition 3.1. LetE be a proper subspace ofRn. Consider the following dense subspace

of L2(Rn),

DE =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ ⊂ Rn \ E is compact

}
. (3.1)

Let 	 = {ψ1, . . . ,ψL} ⊂ L2(Rn), A ∈ GL(n,R) and � is a full-rank lattice. The

corresponding wavelet system associated with the pair (A,�) is defined as

A(	,A,�) = {DAjTγψ
 : j ∈ Z, γ ∈ �, 
 = 1, . . . ,L},

where DAf (x) = |detA|1/2f (Ax) is the dilation operator and Tγ f (x) = f (x − γ ) is the

translation operator. We say A(	,A,�) satisfies the LIC if

L(f ) =
L∑
l=1

∑
j∈Z

∑
k∈�∗

∫
supp f̂

|f̂ (ξ + Bjk)|2 |detA|j ∣∣F DAjψl(ξ)
∣∣2 dξ

=
L∑
l=1

∑
j∈Z

∑
k∈�∗

∫
supp f̂

|f̂ (ξ + Bjk)|2 |ψ̂l(B
−jξ)|2 dξ < ∞ for all f ∈ DE . (3.2)

Here, the Fourier transform is defined for f ∈ L1(Rn) by

F f (ξ) = f̂ (ξ) =
∫

Rn
f (x)e−2π i〈ξ ,x〉dx

with the usual extension to L2(Rn). �
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3.1 The Calderón condition

The following fact shows that the LIC (3.2) for the wavelet system A (	,A,�) implies the

local integrability of the Calderón sum (3.3).

Lemma 3.2. Let A ∈ GL(n,R) and let E be a proper subspace of Rn. Suppose 	 =
{ψ1, . . . ,ψL} ⊂ L2(Rn) satisfies the LIC (3.2) for f ∈ DE . Then

L∑
l=1

∑
j∈Z

∣∣∣ψ̂l(B
−jξ)

∣∣∣2 ∈ L1
loc(R

n \ E). (3.3)

�

Proof. Suppose that L(f ) < ∞ for all f ∈ DE . Then, in particular by choosing f̂ = χS for

a compact set S ⊂ Rn \ E, we have

∫
S

L∑
l=1

∑
j∈Z

∣∣∣ψ̂l(B
−jξ)

∣∣∣2 dξ =
L∑
l=1

∑
j∈Z

∫
S

∣∣∣ψ̂l(B
−jξ)

∣∣∣2 dξ ≤ L(f ) < ∞.

Since the set S was arbitrarily chosen, the validity of (3.3) follows. �

Definition 3.3. We say that a Lebesgue measurable set S ⊂ Rn is amultiplicative tiling

set under A ∈ GL(n,R) if

(a)
⋃

j∈Z
Aj(S) = Rn,

(b) Aj(S) ∩ Ai(S) = ∅ whenever j �= i ∈ Z,

where each equality is up to sets of measure zero. �

Larson et al. [16, Theorem 4] have shown the following interesting result about

multiplicative tilings of Rn.

Theorem 3.4. Let A ∈ GL(n,R).

(i) There exists a multiplicative tiling set if and only if A is not orthogonal.

(ii) There exists a multiplicative tiling set of finite measure if and only if

|detA| �= 1.

(iii) There exists a boundedmultiplicative tiling set if and only if all eigenvalues

of A, in modulus, are either strictly greater or strictly smaller than 1. �

The following fact is a consequence of the main result of Laugesen et al. in [18].

It can also be deduced from Theorem 3.4 as we see below.
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Lemma 3.5. Let A ∈ GL(n,R). Then |detA| �= 1 if and only if there exists a function

ψ ∈ L2(Rn) such that

∑
j∈Z

|ψ̂(B−jξ)|2 = 1 for a.e. ξ ∈ Rn. (3.4)

�

Proof. If |detA| �= 1, then we simply take ψ̂ = χS, where S is a multiplicative tiling set

of finite measure for B = AT . Conversely, assume that (3.4) holds. There are two cases

to consider. Suppose that A is an orthogonal matrix. Then, by the change of variables

formula for any R > 1, we have

|{ξ ∈ Rn : 1/R < |ξ | < R}| =
∫
1/R<|ξ |<R

∑
j∈Z

|ψ̂(B−jξ)|2dξ =
∑
j∈Z

∫
1/R<|ξ |<R

|ψ̂(ξ)|2dξ .

The left-hand side of this equation is finite and positive, while the term of the far right

is either zero or infinite, which is a contradiction. Suppose next that A is not orthogonal

and |detA| = 1. Let S be a multiplicative tiling set for B. Since |detB| = 1, by the change

of variables formula, we have

|S| =
∫
S

∑
j∈Z

|ψ̂(B−jξ)|2dξ =
∑
j∈Z

∫
B−jS

|ψ̂(ξ)|2dξ = ||ψ̂ ||2 = ||ψ ||2.

This implies that S has finite measure. Then, Theorem 3.4(ii) yields |detB| �= 1, which is

a contradiction. Consequently, we have |detA| �= 1. �

3.2 The LIC and the lattice counting estimate

The main result of this section shows a link between the lattice counting estimate, the

LIC, and Calderón’s formula. We start with a necessary definition of sets that appear in

the proof of Theorem 3.8.

Definition 3.6. For a given A ∈ GL(n,R) we consider B = AT as a linear map acting on

Cn. Let Ec ⊂ Cn and Fc ⊂ Cn be the span of eigenspaces corresponding to eigenvalues λ

of B satisfying |λ| ≤ 1 and |λ| > 1, respectively. Define E = Ec ∩ Rn and F = Fc ∩ Rn. For

p,q, s > 0, define

Q(p,q, s) = {x = xE + xF : xE ∈ E,xF ∈ F , |xE | < p, s < |xF | < q} . �

Since complex eigenvalues of B come in conjugate pairs, the spaces Ec and Fc are

complexifications of the real spaces E and F , respectively.
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Lemma 3.7. Let B ∈ GL(n,R) with |detB| > 1 be given. For any ε, s > 0, there exists a

multiplicative tiling set S for the dilation B such that for some p,q > 0 we have

|S \Q(p,q, s)| < ε |S| . (3.5)

�

That is, for a given ε > 0 and s > 0, we can always find a multiplicative tiling set

for the dilation B that, up to a relative error ε, lies inside Q(p,q, s) for sufficiently large

p,q > 0.

Proof. By Theorem 3.4, there exists a multiplicative tiling set S0 for B of finite measure.

Since

Rn \ E =
⋃
δ>0

Q(∞,∞, δ),

we can find δ > 0 such that

|S0 \Q(∞,∞, δ)| < ε

2
|S0| . (3.6)

For any j ∈ N, define

Sj = Bj(S0 ∩Q(∞,∞, δ)) ∪ (S0 \Q(∞,∞, δ)).

Clearly, Sj is a multiplicative tiling set for B. Since the dilation B is expanding in the

direction of the space F , there exists j ∈ N such that

Bj(Q(∞,∞, δ)) ⊂ Q(∞,∞, s). (3.7)

Combining (3.6) and (3.7) yields

|Sj \Q(∞,∞, s)| < ε

2
|S0| ≤ ε

2
|Sj|.

Hence, by choosing sufficiently large p,q > 0 we have

|Sj \Q(p,q, s)| < ε|Sj|,

which shows (3.5). �

The following result characterizes the LIC.
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Theorem 3.8. Let A ∈ GL(n,R) with |detA| > 1 be given, and let � ⊂ Rn be a full-rank

lattice. The following assertions are equivalent:

(i) (B,�∗) satisfies the lattice counting estimate (1.2),

(ii) For any 	 = {ψ1, . . . ,ψL} ⊂ L2(Rn), the LIC (3.2) holds for A (	,A,�) if and

only if 	 satisfies the Calderón integrability condition (3.3). �

Proof. Let E, F , and Q(p,q, s), be as in Definition 3.6.

(i) ⇒ (ii): Let 	 = {ψ1, . . . ,ψL} ⊂ L2(Rn). Suppose that the lattice counting esti-

mate (1.2) holds. If A (	,A,�) satisfies the LIC, then, by Lemma 3.2, 	 satisfies the

Calderón integrability condition.

Assume on the other hand that the Calderón integrability condition (3.3) holds.

For simplicity assume that L = 1. Let f ∈ DE . Then T := supp f̂ ⊂ Q(p,q, s) ⊂ Rn \ E for

some s,p,q > 0. By the lattice counting estimate (1.2), we have

#
∣∣Bj�∗ ∩ (supp f̂ − supp f̂ )

∣∣ ≤ Cmax (1, |detB|−j).

Hence,

L(f ) ≤
∑
j∈Z

‖f̂ ‖2
∞Cmax (1, |detB|−j)

∫
supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣2 dξ

= ‖f̂ ‖2
∞C

∑
j≥0

∫
T

∣∣∣ψ̂(B−jξ)
∣∣∣2 dξ + ‖f̂ ‖2

∞C
∑
j<0

∫
B−j (T)

∣∣∣ψ̂(ξ)∣∣∣2 dξ .

Since the matrix B is expansive on F , there exists a constant K ∈ N such that each

trajectory {Bjξ}j∈Z hits Q(p,q, s) at most K times. Thus,

#
∣∣{j ∈ Z : ξ ∈ B−j(T)

}∣∣ ≤ K.

Thereby, we can continue the above estimate:

L(f ) ≤ ‖f̂ ‖2
∞C

∫
T

∑
j≥0

∣∣∣ψ̂(B−jξ)
∣∣∣2 dξ + ‖f̂ ‖2

∞CK
∫

Rn

∣∣∣ψ̂(ξ)∣∣∣2 dξ < ∞,

where the last inequality is a consequence of (3.3) and ψ ∈ L2(Rn).

(ii) ⇒ (i): We prove the contrapositive assertion. So suppose that (B,�∗) does

not satisfy the lattice counting estimate (1.2) for some r > 0. Since the lattice counting

estimate fails for either j ∈ −N or j ∈ N, we have two cases:

(a) supj<0wj = ∞, where wj := #|Bj�∗ ∩ B(0, r)| |detB|j,
(b) supj≥0 vj = ∞, where vj := #|Bj�∗ ∩ B(0, r)|.
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Suppose case (a) holds. Choose a subsequence
{
wji

}∞
i=1

of {w−1,w−2, . . .} such that

0 > j1 > j2 > · · · and

∞∑
i=1

1

wji

< ∞.

Let P : Rn → Rn be a projection (not necessarily orthogonal) such that ker P = E and

P(Rn) = F . Let ε > 0 and pick s > ||P||r. Let S be a multiplicative tiling set for B as in

Lemma 3.7. Define ψ : Rn → C by

ψ̂(ξ) =
∞∑
i=1

1√
vji
χB−ji (S)(ξ).

We have ψ ∈ L2(Rn) since

∫
Rn

|ψ̂(ξ)|2dξ =
∞∑
i=1

1

vji

∫
Rn
χB−ji (S)dξ = |S|

∞∑
i=1

|detB|−ji
vji

= |S|
∞∑
i=1

1

wji

< ∞.

Since ξ → ∑
j∈Z

|ψ̂(B−jξ)|2 is B-dilative periodic, we see that

∑
j∈Z

|ψ̂(B−jξ)|2 =
∞∑
i=1

1

vji
< ∞ for a.e. ξ ∈ S,

also holds for a.e. ξ ∈ Rn. Hence, the Calderón integrability condition (3.3) holds.

We now show thatA (	,A,�) does not satisfy the LIC. Define T = (S∩Q(p,q, s))+
B(0, r). Since s > ||P||r, we claim that T ⊂ Rn \ E. Indeed, take any x ∈ T and write it as

x = x1 + x2, x1 ∈ Q(p,q, s), x2 ∈ B(0, r).

Then,

||Px|| ≥ ||Px1|| − ||Px2|| ≥ s− ||P||r > 0.

Hence, T ⊂ Rn \ E is compact.

Let f̂ = χT . Then f ∈ DE , and by definition of T and vj, we have for j ∈ Z,

#
∣∣{k ∈ �∗ : f̂ (ξ + Bjk) = 1 for ξ ∈ S ∩Q(p,q, s)}∣∣ ≥ vj.

From this and S ∩Q(p,q, s) ⊂ T = supp f̂ , it follows that

L(f ) ≥
∑
j<0

∑
k∈�∗

∫
supp f̂

|f̂ (ξ + Bjk)|2 |ψ̂(B−jξ)|2 dξ ≥
∑
j<0

vj

∫
S∩Q(p,q,s)

|ψ̂(B−jξ)|2 dξ .
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By a change of variables and Lemma 3.7

L(f ) ≥
∞∑
i=1

vji

∫
B−ji (S∩Q(p,q,s))

|ψ̂(ξ)|2 |detB|ji dξ

=
∞∑
i=1

|S ∩Q(p,q, s)| ≥
∞∑
i=1

(1 − ε) |S| = ∞.

Suppose now case (b) holds. Choose a subsequence
{
vji

}∞
i=1

of {v0,v1, . . .} such that

0 ≤ j1 < j2 < · · · and

∞∑
i=1

1

vji
< ∞,

and define ψ : Rn → C by

ψ̂(ξ) =
∞∑
i=1

1√
wji

χBji (S)(ξ).

The rest of the proof is dealt in a similarway as in the case (a) and is left to the reader. �

4 Ubiquity of the lattice counting estimate

In this section we will show that the lattice counting estimate holds almost surely for

generic choices of dilations and lattices. By Theorem 2.4, for any dilation A that is

not expanding on a subspace, one can find a full-rank lattice � for which the lattice

counting estimate (1.1) fails. On the other hand, we shall show in this section that the

lattice counting estimate (1.1) holds for any dilation A with |detA| > 1 for almost every

choice of a lattice �. In Section 5 we shall establish similar results on the existence of

MSF wavelets.

Our techniques rely on the work of Skriganov [20, 21] on the logarithmically

small errors in the lattice point problem for polyhedra. These results initially involve

averaging over the SO(n) group. Using the Iwasawa decomposition we deduce similar

results by averaging over the SL(n,R) group. Similar lattice point results using Fourier

analysis and averaging over the orthogonal group O(n) can be found in [4, 5, 13].

For x = (x1, . . . ,xn) ∈ Rn, define the norm form Nm x = x1x2 · · ·xn. Let

Nm� = inf{|Nm x| : x ∈ � \ {0}}.

A lattice � is said to be admissible if Nm� > 0. For such lattices Skriganov [19] has

established the following asymptotic bound on the number of lattice points inside a
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dilation of a parallelepiped � ⊂ Rn with edges parallel to the coordinates axes:

#(� ∩ t�) = tn |�| + O((log t)n−1) as t → ∞. (4.1)

Let Ln be the set of unimodular lattices (with volume = 1) which can be identified

with

Ln = SL(n,R)/SL(n,Z).

Even though the subset of admissible lattices is dense in Ln, it has zero measure with

respect to the invariant (probability) measure μL on Ln, see [20]. Hence, admissible

lattices are rare, that is, μL-almost surely we have Nm� = 0.

Skriganov [20] introduced a diophantine characteristic of a lattice �, which

measures the rate at which Nm� = 0 is achieved, defined by

ν(�, ρ) = min{|Nm γ | : γ ∈ �, 0 < |γ | < ρ}, ρ > ||�|| := min{|γ | : γ ∈ � \ {0}}. (4.2)

The following result, Lemma 4.1, plays a key role in showing the main result of [20]

which says that the bound (4.1) holds when � is replaced by any compact polyhedron

for almost every choice of �, albeit with a slightly worse exponent (log t)n−1+ε, ε > 0.

Lemma4.1 is a slight generalization of [20, Lemma4.3] due to presence of amatrix

P ∈ GL(n,R). This change corresponds to a more general norm form x → Nm(Px).

Lemma 4.1. Let � ∈ Ln be an arbitrary lattice and let P ∈ GL(n,R). Then for almost all

orthogonal matrices U ∈ SO(n) (in the sense of the Haar measure on SO(n)) we have

ν(PU�, ρ) > (log ρ)1−n−ε as ρ → ∞, (4.3)

where ε > 0 is arbitrary. �

Proof. We shall follow the proof of [20, Lemma 4.2] with some necessary modifica-

tions. Suppose that ω : [||�||,∞) → (0,∞) is an arbitrary monotone decreasing function

satisfying

∑
γ∈�\{0}

|γ |−n
(
log

|γ |n
ω(|γ |)

)n−2

ω(|γ |) < ∞. (4.4)
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Let σ be the unique SO(n)-invariant measure on the unit sphere Sn−1 = {x ∈ Rn :

|x| = 1} that is normalized such that σ(Sn−1) = 1. In particular, for any x ∈ Sn−1 we have

σ(V) = μSO({U ∈ SO(n) : Ux ∈ V}) for any open set V ⊂ Sn−1. (4.5)

Given P ∈ GL(n,R), define

sP(θ) = σ({x ∈ Sn−1 : |Nm(Px)| < θ}).

Let I be n × n identity matrix. By the estimate (4.21) in the proof of [20, Lemma 4.2] we

have

sI(x) < c(n)θ
(
1 + log

1

θ

)n−2

for 0 < θ <
1√
n
, (4.6)

where a positive constant c(n) depends only on the dimension n.

The mapping φ : Sn−1 → Sn−1 given by φ(x) = Px/|Px| is a smooth diffeomor-

phism. Since Sn−1 is compact, the Jacobian of φ is bounded from above and below by

positive constants. Thus, by the change of variables formula, there exists a constant

c = c(P) > 0 depending on P such that

1

c
σ(V) ≤ σ(φ−1(V)) ≤ cσ(V) for any open set V ⊂ Sn−1.

Consequently, we have

sP(θ) ≤ σ({x ∈ Sn−1 : |Nm(Px)| < θ ||P−1||n|Px|n})
= σ({x ∈ Sn−1 : |Nm(Px/|Px|)| < θ ||P−1||n}) ≤ csI(θ ||P−1||n).

(4.7)

Combining (4.6) and (4.7) yields

sP(θ) < c(P)c(n)||P−1||nθ
(
1 + log

1

θ ||P−1||n
)n−2

< c(n,P)θ
(
1 + log

1

θ

)n−2

for 0 < θ <
1√

n||P−1||n ,
(4.8)

where the positive constant c(n,P) depends on n and P.

For any γ ∈ � \ {0} and θ > 0, let

mγ (θ) = μSO({U ∈ SO(n) : |Nm(PUγ )| < θ}).
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By (4.5) and (4.8), we have

mγ (θ) = sP

(
θ

|γ |n
)
< c(n,P)|γ |−nθ

(
1 + log

|γ |n
θ

)n−2

for 0 < θ <
||�||n√
n||P−1||n . (4.9)

Using (4.4) and (4.9), the Borel–Cantelli Lemma implies that for almost all U ∈ SO(n)

|Nm(PUγ )| ≥ ω(|γ |) for all but finitely many γ ∈ � \ {0}. (4.10)

Observe also that for every γ ∈ � \ {0} we have

|Nm(PUγ )| > 0 for almost all U ∈ SO(n). (4.11)

Note that

ν(PU�, ρ) = min{|Nm(PUγ )| : γ ∈ �, 0 < |PUγ | < ρ}
≤ min{|Nm(PUγ )| : γ ∈ �, 0 < |γ | < ||P−1||ρ}.

(4.12)

Let {γ1, . . . , γq} ⊂ � be the exceptional set, which depends on U , where (4.10) fails.

Combining (4.10)–(4.12) yields ρ0 > 0 such that

ν(PU�, ρ) ≥ min{ω(||P−1||ρ), |Nm(PUγ1)|, . . . , |Nm(PUγq)|}
= ω(||P−1||ρ) for ρ > ρ0.

Since the function ω(ρ) = (log ρ)1−n−ε with ε > 0 satisfies (4.4), we obtain the bound (4.3).

This completes the proof of Lemma 4.1. �

Skriganov’s Lemma 4.1 plays a key role in the proof of the following main result

of this section.

Theorem 4.2. Let B be any matrix in GL(n,R) with |detB| > 1. Then for any lattice

� ∈ Ln, the pair (B,U�) satisfies the lattice counting estimate (1.1) for almost all (in the

sense of Haar measure) U ∈ SO(n). �

To prove Theorem 4.2 we need two lemmas about intersection of lattices with

convex symmetric bodies. The first result is the volume packing lemma which can be

found in the book of Tao and Vu [23, Lemmas 3.24 and 3.26].
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Lemma 4.3. Let � ⊂ Rn be a full rank lattice, and let � be a symmetric convex body in

Rn. Then,

|�|
2n |Rn/�| ≤ #|� ∩ �|. (4.13)

In, addition if the vectors � ∩ � linearly span Rn, then

#|� ∩ �| ≤ 3nn! |�|
2n |Rn/�| . (4.14)

�

The following lemma, which is a consequence of Minkowski’s second theorem

[23, Theorem 3.30], shows the existence of large proper arithmetic progressions inside

� ∩ �, see [23, Lemma 3.33].

Definition 4.4. We say that S ⊂ Rn is a symmetric arithmetic progression of rank s, if

there exist (v1, . . . ,vs) ∈ (Rn)s and (N1, . . . ,Ns) ∈ Ns such that

S = {n1v1 + . . .nsvs : nj ∈ Z,
∣∣nj

∣∣ ≤ Nj for all 1 ≤ j ≤ s}.

We say that such S is proper if elements of S are uniquely represented, or equivalently

if the cardinality of S equals (2N1 + 1) · · · (2Ns + 1). �

Lemma 4.5. Let � ⊂ Rn be a lattice (not necessarily of full rank), and let � be a sym-

metric convex body in Rn. Then there exists a proper symmetric arithmetic progression

S in � ∩ � of rank s ≤ dimspan(� ∩ �) such that

#|S| ≥ cn#|� ∩ �|,

where cn > 0 is a universal constant which depends only on dimension n. �

Finally, we shall need an elementary lemma on the behavior of the norm form

Nm(x) under dilations.

Lemma 4.6. Let B be any matrix in GL(n,R) with |detB| > 1. Let P ∈ GL(n,R) be such

that P−1BP is the real Jordan form of B. Then for any ε > 0 and r > 0, there exists

C = C(ε) such that

|Nm(P−1x)| ≤ C|detB|j+|j|ε for all x ∈ Bj(B(0, r)), j ∈ Z. (4.15)

�
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Proof. Let J be a Jordan block of order k corresponding to a complex eigenvalue λ =
a+ ib. That is, J is (2k)× (2k) matrix of the form

J =

⎡
⎢⎢⎢⎢⎢⎣

Rλ I2

Rλ I2
. . .

. . .

Rλ

⎤
⎥⎥⎥⎥⎥⎦ , where Rλ =

[
a b

−b a

]
, I2 =

[
1 0

0 1

]
.

Then, an elementary calculation shows that there exists C > 0 such that for all j ∈ Z\{0},

|Jjy| ≤ C|j|k|λ|j|y| for y ∈ R2k. (4.16)

Thus, we have

|Nm(Jjy)| ≤ C2k|j|2k2 |λ|2kj|y|2k = C2k|j|2k2 |det J |j|y|2k for j �= 0, y ∈ R2k.

A similar estimate holds when J is a Jordan block of order k corresponding to a real

eigenvalue λ, that is,

|Nm(Jjy)| ≤ Ck|j|k2 |det J |j|y|k for j �= 0, y ∈ Rk.

Since P−1BjP is a block diagonal matrix consisting of such Jordan blocks, we can find a

constant C > 0 such that

|Nm(P−1BjPy)| ≤ C|j|n2 |detB|j|y|n for j �= 0, y ∈ Rn.

Now, take any x ∈ Bj(B(0, r)) and write it as x = Bjy, where |y| < r. Then, for any j �= 0,

|Nm(P−1x)| = |Nm(P−1Bjy)| ≤ C|j|n2 |detB|j|P−1y|n ≤ C||P−1||n rn|j|n2 |detB|j.

For any ε > 0, there exists j0 such that |j|n2 ≤ |detB||j|ε for |j| > j0. This shows (4.15) and

completes the proof of the lemma. �

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. First, we shall show that for almost every U ∈ SO(n),

#|U� ∩ Bj(B(0, r))| ≤ C |detB|j for j ≥ 0. (4.17)
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Let j ≥ 0. By Lemma 4.3, it suffices to show that the vectors U�∩Bj(B(0, r)) linearly span

Rn. On the contrary, suppose they do not. By Lemma 4.5 there exists a proper symmetric

arithmetic progression S of rank s < n in U� ∩ Bj(B(0, r)), see Definition 4.4, such that

#|S| = (2N1 + 1) · · · (2Ns + 1) ≥ cn#|U� ∩ Bj(B(0, r))| ≥ cn |B(0, r)|
2n |Rn/�| |detB|j .

Thus, there exists 1 ≤ k ≤ s such that Nk ≥ C |detB|j/s. Since Nkvk ∈ Bj(B(0, r)), it follows

from Lemma 4.6 that for any ε > 0 there exists C = C(ε) > 0 such that

∣∣Nm(P−1Nkvk)
∣∣ ≤ C |detB|j(1+ε) .

Thus,

∣∣Nm(P−1vk)
∣∣ ≤ C |detB|j(1+ε)

/(Nk)
n ≤ C |detB|j(1+ε−n/s) .

By choosing ε > 0 small enough we therefore have

∣∣Nm(P−1vk)
∣∣ ≤ C |detB|−jη , where η = n/s− 1 − ε > 0. (4.18)

Since vk ∈ Bj(B(0, r)), we have |P−1vk| ≤ C ′ ‖B‖j, where C ′ = ||P−1||r. Hence, by (4.2) and

(4.18), we have

ν(P−1U�,C ′ ‖B‖j) ≤ C |detB|−jη (4.19)

since vk ∈ U�. On the other hand, Lemma 4.1 implies that for almost every U ∈ SO(n)

we have

ν(P−1U�,C ′‖B‖j) ≥ (
log(C ′‖B‖j))1−n−ε ≥ cj1−n−ε as j → ∞. (4.20)

Combining (4.19) and (4.20) yields a contradiction for sufficiently large j > j0. Therefore,

the vectors U� ∩ Bj((B(0, r)) must linearly span Rn for all j > j0. Applying Lemma 4.3

shows (4.17) for j > j0. By increasing the constant C (if necessary), we obtain (4.17) for

the remaining values 0 ≤ j ≤ j0.

Next, we shall show that for almost every U ∈ SO(n), there exists C > 0 such

that

#|U� ∩ Bj(B(0, r))| ≤ C for j < 0. (4.21)
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Take any 0 �= v ∈ U� ∩ Bj(B(0, r)), where j < 0. By Lemma 4.6 we have
∣∣Nm(P−1v)

∣∣ ≤
C |detB|j(1−ε), where ε > 0 and C = C(ε). Since

∣∣P−1v
∣∣ ≤ ∥∥P−1

∥∥ r ‖Bj‖ ≤ C ′‖B−1‖|j|, by (4.2),

we have

ν(P−1U�,C ′‖B−1‖|j|) ≤ C|detB|j(1−ε).

On other hand, Lemma 4.1 implies that for almost every U ∈ SO(n),

ν(P−1U�,C ′‖B−1‖|j|) ≥ (
log(C‖B−1‖−j)

)1−n−ε ≥ c|j|1−n−ε as j → −∞.

Combining the last two estimates implies that j ≥ −j0 for some sufficiently large j0 > 0.

Therefore, the intersection

U� ∩ Bj(B(0, r)) = {0} for all j < −j0. (4.22)

By increasing constant C (if necessary) we obtain (4.21). This completes the proof of

Theorem 4.2. �

As a consequence of Theorem 4.2 and the properties of the invariant measures

μL from [20, Appendix 1], we have the following corollary.

Corollary 4.7. The following statements are true.

(i) Let B be any matrix in GL(n,R)with |detB| > 1. Then the pair (B,�) satisfies

lattice counting estimate (1.1) for almost all lattices � ∈ Ln in the sense of

the invariant measure μL.

(ii) Let � ⊂ Rn be any full rank lattice. Then the pair (B,�) satisfies lattice

counting estimate (1.1) for almost every B ∈ GL(n,R) with |detB| > 1. �

To deduce Corollary 4.7 from Theorem 4.2 we shall use the following lemma that

is implicitly contained Skriganov’s paper [20].

Lemma 4.8. Suppose that for any lattice � ∈ Ln, a certain property holds for lattices

of the form U� for almost all U ∈ SO(n) in the sense of Haar measure μSO. Then, the

same property holds for almost all lattices � ∈ Ln in the sense of the invariant measure

μL. �
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Proof. The proof follows along the lines of the argument by Skriganov in [20, Lemma

4.5] using the fact the measure μ� on �n can be identified with a product measure

μ� = μF × μSO.

More precisely, following [20, Appendix 1] consider the quotient spaces

Hn = SO(n)\SL(n,R),
Fn = Hn/SL(n,Z) = SO(n)\Ln.

We regard Hn as a homogeneous space of the group SL(n,R) and Fn ⊂ Hn as a funda-

mental set of the discrete subgroup SL(n,Z) ⊂ SL(n,R). Then, Hn admits the unique

SL(n,R)-invariant measure μF normalized so that μF(Fn) = 1. Moreover, the space Hn

can be identified as a submanifold in K

Hn = {A ∈ K : detA = 1},

where K is the open cone of all n× n real symmetric matrices.

For any lattice � = PZn ∈ Ln, the polar decomposition of P ∈ SL(n,R) yields

P = VA1/2, where V ∈ SO(n), A = PTP ∈ Fn.

By [20, (13.14)], we have the following product formula for ψ ∈ L1(Ln,μL)∫
Ln

ψ(�)dμL(�) =
∫

Fn

∫
SO(n)

ψ(VA1/2Zn)dμSO(V)dμF(A), (4.23)

where μSO is the normalized Haar measure on SO(n).

Define a function ψ(�) = 1 when a certain property holds for� ∈ Ln, and ψ(�) =
0 otherwise. By our hypothesis for all symmetric positive matrices A ∈ Fn we have

ψ(UA1/2Zn) = 1 for all U ∈ SO(n) \ EA,

where the exceptional set EA ⊂ SO(n) has measure μSO(EA) = 0. Define the exceptional

set as

E = {� ∈ Ln : ψ(�) = 0} = {� = UA1/2Zn ∈ Ln : A ∈ Fn, U ∈ EA}.

Then, by (4.23)

μL(E) =
∫

Ln

ψ(�)dμL(�) =
∫

Fn

μSO(EA)dμF(A) = 0.

This completes the proof of Lemma 4.8. �
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Proof of Corollary 4.7. Part (i) is an immediate consequence of Theorem 4.2 and

Lemma 4.8. To show part (ii) we consider the exceptional set

E = {(B,�) ∈ GL(n,R)× Ln : (1.1) fails for (B,�), |detB| > 1}.

By part (i) each section

EB = {� ∈ Ln : (B,�) ∈ E}

has measure μL(EB) = 0. Thus, by Fubini’s Theorem (μGL × μL)(E) = 0, where μGL is the

Haar measure on GL(n,R). Consequently, for almost every lattice � ∈ Ln we have

μGL(E�) = 0, where E� = {B ∈ GL(n,R) : (B,�) ∈ E}. (4.24)

Observe that the lattice counting estimate (1.1) holds for (B,�) if and only if it holds

for (P−1BP,P−1�) for any P ∈ GL(n,R). Given any � ∈ Ln, take P ∈ SL(n,R) such that

� = P−1�. Since E� = PE�P−1 and the Haar measure on GL(n,R) is unimodular, we have

μGL(E�) = μGL(E�). Choosing � ∈ Ln such that (4.24) holds, yields μGL(E�) = 0. This

completes the proof of the corollary. �

5 Applications to wavelets

In this section we apply results of Sections 3 and 4 to show characterization and

existence results for wavelets associated with non-expanding dilations.

5.1 MSF wavelets

AnMSFwaveletψ ∈ L2(Rn) associatedwith (A,�) is a function of the form ψ̂ = |W |−1/21W ,

where W is a measurable subset of Rn, often called a wavelet set. A wavelet set W tiles

Rd translationally by �∗ and simultaneouslyW tiles Rd multiplicatively by B = AT . As a

corollary of Theorem 4.2 and [12, Theorem 2.5] we deduce the ubiquity of MSF wavelets

with respect to random choices of dilations and lattices.

Theorem 5.1. The following statements are true.

(i) Let A be any matrix in GL(n,R) with |detA| > 1 and let � ⊂ Rn be any full

rank lattice. Then there exists an MSF wavelet associated with (A,U�) for

almost every (in the sense of Haar measure) U ∈ SO(n).
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(ii) Let A be any matrix in GL(n,R) with |detA| > 1. Then there exists an MSF

wavelet associated with (A,�) for almost all unimodular lattices � ∈ Ln in

the sense of the invariant measure μL.

(iii) Let � ⊂ Rn be any full rank lattice. Then there exists an MSF wavelet

associated with (A,�) for almost every A ∈ GL(n,R). �

Proof. To prove part (i) let � = �∗. The proof of Theorem 4.2 shows that for some

sufficiently large j0 = j0(U ,�, r) > 0, the trivial intersection property (4.22) holds for all

r > 0 and for a.e. U ∈ SO(n). In particular, for any r > 0, there are infinitely many j ∈ N

such that B−j(B(0, r/2)) packs translationally by U�∗. By [12, Theorem 2.5], there exists

a set W ⊂ Rn such that W tiles Rd multiplicatively by B and translationally by U�∗. In

other words,W is a wavelet set associated with the dilation B and the lattice U�∗. Thus,

ψ ∈ L2(Rn), defined by ψ̂ = |W |−1/21W , is an MSF wavelet associated with (A,U�), where

B = AT and (U�)∗ = U�∗. This shows part (i).

Part (ii) follows then from Lemma 4.8. To show part (iii) observe that

μGL({A ∈ GL(n,R) : |detA| = 1}) = 0,

so it is enough to show the existence of MSF wavelets for almost every A ∈ GL(n,R)

with |detA| > 1. Then (iii) is deduced from (ii) along the same lines as the proof of

Corollary 4.7(ii) using the observation that there exists an MSF wavelets associated

with (A,�) if and only if it exists for (P−1AP,P−1�) for any P ∈ GL(n,R). �

5.2 Characterizing equations

The papers [10] and [11] establish wavelet characterizing equations for dilations that

are expanding on a subspace. In light of Theorem 2.4, these are optimal results unless

extra information about a lattice is also taken into account. Here we shall also show the

characterizing equations for pairs of dilations and lattices (B,�∗) satisfying the lattice

counting estimate (1.2).

The following result generalizes [11, Theorem 6.6], see also [10, Theorem 1.1].

For the definitions of (Parseval) frames, dual frames and Bessel sequences, we refer the

reader to the book [6].

Theorem 5.2. Let A ∈ GL(n,R), |detA| > 1, and � ⊂ Rn is a full-rank lattice. Sup-

pose that (B,�∗) satisfies the lattice counting estimate (1.2). Then, the wavelet system

A (	,A,�) generated by 	 = {ψ1, . . . ,ψL} ⊂ L2(Rn) is a Parseval frame if and only if for
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all α ∈ �∗ we have

L∑
l=1

∑
j∈Z:B−jα∈�∗

ψ̂l(B
−jξ)ψ̂l(B−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn. (5.1)

�

Proof. It is well-known that if a wavelet system is a Bessel sequence with bound C > 0,

then the Calderón formula is bounded by C, that is,

L∑
l=1

∑
j∈Z

|ψ̂l(B
−jξ)|2 ≤ C for a.e. ξ ∈ Rn. (5.2)

This result holds without any a priori assumptions on the dilation A and the lattice

�, as it is a consequence of a more general result that holds for GSI systems, see [11,

Proposition 4.1]. Thus, if 	 is a Parseval frame, then (5.2) holds for C = 1. Likewise, if

(5.1) holds, then by setting α = 0, we also have (5.2) for C = 1. In either case, the LIC

holds for A (	,A,�) in light of Theorem 3.8. Consequently, the general machinery of

Hernández et al. [11] applies. By [11, Theorem 4.2], the wavelet system A (	,A,�) is a

Parseval frame if and only if (5.1) holds. �

If the wavelet system generated by 	 = {ψ1, . . . ,ψL} is a Parseval frame, it is an

orthonormal basis precisely when ‖ψ
‖ = 1 for each 
 = 1, . . . ,L. Hence, Theorem 5.2

also characterizes orthonormal wavelets. Moreover, Theorem 5.2 generalizes to dual

wavelet frames. Indeed, using [11, Theorem 9.1], one can easily show the generalization

of [11, Theorem 9.6] from the setting of dilations expanding on a subspace to the lattice

counting estimate (1.2).

Theorem 5.3. Suppose that (B,�∗) satisfies the lattice counting estimate (1.2). Suppose

that the wavelet systems A (	,A,�) and A (�,A,�) generated by 	 = {ψ1, . . . ,ψL} ⊂
L2(Rn) and � = {φ1, . . . ,φL} ⊂ L2(Rn), respectively, are Bessel sequences. Then they are

dual frames if and only if for all α ∈ �∗ we have

L∑
l=1

∑
j∈Z:B−jα∈�∗

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn. (5.3)

�

Theorem 3.8 shows that the lattice counting estimate (1.2) is the optimal hypoth-

esis under which one should expect the characterizing equations (5.1) to hold. Indeed,

if (B,�∗) does not satisfy (1.2), then the LIC must fail for some choice of 	 and the

known techniques collapse. However, this does not completely close the problem since
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the LIC is merely a convenient sufficient condition for showing characterization results.

In particular, the following problem raised in [2, 22] remains open.

Conjecture 1. Suppose thatwavelet systemA (	,A,�) is an orthonormal basis, ormore

generally a Parseval frame for L2(Rn). Then the Calderón sum formula holds

L∑
l=1

∑
j∈Z

|ψ̂l(B
−jξ)|2 = 1 for a.e. ξ ∈ Rn. (5.4)

�

Theorem 5.2 implies that (5.4) is true when the lattice counting estimate holds;

in particular, the conjecture is true in one dimension. Moreover, this conjecture is also

valid for continuous wavelets where translates along a fixed lattice � are replaced by

translates along Rn, see [18, Theorem 1.1] and [16, Proposition 1]. In particular, by

Lemma 3.5, we must necessarily have |detA| �= 1. For continuous wavelet systems

{TγDAjψ}γ∈Rn,j∈Z,ψ∈	 with respect to discrete group of dilations {Aj : j ∈ Z} and trans-

lations along Rn, the Calderón sum formula (5.4) is a necessary and sufficient condition

for {TγDAjψ}γ∈Rn,j∈Z,ψ∈	 to be a continuous Parseval frame, see [16, Theorem 2]. Actually,

this is true for any continuous translation invariant system {Tγgp}γ∈Rn,p∈P , where (P,μP)

is a σ -finite measure space and {gp}p∈P ⊂ L2(Rn), see [14]. In this case, the (generalized)

Calderón formula is
∫
P

∣∣ĝp(ξ)∣∣2 dμP(p) = 1 for a.e. ξ ∈ Rn.

In contrast to the continuous case, Conjecture 1 remains a surprisingly

intractable problem. In particular, it is not even knownwhether the existence of discrete

orthonormal (or Parseval) wavelet 	 for the pair (A,�) implies |detA| �= 1. Finally, Con-

jecture 1 is a special case of the stronger conjecture that if the wavelet system A (	,A,�)

is a frame for L2(Rn) with bounds C1 and C2, then C1 ≤ ∑L
l=1

∑
j∈Z

|ψ̂l(B−jξ)|2 ≤ C2 for a.e.

ξ ∈ Rn.
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