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1 Introduction

The Heil-Ramanathan—-Topiwala (HRT) conjecture [12] states that time-frequency
translates of a non-zero square integrable function f on R? are linearly independent.'
There have been a few partial results on this conjecture, mostly focusing on finding
conditions on A € R? x R which guarantee that time-frequency translates

G(f. A) = {MuTy f = ™ (-~ b) : (a,b) € A

! The original HRT conjecture was only for R, but the question is also open for higher dimensions.
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along A are linearly independent [3,5-7,16]. Other interesting results related to the
HRT conjecture can be found in [1,10, 11]. In [4], the authors found a one-sided decay
condition that guarantees that arbitrary time-frequency shifts are linearly independent.

The goal of this paper is to generalize the main result of the authors [4] to higher
dimensions. We point out that the generalization to higher dimensions of linear inde-
pendence does not always follow expectations. Using the Fourier transform it is easy
to see that in R, translates of L? functions are linearly independent for 1 < p < oo.
However, the situation in RY is quite different, as all translates of L” functions in R4
are linearly independent if and only if p < % , by the results of Edgar and Rosenblatt
[8,19].

The main theorem of this paper can be formulated as follows.

Theorem 1.1 Let H be an affine half-space in R?, i.e., H = {x € R? : (x,v) > a}
forsomev € RI\{0}anda € R. Let f : R¢ — C be a Lebesgue measurable function
which does not vanish almost everywhere on H. Assume that for all ¢ > 0,

lim | f(x)|ecPoell =, (1.1)

x€eH, |x|—>o0

Then, the set G(f, R*) of time-frequency translates of f is linearly independent. That
is, G(f, A) is linearly independent for any A C R??.

Note that, unlike the one-dimensional case, we must make the additional assumption
that a function f does not vanish on a half-space. This is because in one dimension,
functions which vanish on a tail trivially have linearly independent time-frequency
shifts. However, if there is a function f € L*(R) with linearly dependent time-
frequency shifts, then 1j_1,0|® f € L?(RR?) vanishes on a half-space {(x1, x2) € R? :
x1 > 0} and has linearly dependent time-frequency shifts. However, it is possible to
remove the assumption that f does not vanish on a half-space in Theorem 1.1 provided
we weaken the corresponding conclusion. This is shown in Theorem 3.5.

There are several new ingredients employed in extending the one-dimensional result
[4, Theorem1.1] to the higher-dimensional Theorem 1.1. First, we prove a generaliza-
tion of the Montgomery—Vaughan inequality [17] to higher dimensions, Theorem 2.1,
using the theory of Beurling—Selberg extremal functions for Euclidean balls developed
by Holt and Vaaler [13]. We also show a higher-dimensional analogue of the Turdn—
Nazarov inequality, Theorem 2.2, from the corresponding one-dimensional result [18].
Using this we extend the lower bound estimate on products of trigonometric polyno-
mials from [4] to higher dimensions. Then, we establish the key sufficient condition for
the linear independence of time-frequency translates, Theorem 3.1, using the concept
of an extended half-space, which induces a total order on R?. We also introduce the
notion of directional quasi-norm that enables us to prove Theorem 3.3, which provides
a sharper version of Theorem 1.1.

2 Useful Facts

In this section, we recall generalizations of the Montgomery—Vaughan inequality and
the Turdn—Nazarov inequality to R?. We will also provide proofs of the exact inequal-
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1680 M. Bownik, D. Speegle

ities that we need in our development. In Theorem 2.1 we assume that the dimension
d is fixed; all constants are allowed to (implicitly) depend on d.

Theorem 2.1 (Holt, Vaaler) Fix d € N. For every § > 0, there exists R > 0 such that
whenever a trigonometric polynomial

m
u(@x) = c;e?™ N ;e C, a; e RY, @1
j=1

satisfies minf{la; — ay| : j # k} > 8, we have

B~ 2
S Xl |
j=1

}u(x)|2dx forall y € RY. 2.2)
)

R

Here, |Br(y)| is d-dimensional Lebesgue measure of the Euclidean ball Bg(y) of
radius R centered at y.

Proof This is an immediate corollary to [13, Theorem 4]. We briefly include the
relevant facts for completeness; all references are to [13] and notation is from [13,
Theorem 1]. Let &, §, and v be real numbers with § > 0 and v > —1. Define u, (&, §)
to be the infimum of

% / h (T(x) — S(0))|x|** dx,

where the infimum is over all pairs of entire functions S and T of exponential type at
most 27§ such that

S(x) <sgn(x —&) <T(x) forallx eRR.

By the estimate [13, p. 204], there is a constant A, depending only on v, such that

A
uy(€,8) < s 1g2+! (1 + 52?) whenever £8 > 1. (2.3)

By [13, Theorem 4] applied for v = (d — 2)/2 we have

m

a1 (@v+27 R~y (R 9) D lesl < /B

lu)[fdx.  (24)
j=1 )

R

Here, wg—1 is the surface area of the unit sphere §9-1 = RY. We note that [ 13, Theorem
4] requires balls to be centered at 0. However, in the special case when d = 2v + 2,
it holds more generally for every ball since the exponent in [13, (1.28)] vanishes and
translations correspond to unimodular modifications of coefficients cj, j = 1, ..., m.
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Choose R > O such that SR > 1 and

1 1+ A 1
— — ) < —.
SR R2§2 2d

It follows by (2.3) that

A
Qv +2) 'R —uy (R, 8) = (v +2)7 RPT — 5T R (1 + _R252)
> R2V+1 E — 5 — R_d
- d 2d 2d

Combining this with (2.4) and the fact that [Bg(y)| = R%w4_1/d yields (2.2). O

We will also need a higher-dimensional analogue of the Turdn—Nazarov inequality
[18]. A similar result for Z4-periodic trigonometric polynomials u, which corresponds
to the case when a; € Z% in (2.1), was considered by Fontes-Merz [9]. Theorem 2.2
also appears in [2, Lemma 12], but without a proof that we provide below.

Theorem 2.2 (Higher-dimensional Turan—Nazarov inequality) Let u be a trigono-
metric polynomial of order m as in (2.1). Let E be any measurable subset of positive
measure of a ball Bg(y) € RY, R > 0, y € R% There exists an absolute and
dimensionless constant A such that

sup |u(x)]. (2.5)

xeE

|BR<y)|)’”‘

sup  u(x)| < (dZdA
|E]

xeBR ()

Proof Recall that one-dimensional Turdn—Nazarov inequality [18] guarantees the
existence of an absolute constant A such that for any univariate trigonometric poly-
nomial

m
i(r) =Y ¢e*™ur, & eC, a;eR, (2.6)
J
and any measurable subset E of positive measure of an interval I C R we have

i ALY
sup|u(r)|s(ﬁ) sup [i(r)]. 2.7)

rel reE

Let zo € Br(y) be a point that achieves the maximum of |u|, i.e.,

lu(zo)| = sup [u(x)].
xeBR(y)

For any direction w € §4=1 = {x e R? : |x| = 1} define a ray section of E by

sz{re[O,oo):z()+ra)eE}.
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1682 M. Bownik, D. Speegle

Let o be (d — 1)-dimensional Lebesgue measure on S~ !. By the spherical integration
formula we have

o0
|E|=/ IE(x)dxz/ / 1£(z0 + ro)ri~'drdo (v)
R4 sd=1Jo

2R
:/ / lEm(r)rd_ldrda(a))
sd=1Jo

5(2R)d_1/ |Eoldo (@) < QR) 1o (57 ) ess sup|Ew|
gd—1

weSd—1

Since |Br(y)| = Rda(Sd_l)/d, there exists wg € §9=1 such that E,, is Lebesgue

measurable and
|Ewl | I |E|

. (2.8)
2R~ d27 Bg(y)|
Define a univariate trigonometric polynomial i by
mn ~
i(r) =u(zo +rwop) = ZEjez’”“fr, where &; = ¢;e*19%0) G = (a;, wp).
Applying (2.7) for it and E = E,, C [0, 2R], by (2.8) we have
R m—1
sup [u(x)| = [u(zo)| = sup |u(r)| < (A ) sup [u(r)]
xeBr(Y) re0,2R] [ Eoy reEu,
B m—1
< (dZdA| R(y)|) sup Ju(x)!.
|E| xeE
This proves (2.5). O

As a consequence of Theorems 2.1 and 2.2 we obtain the following generalization
of [3, Proposition 2.2].

Proposition 2.3 Let u be a non-zero trigonometric polynomial as in (2.1). Let R > 0.
Then there exists a constant C > 0, depending only on u and R, such that

sup |u(x)|>C forally e RY. 2.9
xeBR(y)

Proof Let§ = min{la; — ay| : j # k} > 0. Let Ry > 0 be the corresponding radius
as in Theorem 2.1. Then,

2
Z| i < lu)["dx < sup  Ju(x). (2.10)
IBRo(y)I Bg,(») xeBgy ()
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This shows (2.9) when R > Ro. If R < Ry, then by Theorem 2.2, there exists a
constant ¢ > 0 such that

sup |u(x)| =c¢ sup |u(x)|.
xeBRr(y) x€Bgy ()

By (2.10) this again shows (2.9). m]

3 Proof of the Main Theorem

We start by introducing a technical sufficient condition (3.1) for the linear indepen-
dence of time-frequency translates of a measurable function, which generalizes the
one-dimensional condition in [4]. This is a main ingredient in the proof of our main
result, Theorem 1.1. Define the space of all Lebesgue measurable functions on the real
line by

M = {f : R? - C is Lebesgue measurable}.

As is customary, we shall identify functions in M which are equal almost everywhere.

Definition 3.1 Given an orthonormal basis {v; }‘}:1 of R? define an extended half-
space by

d
HWﬂzlJLxeRd:u,w)>Oamiu,w)=0ﬁnaﬂi=lp.qj—ly
j=1

Note that the extended half-space H{Vi} essentially coincides with the open half-
space

H={xeR:(x,v))>0c HY) c A={x eR?: (x,v)) > 0}.
Indeed, HVi' \ H C {x € R? : (x, v;) = 0} has measure zero.

Theorem 3.1 Let H'i! be an extended half-space, and H = {x € R¢ : (x,v]) >
a}, a € R, be an affine half-space, and f € M. Suppose that for any non-zero
trigonometric polynomial u, any finite subset B = {by, ..., by} C HWi}, and any
M > O, the set

n
E=E,up= I" € H:ju(x)f(x)| > MY |f(x +bl~>|] 3.1)
i=1
has positive measure. Then, G(f, R*?) is linearly independent.

Proof Suppose for the sake of contradiction that there exist by, ..., by € R4 and
trigonometric polynomials uy, ..., uy such that
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1684 M. Bownik, D. Speegle

N
ZMi(x)f(x—bi) =0 forae. x € R%

i=1
The extended half-space H!"/} induces a total order < on R given by
x<y &= y—xeHV,

This is a consequence of the observation that two extended half-spaces H Vil and
—HWi' = H1=i) form a partition of R? \ {0}. Hence, without loss of generality we
can assume that

by <---<by. 3.2)
Moreover, we can also assume that ||u;||oo < 1 foralli =1,..., N.
We shall prove that our hypothesis (3.1) implies that there exist sets of positive
measure Q1, ..., Qny C H such that the matrix

ur(xy) fx1 —b1) ua(x)) f(x1 —b2) -+ un(xy) f(x1 —by)
Y ur(x2) f(x2 —b1) ua(x2) f(x2 —b2) -+ uy(x2) f(x2 —by)
N = ) )

Ml(xN)f&xN — b)) ur(xn) f(xy —b2) - -- MN(XN)f&XN —by)

has non-zero determinant for almost all (x{,...,xy) € Q1 X --- X Q. This contra-
dicts our hypothesis that the sum of the rows of M are zero almost everywhere.

Foreachl <n < N,and (x1,...,x,) € (Rd)", we consider the principal n x n
submatrix of My given by

ur(x1) f(x1 —b1) -+ up(xr) f(x1 — by)
anMn(Xl,...,Xn)z : .

i i) f o — B1) -+ - 1t (e f (i — )

We will show by induction the existence of sets of positive measure Q1, ..., O, C R4
and positive constants cy, ..., ¢, and 81, .. ., §, such that
n
[ f(x —bj)| <cn fora.e.erQi,jzl,...,n, (3.3)

i=1
|det My, (x1,...,xp)| =6, forae.(x;,...,x5) € Q1 X---X Qn. (3.4)

The base case n = 1 follows trivially from the presence of strict inequality in
(3.1). Suppose that (3.3) and (3.4) hold for some 1 < n < N. Let ¥ be the set
of all permutations of {1,...,n + 1} such that o(n + 1) # n + 1. Then, for any

(X150 X, Xpg1) € Q1 X -+ - X Oy XRda
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Linear Independence of Time-Frequency Translates in RY 1685

[det My 1(x1, ..., Xn, Xpt1)]
= |1 (n+1) f (nt1 — bpy1) det My (x1, - .., X))
n+1
=1 2° [T o w @) f Gt = boy) (3.5)
oeX k=1

n
> Snlun+1Cent1) f ng1 — bpg1)] — nl(en)” Z [ f (ent1 — bi)l.
i=1

The last estimate is a consequence of breaking the sumovero € ¥ witho(n+1) =1,
where 1 < i < n. By our hypothesis (3.1), the set

n
E=1{%41 € H : |ty (np1 + b ) f GarD)| > M D |f Gongr + (buga — b)) |

i=1

where M = 2n!(c,)"/é,, has positive measure. This is because b,+1 — b; € H {vj}
fori =1,...,n by (3.2). We momentarily set Q,,+1 = b,+1 + E. Then, by (3.5) we
have that for almost every (x1, ..., X+1) € Q1 X -+ X Qnt1,

)
|det My41(x1, ..., Xng1)| > 3"|un+1(xn+1>f(xn+1 —byi1)| > 0.

Thus, by restricting to a (positive measure) subset of 0,4 if necessary, we can find
two constants ¢, 41, 6,+1 > 0 such that (3.3) and (3.4) hold, as desired. This completes
the proof of Theorem 3.1. O

In order to establish Theorem 1.1 we will need the following lemma about products
of trigonometric polynomials, which is a consequence of the Turdn—Nazarov inequal-
ity. Lemma 3.2 is a straightforward generalization of the one-dimensional result [4,
Lemma 3.5].

Lemma 3.2 Let u be a non-zero trigonometric polynomial, let B = {b1, ..., b,} C
RY be a finite set, and let R > 0. Then, there exists a constant n = n(u,n, R) > 0
such that for any y € R and any k > 2, there exists a measurable subset E C Bg(y)
with |E| > |Br(y)|/2 such that

—1
< gNklogk (3.6)

YEE (=1  i(k)=1

k J
H u (x + Z b,‘(l))
=1

j=1

Proof Recall that Br(y) denotes a ball centered at y € R¢ with radius R > 0. For
any b € R? and r > 0 we define

Ep(t) = {x € BR(y) : lu(x + b)| < t}. 3.7
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1686 M. Bownik, D. Speegle

By Proposition 2.3 we have (2.9). Combining this with Theorem 2.2 yields

Ep()] \" !
t> sup |u(x +b)|> C(dZdA)l—m( |Ep(1)] ) .
xeEp(t) IBR()’)|
Thus,
\Ep(1)] < C'BrO)|/™D  forallt > 0, 3.8)

where the constant C’ depends on d, R and u, but not on b or y.
For fixed k € N define the set

n n
Y= [Za[bi IZ(X[ <k, a; € N()].
i=1 i=1

Since the sequence («y, ..., a,, k — (o] + - - - + o)) represents a partition of k into
n + 1 blocks, we have
k+n "
#X]| < v < CKk". (3.9)
For any subset o = {0 (1), ...,0(k)} C X of size k, define the function
k

1
for =11 ux + o)

i=1

Let ¢t > 0. Suppose that for some x € Bg(y) we have

k

J —1
Hu(x+2bi(1))' > 1. (3.10)
=1

j=1

ih=1 ik)=1

By taking averages, this implies that there exists a subset o C X of size k such that
fo(x) > t/n*. Since f, is a product of k functions, at least one of them must take
value greater than (z/ nk W k. That is,

k
n n
XGUEU(i)(tl/k)C UEb(tl/k)’
i=1 bex

where Ej(t) is given by (3.7). Thus, using (3.8) and (3.9), the Lebesgue measure of
the set of points x € Br(y) satisfying (3.10) is bounded by

U ()| = i e

bex
1
< C"[Bg(y)|K"t k=D

nl/(m—l)

/
< Ck"C BrOI 7

< #|X| max
bex
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If we wish that the measure of this set does not exceed |Br(y)|/2, we are led to the
inequality

t > (2C")m=Dkgnm=Dk

Thus, there exists a constant n > 0, which is independent of the choice of k > 2,
such that t = K192k satisfies the above bound. Consequently, the set E of points
x € Bg(y) such that the inequality (3.10) fails has measure at least |[Bz(y)|/2. This
completes the proof of Lemma 3.2. O

We are now ready to state Theorem 3.3. As we will see, the main result of the paper,
Theorem 1.1, follows immediately from it.

Theorem 3.3 Let {v j}‘;=1 be an orthonormal basis of RY. Define the corresponding
directional quasi-norm as a mapping N : R4 — [0, co) given for x € R? by

d

N(x) =Z(x,vj)+, where y4 = max(y, 0). (3.11)
j=1

Let f : R — C be a Lebesgue measurable function that does not vanish almost
everywhere on an affine half-space H = {x € R? : (x, v|) > a}, a € R. Assume that
f satisfies for all c > 0,

lim 1%  sup  |f(x)| =0. (3.12)

>0 xeH,N(x)>t

Then, the set G(f, R*?) of time-frequency translates of f is linearly independent.
In the proof of Theorem 3.3 we will need the following lemma.

Lemma 3.4 Let B = {by, ..., by} be a finite subset of an extended half-space HVi}.
Then, there exists 5§ > 0 such that for any k € N and any choice of i(l) € {1, ...,n},
l=1,...,kwehave

k
N(Zb,’([)) > Sk.
=1

Proof We shall proceed by induction on the dimension d. Lemma 3.4 is trivially true
when d = 1. Assume by inductive hypothesis that it is true in the dimension d — 1.
Without loss of generality, we can assume that elements of B are arranged in increasing
order < as in the proof of Theorem 3.1, 1i.e.,b; < --- < b,.Lets = 1,...,n be the
largest index such that (bs, v1) = 0. If such s does not exist, then we lets = 0. Observe
that

0 < (bs41,v1) =+ = (bp, v1). (3.13)
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1688 M. Bownik, D. Speegle

On the other hand, the elements {b1, ..., bs} lie in the subspace span{va, ..., vg},

d
which we can identify with R?~!. Since H ti¥j=2 is an extended half-space in R4~
by the inductive hypothesis there exists § > 0 such that

k
N( > bi(,)) > 8(k — ko), (3.14)
=1, i(l)<s
where kg is the number of [ = 1, ..., k such that i (/) > s. Moreover, we have
k

> b,-(l)) — kodC, (3.15)

=1, i(l)<s

k
N(Zbi(l)) > N(
=1
where C = max{|b;| : i =1, ..., n}. Indeed, (3.15) follows easily from

k
Z b,‘(l),vj> — koC forallj =1,...,d.
I=1, i(l)<s +

k
P
=1 +

Combining (3.14) and (3.15) we have

k
b
N(me)) > 8(k —ko) —kodC > Sk, ifko < ek, (3.16)
=1

where ¢ = §/(28 + 2dC). However, if kg > ¢k, then by (3.13) we have

k k k
N(Zbi(l)) > <Zbi(1),v1 2< > bi(l),v1>
=1 =1 + =1, i(l)>s
> ko(bs+1,v1) = &(bs1, vi)k. (3.17)
Combining (3.16) with (3.17) completes the proof of Lemma 3.4. O

Proof of Theorem 3.3 Let H = {x € R : (x,v) > a} be an affine half-space, where
v € R\ {0} and ¢ € R. Choose any orthonormal basis {v; }‘;Zl C R? such that
v] = v/|v|. By Theorem 3.1 it suffices to show that for any trigonometric polynomial
u # 0, any finite subset B = {by,...,b,} C Hit and any M > 0, the set £, y.p
given by (3.1) has positive measure.

On the contrary, suppose that for some choice of u, B, and M > 0 we have

| f(x +bp)l

fora.e.x € H. (3.18)
Ju ()|

fol <MD
i=1
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Linear Independence of Time-Frequency Translates in RY 1689

By recursion, (3.18) implies that

k

I1

J=1

—1
(3.19)

lfol=m* D>

ih=1  i(k)=1

k j-1
f(x + Zbi(l)) u(x + Zbi(l))
=1 =1

By the non-vanishing hypothesis on f, there exists a constant ¢ > 0, such that the
set {x € H : |f(x)| > &} has positive measure. By the Lebesgue differentiability
theorem applied to that set, there exists a ball Bg(y) C H and such that

l{x € Br(y) : [f ()] > e} > [Br(Y)I/2. (3.20)

Observe that the quasi-norm N defined by (3.11) satisfies the triangle inequality
N(x +272) < N(x)+ N(z). Thus, for any x € Bg(y) and z € R4,

N(x +2) > N(z) — N(=x) > N(z) — Vd(R + |y]).

By Lemma 3.4 and the Cauchy—Schwarz inequality

d
N < D1k, v))] sﬁ(

d
Jj=1 j=

1/2
(x, v,->|2) = d|x|, (3.21)

1
there exists § > 0 such that
k
N(x + Zbi(’)) > 8k — Vd(R+ |y|) > 8k/2  fork > ko :=2vd(R + |y])/3.
=1
Thus, for any x € Bg(y) and k > ko,

< sup | f(2)]- (3.22)
z€H, N(z)>6k/2

k
’f(x + Zbi(l))
=1

Here, we used the following fact: x € H and b € HY}! — x+beH.
Combining (3.19) and (3.22) with Lemma 3.2 yields a subset Ex C Bg(y) with
|Ex| > |Bgr(y)|/2 such that

| f(x)] < MFenklogk sup |f ()] forx € Ey. (3.23)
zeH, N(z)>6k/2

By (3.20) the set £ must non-trivially intersect with the set {x € Br(y) : | f(x)| > ¢}.
Hence, we conclude that

sup | f(2)] = eM FeTmkogk  for k > k.
zeH, N(z)>68k/2
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1690 M. Bownik, D. Speegle

This contradicts our decay hypothesis (3.12) and completes the proof of Theorem 3.3.
O

As an immediate consequence of Theorem 3.3 we can deduce Theorem 1.1.

Proof of Theorem 1.1 Suppose that a function f satisfies the decay condition (1.1).
That is, for all ¢ > 0,

lim ¢“°2"  sup | f(x)| = 0.
=00 xeH,|x|>t

Combining this with (3.21) implies the weaker decay condition (3.12). Consequently,
Theorem 3.3 yields the desired conclusion. O

We end by presenting a decay condition that is a more direct generalization of the
main theorem in [4]. Indeed, the condition (3.24) is automatically satisfied on the
real line since any finite subset B C R can be arranged in increasing order. Then,
depending on the sign of v € R, the decay condition (3.25) corresponds to one-sided
limit as x — 0o or x — —o0. Thus, Theorem 3.5 implies the main result in [4].

Theorem 3.5 Let B = {b, b», ..., b,} be a finite subset of R. Suppose there exists
avectorve R and 1 < Jjo < n such that

(v, bjy) <{v,bj) foralll <j<n, j#jo. (3.24)

Let f : RY — C be a non-zero Lebesgue measurable function satisfying the direc-
tional decay condition

lim | f (x)|ectEvtoelx ) — o forall ¢ > 0. (3.25)
xeR4, (x,v)—00
Then, ifuy, ..., u, are trigonometric polynomials such that
n
Zuj(x)f(x—}—bj) =0 forae x eR?, (3.26)

J=1

then uj, = 0. In particular, if (v, b;) # (v, b;) forall i # j, then G(f, R? x (—B))
is linearly independent.

Remark 3.1 Note that unlike Theorem 1.1 we do not assume that f does not vanish
on a half-space. Moreover, the decay condition (1.1) is weakened by the condition
(3.25) that does not impose any decay in directions perpendicular to a vector v € R?.
As a consequence, the conclusion of Theorem 3.5 must also be weakened. Indeed, the
following simple example shows that we cannot expect that the remaining polynomials

satisfy u; = --- = u,, = 0. Define f : R> — R by
e ifx; € [0, 1],
X1,X2) =
Fo, x2) IO otherwise.
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Then, f satisfies the hypothesis of Theorem 3.5 with B = {(0, 0), (0, 1), (-1, 0)}
and v = (1, 0), but g(f, {0} x B) is linearly dependent.

Proof of Theorem 3.5 On the contrary suppose that there exists a solution to (3.26)
with a non-zero u j,. Then,

| f(x+bj—Dbjy)l
|Mj0(x)|

forae. x € Rd,

fol=m >

J=1 j#jo

where M = max(||u1]]|oo, - - - » ||ttn|]oo)- Hence, the same inequality as in (3.18) holds
true. Define a directional quasi-norm N(x) = (x, v)4. By the assumption (3.24),
Lemma 3.4 holds for the set B = {bj —bj, : 1 < j # jo < n}and quasi-norm N in
place of B and N, resp. Moreover, the same argument as in the proof of Theorem 3.3
works for the quasi-norm N in place of the original one given by (3.11). As a result
we obtain a contradiction with our hypotheses that u j, # 0, thus completing the proof
of Theorem 3.5. O
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