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Abstract. We construct a decomposition of the identity operator on the sphere Sd as a sum
of smooth orthogonal projections subordinate to an open cover of Sd. We give applications
of our main result in the study of function spaces and Parseval frames on the sphere.

1. Introduction

The goal of this paper is to give a construction of a decomposition of the identity operator
on the sphere as a sum of smooth orthogonal projections with desired localization properties.
Our construction is reminiscent of the ubiquitous smooth partition of unity subordinate to
an open cover of a manifold. However, partitions of unity do not give rise (in any obvious
way) to a decomposition into projections which are desirable in the study of function spaces
and Parseval frames.

Smooth projections on the real line were introduced in a systematic way by Auscher, Weiss,
and Wickerhauser [1] in their study of local sine and cosine bases of Coifman and Meyer [5]
and smooth wavelets. The standard procedure of tensoring can be used to extend their
construction to the Euclidean space Rd. In this paper we explain how smooth projections
can be defined on a simplest non-Euclidean manifold, i.e, on the sphere Sd. Our main result,
Theorem 5.1, can be reformulated in the following way.

Theorem 1.1. Suppose U is an open cover of Sd. Then, there exists a family of operators
{PU}U∈U defined pointwise for functions on Sd such that:

(i) all but finitely many projections PU are zero,
(ii) each PU is localized on an open set U , i.e., for any f : Sd → R we have

PUf(x) = 0 for x ∈ Sd \ U,
(iii) each PU considered as an operator PU : L2(Sd) → L2(Sd) is an orthogonal projection

and the projections {PU}U∈U give a decomposition of the identity operator I∑
U∈U

PU = I,

(iv) for any r = 0, 1, . . . and 1 ≤ p < ∞, each PU maps boundedly Cr(Sd) and the Sobolev
space W r

p (Sd) into itself.

The paper is organized as follows. In Section 2 we introduce smooth orthogonal projec-
tions on the weighted L2 spaces on the real line extending constructions in [1, 14]. This
construction is used in Section 3 to introduce smooth latitudinal projections on the sphere.
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In Section 4 we describe a procedure of lifting an operator acting on Sd−1 to a higher di-
mensional sphere Sd. We show that our lifting preserves smoothness of functions away from
two poles of Sd. These results are then used in Section 5 to construct a family of smooth
orthogonal projections corresponding to a partition of the sphere into patches. Finally, in
Section 6 we give applications of our main result in the study of function spaces and Parseval
frames on the sphere.

2. Smooth orthogonal projections on the real line and the circle

In this section we define smooth projections on the real line originally introduced by
Auscher, Weiss, and Wickerhauser [1] in the process of constructing local sine and cosine
bases of Coifman and Meyer [5]. These constructions are nicely explained in Sections 1.3–
1.5 of the book by Hernández and Weiss [14]. Unlike the original approach in [14] we are
also interested in the weighted L2 spaces. This requires some necessary modifications of
constructions in [14].

2.1. Smooth projections on L2(R, ψ). Let δ > 0 be given and fixed. Let ψ ∈ C∞(R) be
smooth and nonnegative function such that

(2.1) ψ(t) ≥ c > 0 for t ∈ [−δ, δ].

The function ψ is the weight in the Hilbert space L2(R, ψ) consisting of real-valued measur-
able functions with the inner product

〈f, g〉ψ =

∫
R
f(t)g(t)ψ(t)dt.

Definition 2.1. Assume that there is a real, smooth function, s ∈ C∞(R), such that

(2.2) supp s ⊂ [−δ,+∞)

and for all t ∈ R
s2(t) + s2(−t) = 1.

For the construction of such function see [5, 14]. We define Auscher-Weiss-Wickerhauser
(AWW) operator E±ψ for a real-valued function g on R by

E±ψ (g)(t) =


g(t) t > δ,

s2(t)g(t)± s(t)s(−t)
√

ψ(−t)
ψ(t)

g(−t) t ∈ [−δ, δ],
0 t < −δ.

The choice of ± is referred as the polarity of E±ψ . If polarity is not indicated, we shall assume

it is positive, i.e., Eψ = E+
ψ .

By the assumption made on the function s, we have s2(t) = 1 for t ≥ δ and s(t) = 0 for
t ≤ −δ. Thus, by Definition 2.1 and (2.1), there exists ε > 0 such that

(2.3) E±ψ (g)(t) = s2(t)g(t)± s(t)s(−t)

√
ψ(−t)
ψ(t)

g(−t) for t ∈ [−δ − ε, δ + ε].
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Moreover,

E±ψ (g)(t) =


g(t) t > δ,

E±ψ (g1[−δ,δ])(t) t ∈ [−δ, δ],
0 t < −δ.

where 1[−δ,δ] is a characteristic function of an interval [−δ, δ].
The following result is an extension of the construction in [14, Section 1.3].

Proposition 2.1. Under the above assumptions we have that

(2.4) E±ψ (C∞(R)) ⊂ C∞(R)

and E±ψ is an orthogonal projection as an operator

(2.5) E±ψ : L2(R, ψ)→ L2(R, ψ).

Proof. The property (2.4) is obvious from (2.3). To prove (2.5) we need to check that

(2.6) (E±ψ )2 := E±ψ ◦ E
±
ψ = E±ψ

and

(2.7) 〈E±ψ (f), g〉ψ = 〈f, E±ψ (g)〉ψ.

For simplicity we prove (2.6) and (2.7) for the operator Eψ = E+
ψ . Let ρ(t) := s2(t) and let

η(t) :=

{
s(t)s(−t)

√
ψ(−t)
ψ(t)

for t ∈ [−δ − ε, δ + ε],

0 otherwise.

Then,
Eψ(g)(t) = ρ(t)g(t) + η(t)g(−t) for all t ∈ R.

Consequently,

(Eψ)2(g)(t) = ρ(t)2g(t) + ρ(t)η(t)g(−t) + η(t)ρ(−t)g(−t) + η(t)η(−t)g(t)

= (ρ(t)2 + η(t)η(−t))g(t) + (ρ(t)η(t) + η(t)ρ(−t))g(−t).
From the assumption on s

ρ(t)2 + η(t)η(−t) = s2(t)(s2(t) + s2(−t)) = s2(t)

and
ρ(t)η(t) + η(t)ρ(−t) = η(t).

Thus,
(Eψ)2(g)(t) = Eψ(g)(t).

Now we turn to prove (2.7). We have for f, g ∈ L2(R, ψ)

〈Eψ(f), g〉ψ =

∫ ∞
δ

f(t)g(t)ψ(t)dt+

∫ δ

−δ
(ρ(t)f(t) + η(t)f(−t))g(t)ψ(t)dt

=

∫ ∞
δ

f(t)g(t)ψ(t)dt+

∫ δ

−δ
(ρ(t)g(t) +

η(−t)ψ(−t)
ψ(t)

g(−t))f(t)ψ(t)dt

= 〈f, Eψ(g)〉ψ.
This finishes the proof of the proposition. �
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Remark 2.1. Note that Proposition 2.1 holds true if we replace the real line R by any interval
[a, b] such that

[−δ, δ] ⊂ [a, b].

This observation will be used in Section 3, where instead of L2(R, ψ) we consider the Hilbert
space L2([a, b], ψ) of real-valued measurable functions on [a, b] with the inner product

〈f, g〉ψ =

∫ b

a

f(t)g(t)ψ(t)dt.

Indeed, for g : [a, b] → R, we may set Eψ(g) = Eψ(g̃)|[a,b], where g̃ : R → R is an arbitrary
extension of g. This is well-defined since for any function f on R we have Eψ(fχ[a,b]) =
Eψ(f)χ[a,b].

2.2. Smooth projections on S1. The construction of smooth projections on R can be
easily translated to the setting of the circle S1. We shall concentrate our attention to the
unweighted case. The weighted case can be dealt in a similar way as on R.

Let [α, β] ⊂ R, and δ > 0 be such that

(2.8) 2δ < β − α.

Fix a nonnegative C∞ function ψ satisfying ψ(t) ≥ c > 0 for t ∈ [α − δ, β + δ]. Let Pα
be an AWW projection onto the interval [α,∞) given by Pα = TαEψαT−α, where Tα is a
translation by α and ψα = T−αψ. Since ψα(t) ≥ c > 0 for t ∈ [−δ, δ], in light of Proposition
2.1, Pα is an orthogonal projection on L2(R, ψ) such that

Pαf(t) =

{
0 t ≤ α− δ,
f(t) t ≥ α + δ.

Furthermore, if [α− δ, α + δ] ⊂ [a, b], then for any function f on R,

Pα(f1[a,b]) = (Pαf)χ[a,b].

Hence, by Remark 2.1 we can treat Pα as an orthogonal projection on L2([a, b], ψ).
In a similar way, let P β be an AWW projection onto the interval (−∞, β] given by P β =

Tβ(I − Eψβ)T−β, where I is the identity and ψβ = T−βψ. Using (2.8) it can be easily seen

that Pα and P β commute, see [14, Section 1.3]. Define an AWW projection onto the interval
[α, β] by

P[α,β] = PαP
β = P βPα.

For simplicity, let us now assume that the weight ψ ≡ 1. A simple calculation using (2.8)
shows the following explicit formula for P[α,β]

(2.9) P[α,β]f(t) =



0 t < α− δ,
s2(t− α)f(t) + s(t− α)s(α− t)f(2α− t) t ∈ [α− δ, α + δ],

f(t) t ∈ (α + δ, β − δ),
s2(β − t)f(t)− s(t− β)s(β − t)f(2β − t) t ∈ [β − δ, β + δ],

0 t > β + δ.
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Definition 2.2. Let Q = {Ψ1(t) = (sin t, cos t) : t ∈ [α, β]} be an arc in S1 such that (2.8)
holds and

(2.10) 2δ < 2π − (β − α).

Define a smooth orthogonal projection PQ on S1 by

PQf(ξ) = P[α,β](f ◦Ψ1)(t), where ξ = Ψ1(t), t ∈ [α− δ, 2π + α− δ).

Then we have the following variant of Proposition 2.1 justifying the name for PQ.

Theorem 2.1. Suppose that Q ⊂ S1 is an arc as in Definition 2.2. Then,

PQ(C∞(S1)) ⊂ C∞(S1)

and PQ is an orthogonal projection as an operator

PQ : L2(S1)→ L2(S1).

Moreover, if arcs Q1, . . . , Qn, each as in Definition 2.2, form a partition of S1, then

(2.11)
n∑
j=1

PQj = I.

In particular, PQiPQj = 0 whenever 1 ≤ i 6= j ≤ n.

Proof. The first part of the theorem is a consequence of Proposition 2.1 and (2.9). The
moreover part follows from [14, Theorem 1.3.15] which states that for any two adjacent
intervals [α, β] and [β, γ] satisfying (2.8) we have

P[α,β] + P[β,γ] = P[α,γ].

Hence, for two adjacent arcs Q, Q′ such that Q, Q′, and Q ∪ Q′ satisfy Definition 2.2, we
have

PQ + PQ′ = PQ∪Q′ and PS1\Q = I− PQ.
These identities yield the decomposition (2.11). �

2.3. Range of smooth projections. We also have the following generalization of [14,
Theorem 1.3.20], which characterizes the image of L2(R, ψ) under the orthogonal projection
Eψ from Definition 2.1. To show this note that we have

(2.12) Eψ(g)(t) = bR(t)
(
s(t)
√
ψ(t)g(t) + s(−t)

√
ψ(−t)g(−t)

)
for t ∈ [−δ − ε, δ + ε],

where bR(t) = s(t)/
√
ψ(t). In a similar way we have

(2.13)

(I− Eψ)(g)(t) =(1− s2(t))g(t)− s(t)s(−t)

√
ψ(−t)
ψ(t)

g(−t)

=s2(−t)g(t)− s(t)s(−t)

√
ψ(−t)
ψ(t)

g(−t)

=bL(t)
(
s(−t)

√
ψ(t)g(t)− s(t)

√
ψ(−t)g(−t)

)
for t ∈ [−δ − ε, δ + ε],

5



where bL(t) = s(−t)/
√
ψ(t). Note that function bR and BL are initially well-defined only for

t ∈ R such that ψ(t) 6= 0. If t ∈ R is such that ψ(t) = 0, then we can assign the value for
bR(t) in any way want, say bR(t) = bL(t) = 0.

Theorem 2.2. A function f ∈ Eψ(L2(R, ψ)) if and only if f = bRH for some H ∈ L2(R)
such that H is even on [−δ, δ]. Likewise, f ∈ (I−Eψ)(L2(R, ψ)) if and only if f = bLH for
some H ∈ L2(R) such that H is odd on [−δ, δ].
Proof. The forward direction is a consequence of (2.1), (2.12), and (2.13). To show the
backward direction we have to check that Eψ(bRH) = bRH. Since H is even on [−δ, δ], by
(2.12) we have

Eψ(bRH)(t) =bR(t)
(
s(t)
√
ψ(t)bR(t)H(t) + s(−t)

√
ψ(−t)bR(−t)H(−t)

)
=bR(t)(s2(t) + s2(−t))H(t) = bR(t)H(t).

In similar way we can check that (I− Eψ)(bLH) = bLH. �

3. Latitudinal projections on the sphere

In this section we define smooth latitudinal projections on the k-dimensional sphere Sk ⊂
Rk+1, k ≥ 2, using Auscher-Weiss-Wickerhauser (AWW) projections introduced in Section
2.

3.1. H-operators. For our purposes it is convenient to define an abstract class of H-
operators on manifolds which was originally introduced in the work of Ciesielski and Figiel
[3, Section 5]. The letter H stands for Hestenes [15] who considered a similar class of op-
erators. Our definition is more restrictive than the one in [3] since we are dealing with less
general classes of operators than those studied in [3]. Consequently, many of the results
which required proofs in [3] follow automatically from the definition.

Definition 3.1. Let M be a σ-compact smooth Riemannian manifold (without boundary).
Let Φ : V → V be a C∞ diffeomorphism, where V ⊂ M is an open subset. Let ϕ : M → R
be a C∞ function such that

suppϕ = {x ∈M : ϕ(x) 6= 0} ⊂ V.

We define a simple H-operator Hϕ,Φ,V acting on a function f : M → R by

Hϕ,Φ,V f(x) =

{
ϕ(x)f(Φ(x)) x ∈ V
0 x ∈M \ V.

Let L0(M) be the space of (equivalence classes of) Lebesgue measurable functions on M
equipped with the topology of convergence in measure on compact subsets of M . Clearly,
a simple H-operator induces a continuous linear map of the space L0(M) into itself. We
define an H-operator to be a finite combination of such simple H-operators. The space of
all H-operators is denoted by H(M).

Observe that H(M) is an algebra of operators. This follows from the formula

Hϕ2,Φ2,V2 ◦Hϕ1,Φ1,V1 = Hϕ,Φ,V ,

where ϕ = ϕ2|V ·(ϕ1◦Φ2|V ), Φ = Φ1◦Φ2|V , and V = V2∩(Φ2)−1(V1). Furthermore, following
[3] we shall see that H-operators are preserved under tensoring.
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Definition 3.2. Suppose that M and M ′ are two Riemannian manifolds (without boundary)
with Riemannian measures v and v′, resp. Then, M ×M ′ is also a Riemannian manifold
with the Riemannian measure v × v′. For any f ∈ L0(M) and g ∈ L0(M ′), define f ⊗ g ∈
L0(M ×M ′) by

(f ⊗ g)(x, y) = f(x)g(y) x ∈M, y ∈M ′.

The following lemma and its proof are a verbatim adaptation of [3, Lemma 5.15].

Lemma 3.1. If H ∈ H(M) and H ′ ∈ H(M ′), then there exists a unique continuous linear
operator T acting on L0(M ×M ′) such that

(3.1) T (f ⊗ g) = (Hf)⊗ (H ′g) for f ∈ L0(M), g ∈ L0(M ′).

Moreover, T ∈ H(M × M ′). The operator T is said to be the tensor product H ⊗ H ′ of
H-operators H and H ′.

Proof. Suppose that H and H ′ are simple H-operators on M and M ′, resp. That is, H =
Hϕ,Φ,V and H ′ = Hψ,Ψ,W are as in Definition 3.1. Then, the operator

T = Hϕ⊗ψ,Φ⊗Ψ,V×W

is a simple H-operator on M ×M ′ satisfying (3.1). By taking linear combinations the same
holds for general H-operators. To show that such T is unique it suffices to use the fact that
the subspace spanned by the functions of the form f ⊗ g is dense in L0(M ×M ′). �

Finally, H-operators induce bounded operators on the space Cr(M) and on Sobolev spaces
on M .

Definition 3.3. For k ∈ N and f : M → R we denote by ∇kf(x), x ∈ M , the covariant
derivative of f of order k in some local chart. We let |∇kf | be its norm (which is independent
of a choice of chart). The Banach space Cr(M) consists of all Cr functions f : M → R with
the norm

||f ||Cr(M) =
r∑

k=0

sup
x∈M
|∇kf(x)| <∞.

Let v be the Riemannian measure on M . Given 1 ≤ p <∞ we define the norm

||f ||W r
p

=
r∑

k=0

(∫
M

|∇kf(x)|pdv(x)

)1/p

<∞.

The Sobolev space W r
p (M) is the completion of Cr(M) (or equivalently C∞(M)) with respect

to the norm || · ||W r
p
, see [13].

Then we have the following analogue of [3, Lemma 5.38 and Corollary 5.39].

Lemma 3.2. Suppose that H ∈ H(M), where M is compact smooth Riemannian manifold.
Then, for any r = 0, 1, . . ., the operator H induces a continuous linear operator

H : Cr(M)→ Cr(M), where r = 0, 1, . . . ,(3.2)

H : W r
p (M)→ W r

p (M), where 1 ≤ p <∞, r = 0, 1, . . . .(3.3)
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Proof. It suffices to consider H to be a simple H-operator Hϕ,Φ,V . Using the product and
the chain rule, one can express derivatives of Hf at x in terms of derivatives of ϕ and Φ at x
and f at Φ(x). Since suppϕ is compact, these are bounded on V . This yields the conclusion
(3.2). Likewise, using the change of variables formula and a standard density argument [3,
Lemma 5.37 and Corollary 5.39] yields (3.3). �

3.2. AWW projections on the sphere. Let

Ψk : [0, π]k−1 × [0, 2π]→ Sk

be the standard spherical coordinates given by the recurrence formula

Ψ1(t) = (sin t, cos t), t ∈ [0, 2π],

Ψk+1(t, x) = (sin(t)ξ, cos t), (t, x) ∈ [0, π]× ([0, π]k−1 × [0, 2π]),

where Ψk(x) = ξ ∈ Sk. For k ≥ 2 it is useful to define a surjective function

Φk : [0, π]× Sk−1 → Sk

by the formula

Φk(ϑ, ξ) = (ξ sinϑ, cosϑ), where (ϑ, ξ) ∈ [0, π]× Sk−1.

Note that Φk is a diffeomorphism

Φk : (0, π)× Sk−1 → Sk \ {1k,−1k},

where 1k = (0, . . . , 0, 1) ∈ Sk is the “North Pole”. Let σk be the normalized Lebesgue
measure on Sk. Then, for any f ∈ L1(Sk, dσk) we have the following well-known and useful
identity, see [7, (1.5.4)]

(3.4)

∫
Sk
f(u)dσk(u) =

∫
Sk−1

∫ π

0

f ◦ Φk(ϑ, ξ)(sin(ϑ))k−1 dϑdσk−1(ξ).

For the sake of simplicity we will often write

f(ϑ, ξ) = f(Φk(ϑ, ξ)), for (ϑ, ξ) ∈ [0, π]× Sk−1.

We are now ready to introduce AWW projections on Sk, k ≥ 2.

Definition 3.4. Let ϑ◦ ∈ (0, π) and 0 < δ < min{ϑ◦, π − ϑ◦}. For ϑ ∈ [−ϑ◦, π − ϑ◦] and
ξ ∈ Sk−1 define

Φξ,◦
k (ϑ) = Φk(ϑ

◦ + ϑ, ξ),

ψ◦(ϑ) = (sin(ϑ+ ϑ◦))k−1.

We define the Auscher-Weiss-Wickerhauser (AWW) operator Eϑ◦ for functions g : Sk → R
by

Eϑ◦(g)(Φk(ϑ, ξ)) = Eψ◦(g ◦ Φξ,◦
k )(ϑ− ϑ◦) for (ϑ, ξ) ∈ [0, π]× Sk−1,

where Eψ◦ is an AWW projection on the interval [−ϑ◦, π − ϑ◦] with weight ψ0.

Equivalently, we can define Eϑ◦ = Pϑ◦ ⊗ I as a tensor product of two H-operators, where
Pϑ◦ is an orthogonal projection on L2([0, π], ψ), ψ(ϑ) = (sin(ϑ))k−1, with a cut-off at ϑ◦ ∈
(0, π), which was defined in Subsection 2.2, and I is the identity operator on Sk−1.
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By Definition 2.1 and our convention,

(3.5) Eϑ◦(g)(ϑ, ξ) =

{
g(ϑ, ξ) ϑ > ϑ◦ + δ,

0 ϑ < ϑ◦ − δ.

Moreover, by (2.3) there exists ε > 0 such that for ϑ− ϑ◦ ∈ [−δ − ε, δ + ε]

(3.6)

Eϑ◦(g)(ϑ, ξ) = Eψ◦(g ◦ Φξ,◦
k )(ϑ− ϑ◦)

= s2(ϑ− ϑ◦)g(ϑ, ξ) + s(ϑ− ϑ◦)s(ϑ◦ − ϑ)

(
sin(2ϑ◦ − ϑ)

sinϑ

)(k−1)/2

g(2ϑ◦ − ϑ, ξ).

Lemma 3.3. Let ϑ◦ ∈ (0, π) and 0 < δ < min{ϑ◦, π − ϑ◦}. Then, Eϑ◦ ∈ H(Sk) and

(3.7) Eϑ◦ : L2(Sk, dσk)→ L2(Sk, dσk)

is an orthogonal projection.

Proof. Using Definition 3.1, (2.2), (3.5), and (3.6) observe that Eϑ◦ is a sum of two simple
H-operators. One of them is a multiplier operator, where Φ is the identity on Sk. The other
one corresponds to Φ being a longitudinal reflection around ϑ◦ on the set

V = {Φk(ϑ, ξ) : ϑ ∈ (ϑ◦ − δ, ϑ◦ + δ), ξ ∈ Sk−1}.

It remains to check that Eϑ◦ induces an orthogonal projection (3.7). Since Eψ0 is an orthog-
onal projection on L2([−ϑ◦, π − ϑ◦], ψ◦) we have

(Eϑ◦)2g(ϑ, ξ) = Eψ◦(E
ϑ◦g ◦ Φξ,◦

k )(ϑ− ϑ◦) = Eψ◦(Eψ◦(g ◦ Φξ,◦
k ))(ϑ− ϑ◦) = Eϑ◦g(ϑ, ξ).

Indeed, the middle step is a consequence of

(Eϑ◦g) ◦ Φξ,◦
k (t) = Eϑ◦g(Φk(t+ ϑ◦, ξ)) = Eψ◦(g ◦ Φξ,◦

k )(t).

Let f, g ∈ L2(Sk). By (3.4), the change of variables, and Proposition 1.1 we have

(3.8)

∫
Sk
Eϑ◦(g)fdσk =

∫
Sk−1

∫ π

0

Eϑ◦g(ϑ, ξ)f(ϑ, ξ)(sinϑ)k−1dϑdσk−1(ξ)

=

∫
Sk−1

(∫ −ϑ◦+π
−ϑ◦

Eψ◦(g ◦ Φξ,◦
k )(ϑ)(f ◦ Φξ,◦

k )(ϑ)ψ◦(ϑ)dϑ

)
dσk−1(ξ)

=

∫
Sk−1

(∫ −ϑ◦+π
−ϑ◦

(g ◦ Φξ,◦
k )(ϑ)Eψ◦(f ◦ Φξ,◦

k )(ϑ)ψ◦(ϑ)dϑ

)
dσk−1(ξ)

=

∫
Sk
gEϑ◦(f)dσk.

This proves that Eϑ◦ is self-adjoint and completes the proof of the lemma. �

3.3. Latitudinal projections. We are now ready to introduce a family of latitudinal
smooth projections on Sk corresponding to any partition of [0, π]. Suppose that {ϑkj}

nk
j=0

is a partition of the interval [0, π] and δ > 0 satisfies

(3.9) δ <
1

2
min{ϑkj − ϑkj−1 : j = 1, . . . , nk}.
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We consider the corresponding Auscher-Weiss-Wickerhauser operators {Ek
j }

nk−1
j=1 on the sphere

Sk given by Ek
j = Eϑkj as in Definition 3.4. In addition, we let Ek

0 = I and Ek
nk

= 0, where I
and 0 are identity and zero operators, resp. Note that

(3.10) Ek
j ◦ Ek

i = Ek
i ◦ Ek

j = Ek
max{i,j}.

Indeed, for j = 1, . . . , nk − 1 we have

(3.11) Ek
j f(ϑ, ξ) =


0 for (ϑ, ξ) ∈ [0, ϑkj − δ]× Sk−1,

Ek
j (f1[ϑkj−δ,ϑkj+δ]×Sk−1)(ϑ, ξ) for (ϑ, ξ) ∈ [ϑkj − δ, ϑkj + δ]× Sk−1,

f(ϑ, ξ) for (ϑ, ξ) ∈ [ϑkj + δ, π]× Sk−1.

Thus, if i < j, then Ek
i E

k
j f = Ek

j f by (3.11) and

suppEk
j f ⊂ [ϑkj − δ, π]× Sk−1 ⊂ [ϑki + δ, π]× Sk−1.

Likewise, by (3.11)

Ek
jE

k
i f = Ek

j (1[ϑkj−δ,π]×Sk−1Ek
i f) = Ek

j (1[ϑkj−δ,π]×Sk−1f) = Ek
j f.

Finally, the case i = j was proved in Lemma 3.3. This proves (3.10).

Definition 3.5. Given a partition {ϑkj}
nk
j=0 of the interval [0, π] as above we define a family

of latitudinal projections {Uk
j }

nk
j=1 by

Uk
j = Ek

j−1 − Ek
j , j = 1, . . . , nk,

Here, Ek
j = Eϑkj is given as in Definition 3.4 for all j = 1, . . . , nk − 1, Ek

0 = I, and Ek
nk

= 0.

Lemma 3.4. The operators {Uk
j }

nk
j=1 from Definition 3.5 have the following properties:

(i) Each operator Uk
j is localized around the latitudinal strip Φk([ϑ

k
j−1, ϑ

k
j ] × Sk−1). That

is, for any function f : Sk → R and x ∈ Sk we have for j = 1, . . . , nk

(3.12) Uk
j f(ϑ, ξ) = f(ϑ, ξ) for (ϑ, ξ) ∈ [ϑkj−1 + δ, ϑkj − δ]× Sk−1,

and

(3.13) Uk
j (1[ϑkj−1−δ,ϑkj+δ]×Sk−1f) = 1[ϑkj−1−δ,ϑkj+δ]×Sk−1Uk

j f = Uk
j f,

with ϑkj−1 − δ and ϑkj + δ replaced by 0 and π when j = 1 and j = nk, resp.

(ii) Each Uk
j considered as an operator

Uk
j : L2(Sk, dσk)→ L2(Sk, dσk)

is an orthogonal projection. The projections {Uk
j } give a decomposition of L2(Sd−1)

into orthogonal subspaces

(3.14)

nk∑
j=1

Uk
j = I,

where I is the identity operator on L2(Sk, σk). In particular, we have mutual orthogo-
nality Uk

j ◦ Uk
i = 0 for any i 6= j.

(iii) Each Uk
j belongs to H(Sk). In particular, for any r = 0, 1, . . . and 1 ≤ p < ∞, Uk

j

induces bounded operators on Cr(Sk) and on the Sobolev space W r
p (Sk).

10



Figure 1. Supports of latitudinal projections U2
j , j = 1, . . . , 13, on the sphere S2

Proof. (i) follows from Definition 3.5, Lemma 3.3, and (3.11). To prove (ii) note that by
(3.10) for i < j we have

Uk
j ◦ Uk

i = (Ek
j−1 − Ek

j ) ◦ (Ek
i−1 − Ek

i ) = Ek
j−1 − Ek

j−1 − Ek
j + Ek

j = 0.

The case i > j is similar. Moreover, by (3.10) we also have that Uk
j ◦Uk

j = Uk
j . On the other

hand, by (3.8) each Uk
j is self-adjoint:∫

Sk
Uk
j f(x)g(x)dσk(x) =

∫
Sk

(Ek
j−1 − Ek

j )f(x)g(x)dσk(x) =

∫
Sk
f(x)Uk

j g(x)dσk(x).

Moreover, (3.14) follows from Definition 3.5 by telescoping, thus proving the property (ii).
Finally, (iii) follows immediately from Lemma 3.2 since each Uk

j ∈ H(Sk). This completes
the proof of the lemma. �

4. Lifting of H-operators on the sphere

In this section we introduce the procedure of lifting an operator acting on functions on
Sk−1 to a higher dimensional sphere Sk. Despite that lifting does not preserve the property of
H-operators due to singularities at the poles, this property can be recovered after composing
with suitable longitudinal projections.

Definition 4.1. Suppose that T is an H-operator on Sk−1, i.e., T ∈ H(Sk−1). We define the

lifted operator T̂ acting on functions f : Sk \ {1k,−1k} → R using the relation

(4.1) T̂ (f)(t, ξ) =

{
T (f t)(ξ) (t, ξ) ∈ (0, π)× Sk−1,

0 t = 0 or t = π.

where
f t(ξ) = f(t, ξ), (t, ξ) ∈ (0, π)× Sk−1 ≈ Sk \ {1k,−1k}.
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The following lemma shows that the lifting preserves the property of an H-operator (away
from the two poles) and an orthogonal projection from a lower to a higher dimensional
sphere.

Lemma 4.1. Assume that T ∈ H(Sk−1). Then, T̂ ∈ H(Sk \ {1k,−1k}) satisfies a commu-
tation relation

(4.2) T̂ ◦ Uk
j f = Uk

j ◦ T̂ f, for all f ∈ L0(Sk), 1 ≤ j ≤ nk.

Moreover, the operators T̂ ◦ Uk
j belong to H(Sk) for any 2 ≤ j ≤ nk − 1.

In addition, if T induces an orthogonal projection T : L2(Sk−1) → L2(Sk−1), then T̂ :
L2(Sk)→ L2(Sk) is also an orthogonal projection.

Proof. Observe that the lifted operator T̂ can be identified with the tensor product I⊗ T of
the identity operator I on L0(0, π) and an H-operator T on L0(Sk−1), using the identification

(0, π)×Sk−1 ≈ Sk \{1k,−1k}. Consequently, by Lemma 3.1 we have T̂ ∈ H(Sk \{1k,−1k}).
To show (4.2), let f ∈ L0(Sk) be such that

(4.3) f(t, ξ) = f1(t)f2(ξ) = (f1 ⊗ f2)(t, ξ), (t, ξ) ∈ (0, π)× Sk−1,

where f1 ∈ L0(0, π) and f2 ∈ L0(Sk−1). Then, by (3.6) and (4.1) we have that for (t, ξ) ∈
(0, π)× Sk−1,

T̂ ◦ Uk
j (f1 ⊗ f2)(t, ξ) = T (f2)(ξ)Uk

j (f1 ⊗ 1Sk−1)(t, ξ).

Likewise, by the linearity of T

Uk
j ◦ T̂ (f1 ⊗ f2)(t, ξ) = Uk

j ((f1 ⊗ T (f2)))(t, ξ) = T (f2)(ξ)Uk
j (f1 ⊗ 1Sk−1)(t, ξ).

Since linear combinations of measurable functions with separated variables are dense among
measurable functions on the product space, i.e., functions f of the form (4.3) are are dense
in L0(Sk), by a density argument we obtain (4.2).

Now we shall prove that T̂ ◦ Uk
j ∈ H(Sk) for any 2 ≤ j ≤ nk − 1. Take a function

ϕ ∈ C∞(Sk−1) such that

ϕ(t, ξ) = 1 for all (t, ξ) ∈ (ϑk1 − δ, ϑknk−1 + δ)× Sk−1,

and suppϕ is a compact subset of Sk \ {1k,−1k}. Then, the multiplication operator S
defined by Sf = ϕf belongs to H(Sk). Since, the range of S consists of functions vanishing

in some neighborhood of the two poles {1k,−1k}, the composition T̂ ◦ S also belongs to

H(Sk). Consequently, T̂ ◦ S ◦ Uk
j ∈ H(Sk). However, in light of (3.13) this composition

coincides with T̂ ◦ Uk
j for any 2 ≤ j ≤ nk − 1. Hence, we obtain the required conclusion.

To prove the second part of the lemma, suppose that T induces an orthogonal projection
on L2(Sk−1). To verify that T̂ is an orthogonal projection we take any f, g ∈ L2(Sk). Then
for almost all ϑ ∈ [0, π], fϑ, gϑ ∈ L2(Sk−1). Hence,∫

Sk
T̂ f(x)g(x)dσk(x) =

∫ π

0

∫
Sk−1

T (fϑ)(ξ)gϑ(ξ)dσk−1(ξ)(sin(ϑ))k−1dϑ

=

∫ π

0

∫
Sk−1

fϑ(ξ)T (gϑ)(ξ)dσk−1(ξ)(sin(ϑ))k−1dϑ

=

∫
Sk
f(x)T̂ g(x)dσk(x).

12



Observe that

T̂ ◦ T̂ (f)(t, ξ) = T ((T̂ (f))t)(ξ) = T (T (f t))(ξ) = T (f t)(ξ) = T̂ (t, ξ).

The second equality is a consequence of

(T̂ (f))t(ξ) = T̂ (f)(t, ξ) = T (f t)(ξ).

This finishes the proof of Lemma 4.1. �

5. Smooth orthogonal projections on Sd

In this section we construct smooth orthogonal projections corresponding to a partition of
the sphere Sd. We start with definitions of partitions of the sphere Sd into latitudinal strips
and patches.

Definition 5.1. Given a partition {ϑkj}
nk
j=0 of the interval [0, π], i.e.,

0 = ϑk0 < ϑk1 < · · · < ϑknk−1 < ϑknk = π,

we define an associated partition into latitudinal strips of the sphere Sk, k ≥ 2, by

Akj = Φk

(
[ϑkj−1, ϑ

k
j ]× Sk−1

)
, j = 1, . . . , nk.

In the special case when j = 1 or j = nk, the sets Ak1 and Aknk are referred as polar patches.

Definition 5.2. Suppose that {ϑkj}
nk
j=0 are partitions of the interval [0, 2π] when k = 1, and

of the interval [0, π] when k = 2, . . . , d, where d ≥ 1. The associated partition into patches
of the sphere Sd consists of two kinds of sets. The interior patches are given by

(5.1) Ψd([ϑ
d
id−1, ϑ

d
id

]× · · · × [ϑ1
i1−1, ϑ

1
i1

]),

where 1 ≤ i1 ≤ n1, and 2 ≤ ik ≤ nk − 1 for 2 ≤ k ≤ d. The boundary patches are given by

(5.2) Ψd([ϑ
d
id−1, ϑ

d
id

]× · · · × [ϑk+1
ik+1−1, ϑ

k+1
ik+1

]×Ψ−1
k (Akj )),

where j = 1 or j = nk, 2 ≤ k ≤ d, and 2 ≤ il ≤ nl − 1 for k + 1 ≤ l ≤ d. In particular, (5.2)
is understood as one of the polar patches Adj , j = 1, nd, when k = d. The set of all patches

Q of the form(5.1) and (5.2) is denoted by Qd.

Observe that we can also define a partition of the sphere Sd into patches using the following
recursion:

Qd =

{
{Ψ1([ϑ1

j−1, ϑ
1
j ]) : 1 ≤ j ≤ n1} d = 1,

{Φd([ϑ
d
j−1, ϑ

d
j ]×Q) : 2 ≤ j ≤ nd − 1, Q ∈ Qd−1} ∪ {Ad1, Adnd} d ≥ 2.

Any such partition of Sd−1 gives rise to the corresponding family of smooth projections as
defined below.

Definition 5.3. Let Qd be a partition of the sphere of Sd into patches. We define the family
of {PQ}Q∈Qd of smooth orthogonal projections on Sd according to the following recursive
procedure. If d = 1, then PQ’s are defined as in Definition 2.2. Suppose d ≥ 2. If Q = Adj ,

j = 1 or j = nd, is one of two polar patches, then we let PQ = Ud
j . Otherwise, if

(5.3) Q = Φd([ϑ
d
j−1, ϑ

d
j ]×Q′),

for some 2 ≤ j ≤ nd − 1 and Q′ ∈ Qd−1, then we let PQ = P̂Q′ ◦ Ud
j .
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Figure 2. The partition Q2 of the sphere S2 into patches

The following theorem summarizes properties of the projections PQ.

Theorem 5.1. Let Qd be the set of patches of the sphere Sd, d ≥ 1, as in Definition 5.2. For
any ε > 0, there exists a family of linear operators {PQ}Q∈Qd defined pointwise for functions
on Sd satisfying the following properties:

(i) Each operator PQ is localized around the patch Q. That is, for any function f : Sd → R
and x ∈ Sd we have

PQf(x) =

{
0 if d(x,Q) > ε,

f(x) if d(x,Sd \Q) > ε.

(ii) Each PQ considered as an operator

PQ : L2(Sd, σd)→ L2(Sd, σd)

is an orthogonal projection. The operators {PQ} give a decomposition of L2(Sd) into
orthogonal subspaces. That is, ∑

Q∈Qd
PQ = I,

where I is the identity operator. In particular, we have PQ ◦ PQ′ = 0 for Q 6= Q′ ∈ Qd.
(iii) Each PQ belongs to H(Sd). In particular, for any r = 0, 1, . . . and 1 ≤ p < ∞, PQ

induces bounded operators on Cr(Sd) and on the Sobolev space W r
p (Sd).

Proof. The proof is given by an induction on d ≥ 1. The base case d = 1 is a consequence
of Theorem 2.1.

Let δ > 0 be such that (3.9) holds for all k = 1, . . . , nk. Suppose that Q ∈ Qd is an interior
patch as in (5.1). By (3.12) and (3.13) in Lemma 3.4 and the recursive definition of PQ we
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have

(5.4) PQf(x) =

{
0 for x 6∈ Ψd([ϑ

d
id−1 − δ, ϑdid + δ]× · · · × [ϑ1

i1−1 − δ, ϑ1
i1

+ δ]),

f(x) for x ∈ Ψd([ϑ
d
id−1 + δ, ϑdid − δ]× · · · × [ϑ1

i1−1 + δ, ϑ1
i1
− δ]).

A similar property holds for boundary patches Q as in (5.2). Hence, by choosing δ > 0 to
be sufficiently small we obtain (i).

Let us assume that the theorem holds in the dimension d− 1. Suppose that Q ∈ Qd. If Q
is one of the two polar patches, then parts (ii) and (iii) follow from the corresponding parts

of Lemma 3.4. If Q is of the form (5.3), then PQ = P̂Q′ ◦Ud
j and it suffices to apply Lemmas

3.4 and 4.1 and the inductive hypothesis on PQ′ . Finally, the decomposition formula follows
from

I =

nd∑
j=1

Ud
j = Ud

1 + Ud
nd

+

nd−1∑
j=2

( ∑
Q′∈Qd−1

P̂Q′

)
◦ Ud

j =
∑
Q∈Qd

PQ.

Indeed, the operator inside the parenthesis equals I as a consequence of the inductive hy-
pothesis and (4.1). This completes the proof of the theorem. �

6. Function spaces and Parseval frames on the sphere

6.1. Decomposition of function spaces on the sphere. Ciesielski and Figiel [2] gave a
construction of spline bases on Besov spaces Bs

p,q(I
d) and Sobolev spaces W k

p (Id) on the unit

cube Id = [0, 1]d, where s ∈ R and 1 ≤ p, q ≤ ∞. It was the first step of their construction
of spline bases on Besov and Sobolev spaces on compact manifolds [3, 4]. Their main result
gives a decomposition of Sobolev and Besov spaces on smooth compact manifolds into the
corresponding function spaces on d-cubes with appropriate boundary conditions, see [3,
Theorem 4.9] and [11, Proposition 29]. However, their decomposition depends on the choice
of the smoothness parameter m and works only for Sobolev spaces W k

p and Besov spaces Bs
p,q

with the smoothness parameter |k| ≤ m and |s| < m. In contrast our decomposition using
smooth orthogonal projections works for all values of s ∈ R. For simplicity we consider only
positive smoothness function spaces to avoid dealing with function spaces whose elements
are distributions (rather than functions).

There are several equivalent ways of defining Sobolev spaces on manifolds. The standard
method, see Definition 3.3 and the book of Hebey [13], requires Riemannian structure on
a manifold. Since any two Riemannian metrics are equivalent on compact manifolds, the
corresponding Sobolev spaces do not depend on the choice of the metric, see [13, Proposition
2.2]. This also explains why Ciesielski-Figiel approach [2] to Sobolev spaces on compact
manifolds works without relating to a Riemannian structure. We shall recall the approach
in [2] below.

Definition 6.1. A subset Q ⊂ Sd is said to be a d-cube if there exists a diffeomorphism
φ : U → Rd such that Q ⊂ U = IntU and φ(Q) = Id.

Note that interior patches are cubes by the definition. Moreover, any boundary patch is
contained in a cube.

Definition 6.2. Let 1 ≤ p < ∞ and r ∈ N. A function f belongs to Sobolev spaces on
d-cube Q, f ∈ W r

p (Q) if f ◦ φ−1 ∈ W r
p (Id). A norm ‖ · ‖W r

p (Q) is given by

‖f‖W r
p (Q) = ‖f ◦ φ−1‖W r

p (Id).
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Choosing another diffeomorphism φ one obtains equivalent norms, see [2, Section 3] and
also [3, Lemma 2.52]. In a similar way we define Besov spaces Bs

p,q(Q), s > 0, 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞ with the norm

‖f‖Bsp,q(Q) = ‖f ◦ φ−1‖Bsp,q(Id).

By [3, Lemma 2.52] choosing another diffeomorphism φ one obtains equivalent norms.

Definition 6.3. Let {Qj}Nj=1 be a family of d-cubes in Sd such that

(6.1) Sd =
N⋃
j=1

IntQj.

We define the Sobolev space W r
p (Sd), 1 ≤ p < ∞, r ∈ N, to be the collection of all f with

the norm

‖f‖W r
p (Sd) =

N∑
j=1

‖f |Qj‖W r
p (Qj) <∞.

When p = ∞ we let W r
∞(Sd) = Cr(Sd). Likewise, we define the Besov space Bs

p,q(Sd),
1 ≤ p, q ≤ ∞, s ≥ 0 to be the collection of all f with the norm

‖f‖Bsp,q(Sd) =
N∑
j=1

‖f |Qj‖Bsp,q(Qj) <∞.

Choosing another family of d-cubes (6.1) one obtains equivalent norms, see [2, Section 3].
It is well known [3] that the Besov space Bs

p,q(Sd), where s > 0, 1 ≤ p, q ≤ ∞ can be obtained

using the real interpolation method between Lp = W 0
p and Sobolev space Wm

p , m > s,

(6.2) Bs
p,q(Sd) = (W 0

p (Sd),Wm
p (Sd))s/m,q.

Consequently, by Lemma 3.2 an operator H ∈ H(Sd) induces a bounded operator on Bs
p,q(Sd)

spaces.

Definition 6.4. Let F(Sd) be either the space Bs
p,q(Sd), s ≥ 0, 1 ≤ p, q ≤ ∞, or W r

p (Sd),
r ∈ N, 1 ≤ p ≤ ∞. Let Qd be a partition into patches of the sphere of Sd as in Definition
5.2. Define the spaces

(6.3) F(Q) := PQ(F(Sd)) for Q ∈ Qd.

Theorem 6.1. Let {PQ}Q∈Qd be the family of the orthogonal projections as in Theorem 5.1.
Then, there are constants C = C(p, q, s,Qd) > 0 such that for f ∈ F(Sd)

‖PQf‖F(Sd) ≤ C‖f‖F(Sd).

Moreover, each F(Q) is a closed subspace of F(Sd) and we have a direct sum decomposition

F(Sd) =
⊕
Q∈Qd

F(Q)

with the equivalence of norms

||f ||F(Sd) �
∑
Q∈Qd

||PQf ||F(Sd).
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Proof. By Lemma 3.2 and Theorem 5.1 there exists a constant C = C(r, p,Qd) > 0 such
that

‖PQf‖W r
p (Sd) ≤ C‖f‖W r

p (Sd) for f ∈ W r
p (Sd).

By the functorial property of interpolation spaces and (6.2) a similar property holds for
Besov spaces. Since each PQ is a projection, F(Q) = ker(PQ − I) is a closed subspace of
F(Sd). Moreover, the mapping f 7→ (PQf)Q∈Qd , f ∈ F(Sd) is an isomorphism between
F(Sd) and

⊕
Q∈Qd F(Q) since

f =
∑
Q∈Qd

PQf.

This completes the proof of Theorem 6.1. �

6.2. Localized Parseval frames on the sphere. Ciesielski-Figiel decomposition of man-
ifolds into cubes was used in the construction of wavelets on manifolds by Dahmen and
Schneider [8] and by Kunoth and Sahner [16]. In addition, Narcovich, Petrushev, and Ward
[19] have constructed well localized Parseval frames on the sphere, called needlets. In [20]
they used these frames to characterize Besov and Triebel-Lizorkin spaces on the sphere. A
generalization to compact homogeneous manifolds can be found in [10]. Here we shall give
an alternative construction of wavelets on the sphere by transferring wavelets bases from Rd

to patches Q via local diffeomorphisms.
Consider Daubechies multivariate wavelets. That is, for a fixed N ≥ 2, let Nφ be a uni-

variate, compactly supported scaling function with support suppNφ = [0, 2N−1] associated
with the compactly supported, orthogonal univariate Daubechies wavelet Nψ, see [9, Section
6.4]. For convenience, let ψ0 = Nφ and ψ1 = Nψ. Let E ′ = {0, 1}d be the vertices of the
unit cube and let E = E ′ \{0} be the set of nonzero vertices. For each e = (e1, . . . , ed) ∈ E ′,
define

ψe(x) = ψe1(x1) · · ·ψed(xd), x = (x1, . . . , xd) ∈ Rd.

Observe that suppψe = [0, 2N − 1]d.
Let D be the set of dyadic cubes in Rd of the form I = 2−j(k + [0, 1]d), j ∈ Z, k ∈ Zd.

Denote the side length of I by `(I) = 2−j. For any e ∈ E ′, define a wavelet scaled relative
to I by

ψe
I (x) = 2jd/2ψe(2jx− k), x ∈ Rd.

It is well-known that {ψe
I (x) : I ∈ D, e ∈ E} is an orthonormal basis of L2(Rd). Moreover,

it is also an unconditional basis of Cr(Rd) and the Sobolev space W r
p (Rd), r = 0, 1, . . . and

1 ≤ p <∞ for sufficiently large choice of N ≥ N(r) depending on r. For our purposes it is
convenient to consider wavelet systems localized to a cube.

Definition 6.5. Suppose that J =
∏d

i=1[ai, bi] is a cube in Rd and ε > 0. Define its ε

enlargement by Jε =
∏d

i=1[ai − ε, bi + ε]. Let j0 ∈ Z be the smallest integer such that

(6.4) (2N − 1)2−j0 < ε/2.

For any j ≥ j0, consider families of dyadic cubes

Dj = {I ∈ D : `(I) = 2−j and suppψe
I ⊂ Jε} and D+

j0
=

∞⋃
j=j0

Dj.
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Define a localized wavelet system relative to the cube J and ε > 0 by

S(J, ε) := {ψe
I : e ∈ E, I ∈ D+

j0
} ∪ {ψ0

I : I ∈ Dj0}.

Lemma 6.1. The localized wavelet system S(J, ε) has following properties:

• S(J, ε) is an orthonormal sequence in L2(Jε),
• for every f ∈ L2(Jε) with supp f ⊂ Jε/2 we have

(6.5) ‖f‖2
L2 =

∑
e∈E

∑
I∈D+

j0

|〈f, ψe
I 〉|2 +

∑
I∈Dj0

|〈f, ψ0
I 〉|2.

• magnitudes of coefficients {|〈f, g〉|}g∈S(J,ε) characterize functions f ∈ F(Rd) satisfy-
ing supp f ⊂ Jε/2, where F is either the Sobolev space W r

p or the Besov space Bs
p,q,

0 < s < r, 1 < p, q <∞.

Proof. This follows from from the properties of the corresponding (global) orthonormal
wavelet basis

(6.6) {ψe
I : e ∈ E, I ∈ D, `(I) ≤ 2−j0} ∪ {ψ0

I : I ∈ D, `(I) = 2−j0}

and the following elementary observation that is a consequence of (6.4). For any f ∈ L2(Jε)
satisfying supp f ⊂ Jε/2, and for any I ∈ D with `(I) ≤ 2−j0 and e ∈ E ′ = E ∪ {0}

〈f, ψe
I 〉 6= 0 =⇒ I ∈ D+

j0
.

Thus, the wavelet coefficients of such f with respect to the system (6.6) must vanish for
dyadic cubes that do not belong to D+

j0
. Hence, (6.5) holds. The same argument applies to

any other function space F , which can be characterized by wavelet coefficients of the system
(6.6), such as Sobolev space W r

p , 1 < p < ∞, see [17, Section 6.2]. In particular, for any

function f ∈ W r
p (Rd) with supp f ⊂ Jε/2 we have

||f ||W r
p
�
∥∥∥∥( ∑

(e,I)∈(E×D+
j0

)∪({0}×Dj0 )

|〈f, ψe
I 〉|2|I|−1−2rχI

)1/2∥∥∥∥
Lp
<∞.

�

The localized wavelet system S(J, ε) can be transferred to the sphere Sd via the spherical
coordinates Ψd. Consider the change of variables operator

Td : L2([0, π]d−1 × [0, 2π])→ L2(Sd)

given by

Td(ψ)(u) =
ψ(Ψd

−1(u))√
Jd(Ψ

−1
d (u))

, u ∈ Sd,

where Jd is the Jacobian of Ψd given by

Jd(θd, θd−1, . . . , θ1) = | sind−1 θd sind−2 θd−1 · · · sin θ2|.

Since the set where Ψd is not 1-1 has measure zero, by the change of variables formula, Td

is an isometric isomorphism.
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Definition 6.6. Let Qd be a partition of Sd as in Definition 5.2. Fix an interior patch
Q ∈ Qd of the form Q = Ψd(J), where

J = [ϑdid−1, ϑ
d
id

]× · · · × [ϑ1
i1−1, ϑ

1
i1

], 1 ≤ i1 ≤ n1 and 2 ≤ ik ≤ nk − 1 for 2 ≤ k ≤ d.

Let δ > 0 be such that (3.9) holds. Let ε = 2δ so that we have

(6.7) Jε/2 = [ϑdid−1 − δ, ϑdid + δ]× · · · × [ϑ1
i1−1 − δ, ϑ1

i1
+ δ].

Then, we can map the orthogonal wavelet system S(J, ε) on Rd into the sphere Sd using the
operator Td. That is, we define the localized wavelet system relative to the interior patch Q
as

(6.8) S(Q) = Td(S(J, ε)) = {Td(ψ
e
I ) : e ∈ E, I ∈ D+

j0
} ∪ {Td(ψ

0
I ) : I ∈ Dj0}.

In the case Q ∈ Qd is a boundary patch the above definition needs to be modified due to
singularities of the Jacobian Jd.

Definition 6.7. Fix a boundary patch of the form Q = Ψd(J), where

J = [ϑdid−1, ϑ
d
id

]× · · · × [ϑk+1
ik+1−1, ϑ

k+1
ik+1

]× [0, ϑk1]×Ψ−1
k−1(Sk−1),

where 2 ≤ k ≤ d. The case when [0, ϑk1] is replaced by [ϑknk−1, π]) is dealt in a similar way.
Let

(6.9) J ′δ = [ϑdid−1 − δ, ϑdid + δ]× · · · × [ϑk+1
ik+1−1 − δ, ϑk+1

ik+1
+ δ]× [0, ϑk1 + δ]×Ψ−1

k−1(Sk−1),

When ϑk1 +δ is sufficiently small (< π/4) one can find an orthogonal linear map O : Rd → Rd

such that Ψd(J
′
δ) ⊂ O(Ψd(J̃)), where

J̃ = [ad, bd]× . . .× [a2, b2]× [a1, b1],

0 < a1 < b1 < 2π, and 0 < ai < bi < π for i = 2, . . . , d. Once we choose 0 < ε <
min{ai, π− bi : i = 2, . . . , d}, we define the localized wavelet system relative to the boundary
patch Q as

(6.10) S(Q) = DO(Td(S(J̃ , ε))),

where DOf(x) = f(Ox) is a rotation operator by O.

Lemma 6.2. The localized wavelet system S(Q) has the following properties:

• S(Q) is an orthogonal sequence in L2(Sd) for any Q ∈ Qd,
• PQ(S(Q)) is a Parseval frame for PQ(L2(Sd)). That is, for any f ∈ PQ(L2(Sd))

(6.11) ‖f‖2
L2 =

∑
g∈S(Q)

|〈f, PQ(g)〉|2.

• magnitudes of coefficients {|〈f, g〉|}g∈PQ(S(Q)) characterize functions f ∈ F(Q), where
F is either the Sobolev space W r

p or the Besov space Bs
p,q, 0 < s < r, 1 < p, q < ∞,

and F(Q) is given by (6.3).

Proof. S(Q) is an orthogonal sequence in L2(Sd) as an immediate consequence of Lemma
6.1, Definition 6.6, and the fact that Td is an isometric isomorphism. Since S(Q) is not a
basis of L2(Sd), one can not automatically deduce that PQ(S(Q)) is a Parseval frame for
PQ(L2(Sd)). Instead, we need to use the following argument.
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First, suppose that Q ∈ Qd is an interior patch as in Definition 6.6. Take any f ∈
PQ(L2(Sd)). Then, by (5.4) we have

supp T−1
d f ⊂ Jε/2,

where Jε/2 is given by (6.7). By Lemma 6.1, (6.5), and (6.8) we have

||T−1
d f ||2 =

∑
g∈S(J,ε)

|〈T−1
d f, g〉|2 =

∑
g∈S(J,ε)

|〈f,Tdg〉|2 =
∑

g∈S(Q)

|〈PQf, g〉|2 =
∑

g∈S(Q)

|〈f, PQg〉|2.

Likewise, suppose that Q is a boundary patch as in Definition 6.7. Then, for any f ∈
PQ(L2(Sd)) we have

supp T−1
d D−1

O f ⊂ J̃ ,

where J̃ is given by (6.9). Using a similar calculation as above and (6.10) yields

||T−1
d D−1

O f ||2 =
∑

g∈S(J̃ ,ε)

|〈T−1
d D−1

O f, g〉|2 =
∑

g∈S(Q)

|〈PQf, g〉|2 =
∑

g∈S(Q)

|〈f, PQg〉|2.

This shows (6.11) and thus the Parseval frame property of PQ(S(Q)). Finally, the last
conclusion follows along the same lines from the last part of Lemma 6.1. �

Now that Lemma 6.2 is established, we define the wavelet system S(Qd) with respect to
the partition Qd of the sphere Sd as

S(Qd) :=
⋃
Q∈Qd

PQ(S(Q)).

Then we have the following result.

Theorem 6.2. The collection S(Qd) is a Parseval frame in L2(Sd). Moreover, magnitudes of
coefficients {|〈f, g〉|}g∈S(Qd) characterize functions f in F(Sd), where F is either the Sobolev
space W r

p or the Besov space Bs
p,q, 0 < s < r, 1 < p, q <∞.

Proof. The first part is an immediate consequence of Theorem 5.1 and Lemma 6.2. The
moreover part follows from Theorem 6.1 and Lemma 6.2. �
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