
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Contemporary Mathematics
Volume 612, 2014
http://dx.doi.org/10.1090/conm/612/12224

Spectra of Frame Operators with Prescribed Frame Norms

Marcin Bownik and John Jasper

Abstract. We study the set of possible finite spectra of self-adjoint operators
with fixed diagonal. In the language of frame theory, this is equivalent to study
of the set of finite spectra of frame operators with prescribed frame norms. We
show several properties of such sets. We also give some numerical examples
illustrating our results.

1. Introduction

The concept of frames in Hilbert spaces was originally introduced in the context
of nonharmonic Fourier series by Duffin and Schaeffer [12] in 1950’s. The advent
of wavelet theory brought a renewed interest in frame theory as is attested by now
classical books of Daubechies [11], Meyer [26], and Mallat [24]. For an introduction
to frame theory we refer to the book by Christensen [10].

Definition 1.1. A sequence {fi}i∈I in a Hilbert space H is called a frame if
there exist 0 < A ≤ B < ∞ such that

(1.1) A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2 for all f ∈ H.

The numbers A and B are called the frame bounds. The supremum over all A’s
and infimum over all B’s which satisfy (1.1) are called the optimal frame bounds. If
A = B, then {fi} is said to be a tight frame. In addition, if A = B = 1, then {fi}
is called a Parseval frame. The frame operator is defined by Sf =

∑
i∈I〈f, fi〉fi.

It is well-known that S is a self-adjoint operator satisfying AI ≤ S ≤ BI.

The construction of frames with desired properties is a vast subject that is cen-
tral to frame theory. Among the recently studied classes of frames with desired fea-
tures are: Grassmanian frames, equiangular frames, equal norm tight frames, finite
frames for sigma-delta quantization, fusion frames, frames for signal reconstruction
without the phase, etc. In particular, the problem of constructing frames with pre-
scribed norms and frame operator has been studied by many authors. Casazza and
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his collaborators [7–9] characterized norms of finite tight frames in terms of “fun-
damental frame inequality” using frame potential methods and gave an explicit
and algorithmic construction of finite tight frames with prescribed norms. Kor-
nelson and Larson [22] studied a similar problem for infinite dimensional Hilbert
spaces using projection decomposition. Antezana, Massey, Ruiz, and Stojanoff [1]
established the connection of this problem with the infinite dimensional Schur-Horn
problem and gave refined necessary conditions and sufficient conditions. A beau-
tifully simple and complete characterization of Parseval frame norms was given by
Kadison [18, 19], which easily extends to tight frames by scaling. The authors
[4] have extended this result to the non-tight setting to characterize frame norms
with prescribed optimal frame bounds. The second author [17] has characterized
diagonals of self-adjoint operators with three points in the spectrum. This yields
a characterization of frame norms whose frame operator has two point spectrum.
Finally, the authors [5,6] have recently extended this result to operators with finite
spectrum.

The above mentioned research was aimed primarily at characterizing diago-
nals of operators (or frame norms) with prescribed spectrum (or frame operator).
However, it is equally interesting to consider a converse problem of characterizing
spectra of operators with prescribed diagonal. In the language of frames, we are
asking for possible spectra of frame operators for which the sequence of frame norms
{||fi||}i∈I is prescribed. That is, given n ∈ N and a sequence {di}i∈I in [0, 1] we
consider the set

An = An({di}) =
{
(A1, . . . , An) ∈ (0, 1)n : ∀j �=k Aj 	= Ak(1.2)

∃ frame {fi}i∈I such that ∀i∈I di = ||fi||2 and its

frame operator S satisfies σ(S) = {A1, . . . , An, 1}
}
.

In this work we shall always assume that there exists α ∈ (0, 1) such that∑
di<α

di +
∑
di≥α

(1− di) < ∞.

Otherwise, it can be shown by Theorems 2.3 and 2.7 that An({di}) is the set of all
points in (0, 1)n with distinct coordinates.

The second author [17, Theorem 7.1] has shown that the set A1 is always
finite (possibly empty). In this paper we show some further properties such as a
characterization of sequences {di} for which A1 is nonempty. We also prove that
the set A2 consists of a countable union of line segments. Moreover, one endpoint
of each of these line segments must lie in the boundary of the unit square. Finally,
we show that the sets An are nonempty for all n ≥ 2 under the assumption that
infinitely many di’s satisfy di ∈ (0, 1). Moreover, we prove the optimality of this
result.

2. Background results about Schur-Horn type theorems

The classical Schur-Horn theorem [16,28] characterizes diagonals of self-adjoint
(Hermitian) matrices with given eigenvalues. It can be stated as follows, where HN

is N dimensional Hilbert space over R or C, i.e., HN = RN or CN .

Theorem 2.1 (Schur-Horn theorem). Let {λi}Ni=1 and {di}Ni=1 be real sequences
in nonincreasing order. There exists a self-adjoint operator E : HN → HN with
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eigenvalues {λi} and diagonal {di} if and only if

(2.1)
N∑
i=1

di =
N∑
i=1

λi and
n∑

i=1

di ≤
n∑

i=1

λi for all 1 ≤ n ≤ N.

The necessity of (2.1) is due to Schur [28] and the sufficiency of (2.1) is due to
Horn [16]. It should be noted that (2.1) can equivalently be stated in terms of the
convexity condition

(2.2) (d1, . . . , dN ) ∈ conv{(λσ(1), . . . , λσ(N)) : σ ∈ SN}.
This characterization has attracted a significant interest and has been generalized
in many remarkable ways. Some major milestones are the Kostant convexity theo-
rem [23] and the convexity of moment mappings in symplectic geometry [3,14,15].
Moreover, the problem of extending Theorem 2.1 to an infinite dimensional di-
mensional Hilbert space H was also investigated. Neumann [27] gave an infinite
dimensional version of the Schur-Horn theorem phrased in terms of �∞-closure of
the convexity condition (2.2). Neumann’s result can be considered an initial, al-
beit somewhat crude, solution of this problem. The first fully satisfactory progress
was achieved by Kadison. In his influential work [18, 19] Kadison discovered a
characterization of diagonals of orthogonal projections acting on H.

Theorem 2.2 (Kadison). Let {di}i∈I be a sequence in [0, 1] and α ∈ (0, 1).
Define

C(α) =
∑
di<α

di, D(α) =
∑
di≥α

(1− di).

There exists an orthogonal projection on �2(I) with diagonal {di}i∈I if and only if
either:

(i) C(α) = ∞ or D(α) = ∞, or
(ii) C(α) < ∞ and D(α) < ∞, and

(2.3) C(α)−D(α) ∈ Z.

The work by Gohberg and Markus [13] and Arveson and Kadison [2] extended
the Schur-Horn Theorem 2.1 to positive trace class operators. This has been further
extended to compact positive operators by Kaftal and Weiss [21]. These results are
stated in terms of majorization inequalities as in (2.1), see also [20] for a detailed
survey of recent progress on infinite Schur-Horn majorization theorems and their
connections to operator ideals. Antezana, Massey, Ruiz, and Stojanoff [1] refined
the results of Neumann [27]. Moreover, they showed the following connection
between Schur-Horn type theorems and the existence of frames with prescribed
norms and frame operators, see [1, Proposition 4.5] and [4, Proposition 2.3].

Theorem 2.3. Let {di}i∈I be a bounded sequence of positive numbers. Let S
be a positive self-adjoint operator on a Hilbert space H. Then the following are
equivalent:

(i) there exists a frame {fi}i∈I in H with the frame operator S such that
di = ||fi||2 for all i ∈ I,

(ii) there exists a larger Hilbert space K ⊃ H and a self-adjoint operator E
acting on �2(I), which is unitarily equivalent with S ⊕ 0, where 0 is the
zero operator acting on K � H, such that its diagonal 〈Eei, ei〉 = di for
all i ∈ I.
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The authors [4] have recently shown a variant of the Schur-Horn theorem for
a class of locally invertible self-adjoint operators on H.

Theorem 2.4. Let 0 < A < B < ∞ and {di} be a nonsummable sequence in
[0, B]. Define the numbers

(2.4) C =
∑
di<A

di and D =
∑
di≥A

(
B − di).

Then, there is a positive operator E on a Hilbert space H with {A,B} ⊆ σ(E) ⊆
{0} ∪ [A,B] and diagonal {di} if and only if

(2.5) ∃n ∈ N0 nA ≤ C ≤ A+B(n− 1) +D.

As a corollary of Theorems 2.3 and 2.4 we obtain the characterization of se-
quences of frame norms.

Corollary 2.5. Let 0 < A < B < ∞ and {di} be a nonsummable sequence in
[0, B]. There exists a frame {fi} on a Hilbert space H with optimal frame bounds
A and B, and di = ||fi||2, if and only if (2.5) holds.

One should emphasize that the non-tight case is not a mere generalization of
the tight case A = B established by Kadison [18,19]. Indeed, the non-tight case is
qualitatively different from the tight case, since by setting A = B in Theorem 2.4 we
do not get the correct necessary and sufficient condition (2.3) previously discovered
by Kadison. Another extension of Kadison’s result [18, 19] was obtained by the
second author [17] who characterized the set of diagonals of operators with three
points in the spectrum.

Theorem 2.6. Let 0 < A < B < ∞ and {di}i∈I be a sequence in [0, B] with∑
di =

∑
(B − di) = ∞. Define C and D as in (2.4). There is a self-adjoint

operator E with diagonal {di}i∈I and σ(E) = {0, A,B} if and only if one following
holds: (i) C = ∞, (ii) D = ∞, or (iii) C,D < ∞ and

∃N ∈ N ∃k ∈ Z C −D = NA+ kB and C ≥ (N + k)A.

Finally, the authors [5] showed the following characterization of diagonals of
self-adjoint operators with finite spectrum. Theorem 2.7 becomes a foundation on
which all subsequent results in this paper will be derived. We will often use this
result under a convenient normalization that B = 1.

Theorem 2.7. Let {Aj}n+1
j=0 be an increasing sequence of real numbers such

that A0 = 0 and An+1 = B, n ∈ N. Let {di}i∈I be a sequence in [0, B] with∑
di =

∑
(B − di) = ∞. For each α ∈ (0, B), define

(2.6) C(α) =
∑
di<α

di and D(α) =
∑
di≥α

(B − di).

Then, there exists a self-adjoint operator E with diagonal {di}i∈I and σ(E) =
{A0, A1, . . . , An+1} if and only if either:

(i) C(B/2) = ∞ or D(B/2) = ∞, or
(ii) C(B/2) < ∞ and D(B/2) < ∞, (and thus C(α), D(α) < ∞ for all

α ∈ (0, B)), and there exist N1, . . . , Nn ∈ N and k ∈ Z such that:

(2.7) C(B/2)−D(B/2) =
n∑

j=1

AjNj + kB,
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and for all r = 1, . . . , n,

(2.8) (B −Ar)C(Ar) +ArD(Ar) ≥ (B −Ar)

r∑
j=1

AjNj +Ar

n∑
j=r+1

(B −Aj)Nj .

3. Spectral set

In light of Theorem 2.3 we shall adopt the following definition for the set (1.2).

Definition 3.1. Suppose that {di}i∈I is a sequence in [0, 1]. For a given n ∈ N

we define the spectral set

An({di}) =
{
(A1, . . . , An) ∈ (0, 1)n : ∀j �=k Aj 	= Ak, ∃ self-adjoint operator

E on �2(I) with σ(E) = {0, A1, . . . , An, 1} and diagonal {di}
}
.

In order to apply Theorem 2.7 we shall assume that
∑

di =
∑

(1 − di) = ∞.
This is not a true limitation. Indeed, the case when

∑
di < ∞ or

∑
(1 − di) <

∞ requires an application of a finite rank analogue of Theorem 2.7. This leads
effectively to a finite dimensional case where the analysis is actually simpler, but
also less interesting; see Remark 3.3. Furthermore, we will consider only sequences
in the set

F :=

{
{di} : 0 ≤ di ≤ 1 and ∃α ∈ (0, 1) such that

∑
di<α

di +
∑
di≥α

(1− di) < ∞
}
.

Otherwise, Theorem 2.7(i) implies that An({di}) is the set of all points in (0, 1)n

with distinct coordinates, which is not interesting.

3.1. Three point spectrum. In this subsection we will look at properties of
the set A1({di}). In [17] it was shown that A1({di}) is a finite (possibly empty)
set for all {di} ∈ F . Recall that we assume

∑
di =

∑
(1− di) = ∞ so that we can

apply Theorem 2.7.

Definition 3.2. For a sequence {di}i∈I ∈ F set

η = C(1/2)−D(1/2)− �C(1/2)−D(1/2)�,
and define the function m : (0, 1) → Z by

m(A) = C(A)−D(A)− η.

Remark 3.1. Note that for A < A′

(3.1)

m(A′)−m(A) = C(A′)− C(A) +D(A)−D(A′)

=
∑

di∈[A,A′)

di +
∑

di∈[A,A′)

(1− di) = |{i : di ∈ [A,A′)}|.

Since m(1/2) = �C(1/2) − D(1/2)� ∈ Z, from (3.1) we see that m(A) ∈ Z for all
A ∈ (0, 1).

By Theorem 2.7 we have A ∈ A1({di}) if and only if there exists N ∈ N and
k ∈ Z such that

(3.2) C(A)−D(A) = AN + k

and

(3.3) (1−A)C(A) +AD(A) ≥ (1−A)AN.
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In principle, to verify that A ∈ A1 one would need to check the inequality (3.3)
for all N and k such that (3.2) holds. The next theorem shows that one needs only
to check that (3.3) holds for a particular N ∈ N.

Theorem 3.3. Let {di}i∈I ∈ F , and let η be as in Definition 3.2. Fix A ∈ (0, 1)
and set

q = min{j ∈ N : jA− η ∈ Z}.
The number A is in A1({di}) if and only if

(3.4) (1−A)C(A) +AD(A) ≥ (1−A)Aq.

Remark 3.2. If there is no j ∈ N so that jA − η ∈ Z, then we have q =
min∅ = ∞. In this case the inequality (3.4) does not hold and we conclude that
A /∈ A1.

Proof. Assume that A ∈ A1. By Theorem 2.7 there exists N ∈ N and k ∈ Z

such that (3.2) and (3.3) hold. From (3.2) we see that NA − η ∈ Z. Thus, q ≤ N
and (3.4) holds.

Conversely, assume that (3.4) holds. By Theorem 2.7 it is enough to show that
(3.2) and (3.3) hold with N = q and k = m(A)−qA+η. It is clear that (3.3) holds,
since this is exactly (3.4). Finally, we have

C(A)−D(A) = m(A) + η = qA+ k,

which is exactly (3.2). �

Theorem 3.3 gives a finite algorithm to check whether a given number A ∈ (0, 1)
is in A1. For each

1 ≤ j ≤
⌊
(1−A)C(A) +AD(A)

(1−A)A

⌋
we compute the quantity jA− η. Then, by Theorem 3.3 A ∈ A1 if and only if one
of these numbers is an integer.

Theorem 3.4. Let {di}i∈I ∈ F , and let η be as in Definition 3.2. If η 	= 0,
then η ∈ A1({di}). In particular, if {di} is not the diagonal of a projection, then
A1({di}) 	= ∅.

Proof. By Theorem 3.3 it is enough to show that (3.4) holds with A = η.
Note that

q = min{j ∈ N : jη − η ∈ Z} = 1.

Thus, it is enough to verify that

(3.5) (1− η)C(η) + ηD(η) ≥ (1− η)η.

If m(η) ≥ 0, then

C(η) ≥ C(η)−D(η) = m(η) + η ≥ η.

If m(η) ≤ −1, then

D(η) ≥ D(η)− C(η) = −m(η)− η ≥ 1− η.

In either case we conclude that (3.5) holds. �

The next theorem characterizes the sequences {di} such that A1({di}) = ∅.
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Theorem 3.5. Let {di}i∈I ∈ F , and let η be as in Definition 3.2. The set
A1 = ∅ if and only if η = 0 and

(3.6) C(1/2) +D(1/2) < 1.

That is, A1 is empty if and only if {di} is the diagonal of a projection and 1/2 /∈ A1.

Proof. We begin by assuming that A1 = ∅. By Theorem 3.4 we must have
η = 0, otherwise η ∈ A1 and thus A1 	= ∅. Thus, we may assume η = 0. Since
1/2 /∈ A1, Theorem 3.3 shows (3.6).

Conversely, assume that η = 0 and (3.6) holds. Since C(1/2) − D(1/2) ∈ Z

we conclude that C(1/2) = D(1/2) < 1/2 and m(1/2) = 0. For the sake of
contradiction assume that there is some A ∈ A1 ∩ (0, 1/2]. From (3.2) we see that
A ∈ Q. That is, A = p/q for some p, q ∈ N with gcd(p, q) = 1. From (3.2) we have

(3.7) −m(A) = m(1/2)−m(A) = |{i : A ≤ di < 1/2}|

Using (3.7) and the definition of m(A) we have

(1−A)C(A) +AD(A) = −Am(A) + C(A) = −Am(A) +
∑
di<A

di

= −Am(A) + C(1/2)−
∑

A≤di<1/2

di

≤ −Am(A) + C(1/2)−A|{i : A ≤ di < 1/2}| = C(1/2)

<
1

2
≤ 1−A ≤ (1−A)p = (1−A)Aq.

This implies that (3.4) does not hold, and by Theorem 3.3 A /∈ A1. Consequently,
A1 ∩ (0, 1/2] = ∅. A similar argument shows that A1 ∩ (1/2, 1) = ∅, and thus
A1 = ∅. �

Remark 3.3. Recall that in this section it is assumed that
∑

di =
∑

(1−di) =
∞ so that Theorem 2.7 applies. However, all of the results in this subsection hold
under the weaker assumption that both

∑
di ≥ 1 and

∑
(1 − di) ≥ 1. In the

case that {di} or {1− di} is summable the proofs are similar to those above. The
difference being that the applications of Theorem 2.7 are replaced by a finite rank
version of the Schur-Horn theorem [21].

3.2. Finite point spectrum. In this subsection we will look at properties of
the set An({di}), where n ≥ 2.

Definition 3.6. Let {di}i∈I ∈ F and let η be as in Definition 3.2. By Theorem
2.7 a point (A1, . . . , An) with 0 < A1 < . . . < An < 1 belongs to An({di}) if and
only there exist N1, . . . , Nn ∈ N such that

(3.8)

n∑
j=1

AjNj ≡ η mod 1

and for all r = 1, . . . , n,

(3.9) (1−Ar)C(Ar) +ArD(Ar) ≥ (1−Ar)
r∑

j=1

AjNj +Ar

n∑
j=r+1

(1−Aj)Nj .
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Given (N1, . . . , Nn) ∈ Nn define the set
(3.10)

AN1,...,Nn
n ({di}) =

{
(A1, . . . , An) : 0 < A1 < . . . < An < 1, (3.8) and (3.9) hold

}
.

As an immediate consequence of Theorem 2.7 we have that

(3.11) An({di}) =
⋃

(N1,...,Nn)∈Nn

⋃
σ∈Σn

σ ◦ AN1,...,Nn
n ({di}),

where ◦ denotes the action of the permutation group Σn on Rn.

Theorem 3.7. Let {di}i∈I ∈ F be such that

(3.12) {i ∈ I : di ∈ (0, 1)} is infinite,

and let η be as in Definition 3.2. Then, the set AN1,...,Nn
n ({di}) is nonempty if one

of the following holds:

(i) the sequence {di} is a diagonal of a projection, i.e., η = 0, and both of
the sets {i ∈ I : di ∈ (0, 1/2)} and {i ∈ I : di ∈ (1/2, 1)} are infinite,

(ii) η > 0, N1 = 1, and {i ∈ I : di ∈ (1/2, 1)} is infinite,
(iii) η > 0, Nn = 1, and {i ∈ I : di ∈ (0, 1/2)} is infinite,

Proof. By our hypothesis (3.12) and C(1/2), D(1/2) < ∞, we have that {i :
di ∈ (0, ε)} or {i : di ∈ (1− ε, 1)} are infinite for every ε > 0. This implies that at
least one of the following holds:

∀α∈(0,1) C(α) > 0 and lim
α→0+

D(α) = ∞,(3.13)

∀α∈(0,1) D(α) > 0 and lim
α→1−

C(α) = ∞.(3.14)

First we shall prove that (i) or (ii) imply the existence of 0 < ε < 1 − η such
that for any A1 ∈ (η, η + ε) and A2 ∈ (1 − ε, 1), there exist A3 < . . . < An such
that (3.9) holds.

Case (i). Suppose that {di} is a diagonal of a projection, i.e., η = 0, and both
(3.13) and (3.14) hold. Thus, there exists ε > 0 such that

D(A1) ≥
n∑

j=1

Nj for all A1 ∈ (0, ε),(3.15)

C(A2) ≥ N1 +N2 for all A2 ∈ (1− ε, 1).(3.16)

Once A1 and A2 satisfying (3.15) and (3.16) are chosen we will show inductively
that there exist A3 < . . . < An such that (3.17) holds:

(3.17) ∀r=2,...,n C(Ar) ≥
r∑

j=1

Nj and D(Ar) ≥
n∑

j=r+1

(1−Aj)Nj .

Indeed, once A1, . . . , Ar−1, r ≥ 3, are defined, by (3.14) we can choose Ar suffi-
ciently close to 1 such that

C(Ar) ≥
r∑

j=1

Nj and (1−Ar)
n∑

j=r

Nj ≤ D(Ar−1).
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Since
n∑

j=r

(1−Aj)Nj ≤ (1−Ar)
n∑

j=r

Nj

this inductive process yields (A1, . . . , An) such that (3.15) and (3.17) are satisfied.
Thus, (3.9) holds.

Case (ii). We assume that η > 0, N1 = 1, and (3.14) holds. There are two
subcases to consider. Suppose that C(η) > η. By (3.14) this implies that there
exists 1− η > ε > 0 such that (3.16) holds and

(3.18) C(A1) ≥ A1 + ε
n∑

j=2

Nj for all A1 ∈ (η, η + ε).

Hence, for any A1 ∈ (η, η + ε) and A2 ∈ (1− ε, 1) we have

(1−A1)C(A1)+A1D(A1) ≥ (1−A1)

(
A1 +(1−A2)

n∑
j=2

Nj

)
≥ A1

n∑
j=1

(1−Aj)Nj .

Suppose that C(η) ≤ η. Since C(α)−D(α) ≡ η mod 1 for all α, by (3.14) we have
D(η) > 1− η. Then again by (3.14) we can choose 1− η > ε > 0 such that (3.16)
holds and

(3.19) D(A1) ≥ 1−A1 + ε

n∑
j=2

Nj for A1 ∈ (η, η + ε).

Hence, for any A1 ∈ (η, η + ε) and A2 ∈ (1− ε, 1) we have

(1−A1)C(A1) +A1D(A1) ≥ A1

(
1−A1 + (1−A2)

n∑
j=2

Nj

)
≥ A1

n∑
j=1

(1−Aj)Nj .

In either case, by an inductive argument as in case (i) one can show that there exist
A3 < . . . < An such that (3.17) holds. Thus, (3.9) holds.

It remains to prove that that we can find a solution to (3.9) which, in addition,
satisfies (3.8). Choose A2 ∈ (0, 1) close enough to 1 such that 1−A2 < ε/

∑n
j=2 Nj .

Then,
n∑

j=2

AjNj ≡ −
n∑

j=2

(1−Aj)Nj ≡ −x mod 1,

for some 0 < x < ε. Thus, by choosing A1 = η + x/N1 we have (3.8), and thus
(A1, . . . , An) ∈ AN1,...,Nn

n ({di}). This completes the proof of Theorem 3.7 under
assumptions (i) and (ii). Finally, case (iii) follows by symmetry from (ii). �

Theorem 3.8. Let {di} ∈ F . The set An({di}) is nonempty for each n ≥ 2 if
and only if {i : di ∈ (0, 1)} is infinite.

Proof. Assume that n ≥ 2 and (3.12) holds. Theorem 3.7 and the identity
(3.11) shows that An 	= ∅ unless we are in the special case when {di} is a diagonal
of a projection, η = 0, and only one of the sets {i ∈ I : di ∈ (0, 1/2)} or {i ∈ I :
di ∈ (1/2, 1)} is infinite. Without loss of generality we can assume that {i ∈ I :
di ∈ (1/2, 1)} is finite since the other case is done by symmetry. This implies that

k0 =
∑
i∈I0

di < ∞, where I0 = {i ∈ I : di ∈ [0, 1)}.
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Moreover
∑

di = ∞ implies that I1 = {i ∈ I : di = 1} is infinite.
Using the finite rank Schur-Horn theorem [4, Theorem 3.2] one can show that

there exists a self-adjoint operator E0 with diagonal {di}i∈I0 and spectrum σ(E0) =
{0, A1, . . . , An} for some 0 < A1 < . . . < An. This can be proved by an induction
argument on n ≥ 2. For the base case n = 2 we consider an eigenvalue sequence
which consists of A1 = k0(1−A2) and k0 copies of A2. It is easy to verify that this
sequence fulfills majorization condition of [4, Theorem 3.2] when A2 is sufficiently
close to 1. For the inductive step suppose we have a finite rank operator with
required diagonal and positive eigenvalues A1 < . . . < An, where eigenvalue A1

has multiplicity 1. We split the smallest eigenvalue A1 into two eigenvalues δ
and A1 − δ, δ > 0. Then one can show that the resulting eigenvalue sequence
satisfies the assumptions of [4, Theorem 3.2] for sufficiently small δ > 0. Observe
that the operator E = E0 ⊕ I, where I is the identity on �2(I1), has spectrum
σ(E) = σ(E0) ∪ {1} and diagonal {di}i∈I . Applying Theorem 2.7 implies that
(A1, . . . , An) ∈ An. Thus, An is nonempty.

Conversely, assume that An is nonempty for all n ≥ 2. On the contrary,
suppose that I2 = {i ∈ I : di ∈ (0, 1)} is finite and has n elements. Since An+1 	= ∅

there exists an operator E with spectrum σ(E) = {0, A1, . . . , An+1, 1} and diagonal
{di}i∈I . Then, E can be decomposed as E = E′ ⊕ P , where E′ acts on �2(I2)
and P is a projection, see [4, Proof of Theorem 5.1]. Consequently, E′ acts on
n dimensional space, but yet has at least n + 1 points in the spectrum. This
contradiction finishes the proof of Theorem 3.8. �

In order to study more subtle properties of the set An({di}) it is useful to prove
the following lemma.

Lemma 3.9. Let {di}i∈I ∈ F and let η be as in Definition 3.2. Then the
function f : (0, 1) → (0,∞) defined by f(α) = (1 − α)C(α) + αD(α) is piecewise
linear, continuous, concave, and it satisfies

(3.20) lim
α→0+

f(α) = lim
α→1−

f(α) = 0.

Moreover, f ′(α) ≡ −η (mod 1) for every α ∈ (0, 1) \ {di : i ∈ I}.

Proof. The continuity of f at each α ∈ (0, 1) \ {di : i ∈ I} is clear from the
definition. For α = di0 we see that

lim
α→d−

i0

f(α) = (1− di0)
∑

di<di0

di + di0
∑

di≥di0

(1− di) = f(di0),

and

lim
α→d+

i0

f(α) = (1− di0)
∑

di≤di0

di + di0
∑

di>di0

(1− di)

= (1− di0)
∑

di<di0

di + di0
∑

di>di0

(1− di) + (1− di0)di0 |{i ∈ I : di = di0}|

= (1− di0)
∑

di<di0

di + di0
∑

di≥di0

(1− di) = f(di0).

This shows that f is continuous on (0, 1).
The set (0, 1)\{di : i ∈ I} is a countable collection of open intervals. On each of

these intervals both C(α) and D(α) are constant, and thus f ′(α) = D(α)−C(α) ≡
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−η (mod 1) for α ∈ (0, 1)\{di : i ∈ I}. We deduce that f is linear on any subinterval
I ⊂ (0, 1), which does not contain any of di’s. Moreover, f ′(α) is decreasing on the
set where it is defined. Consequently, f is concave.

Finally, to prove (3.20) observe that for all 0 < α < β < 1

(1− β)C(β) = (1− β)C(α) + (1− β)
∑

α≤di<β

di

≤ (1− β)C(α) + (1− β)β|{i : α ≤ di < β}|

≤ (1− β)C(α) + β
∑

α≤di<β

(1− di) = (1− β)C(α) + βD(α)− βD(β).

Rearranging gives

(3.21) f(β) = (1− β)C(β) + βD(β) ≤ (1− β)C(α) + βD(α).

It can similarly be shown that (3.21) holds for 0 < β < α < 1. From this we deduce
that for any α ∈ (0, 1)

lim sup
β→0+

f(β) ≤ C(α) and lim sup
β→1−

f(β) ≤ D(α).

Since C(α) → 0 as α → 0+, D(α) → 0 as α → 1−, and f(β) ≥ 0 for all β ∈ (0, 1)
we have

lim
β→0+

f(β) = lim
β→1−

f(β) = 0.

�

Remark 3.4. Suppose that 0 = A0 < A1 < . . . < An < An+1 = 1, and
Nj ∈ N, j = 1, . . . ,N. Observe that Lemma 3.9 can be also applied to a finite

sequence {d̃j}σj=1, where σ = N1 + . . .+Nn, is given by

(d̃1, . . . , d̃σ) = (A1, . . . , A1︸ ︷︷ ︸
N1

, A2, . . . , A2︸ ︷︷ ︸
N2

, . . . , An, . . . , An︸ ︷︷ ︸
Nn

).

Let g(α) = (1 − α)C̃(α) + αD̃(α), where C̃(α) and D̃(α) are defined by (2.6) for

the sequence {d̃j}σj=1. Then, the majorization inequalities (2.8) can be restated as

(3.22) f(α) ≥ g(α) for α = Ar, r = 1, . . . , n.

Since f is a concave function and g is a piecewise linear function with knots at
A1, . . . , An, (3.22) is equivalent to

(3.23) f(α) ≥ g(α) for all α ∈ (0, 1).

Thus, the majorization inequality (2.8) is equivalent to an inequality (3.23) between

two functions defined as above out of two sequences {di}i∈I and {d̃j}σj=1, resp.

This observation will play a key role in the proof of the following lemma.

Lemma 3.10. Let {di}i∈I ∈ F be a sequence in [0, 1]. Let Nj ∈ N, j =
1, . . . , n. Suppose that (A1, . . . , An) ∈ AN1,...,Nn

n ({di}). Then, for any choice of
r, s = 1, . . . , n, r < s, and any 0 < A′

1 < . . . < A′
n < 1 satisfying:

Ar−1 < A′
r < Ar and As < A′

s < As+1,(3.24)

A′
j = Aj , for j 	= r, s,(3.25)

A′
rNr +A′

sNs = ArNr +AsNs,(3.26)
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we have (A′
1, . . . , A

′
n) ∈ AN1,...,Nn

n ({di}).

Proof. Let h be the function defined as in Lemma 3.9 corresponding to the
sequence

(A′
1, . . . , A

′
1︸ ︷︷ ︸

N1

, A′
2, . . . , A

′
2︸ ︷︷ ︸

N2

, . . . , A′
n, . . . , A

′
n︸ ︷︷ ︸

Nn

).

By (3.26) we have that (3.8) holds for {(A′
j , Nj)}nj=1. Moreover, in order to establish

(3.9) for {(A′
j , Nj)}nj=1, by Remark 3.4 it suffices to show that g(α) ≥ h(α) for all

α ∈ (0, 1). This follows immediately from the following identity

(3.27) h(α)− g(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 α ∈ (0, A′

r) ∪ (A′
s, 1),

Nr(A
′
r − α) α ∈ (A′

r, Ar),

Nr(A
′
r −Ar) = Ns(As −A′

s) α ∈ (Ar, As),

Ns(α−A′
s) α ∈ (As, A

′
s).

The proof of (3.27) is a calculation which we present only for α ∈ (A′
r, Ar). By

comparing common terms appearing in g and h we see by (3.24) and (3.25) that
they cancel out except when j = r, s. That is, by (3.26) we have

h(α)− g(α) = (1− α)NrA
′
r + αNs(1−A′

s)− αNr(1− Ar)− αNs(1−As)

= NrA
′
r + αNs − αAr − αNs = Nr(A

′
r − α).

This shows that (3.9) holds for (A′
1, . . . , A

′
n) and completes the proof of Lemma

3.10. �
As a consequence of Lemma 3.10 and some standard results in majorization

theory [25] we have the following result which bears a close resemblance to the
Schur-Horn Theorem 2.1.

Theorem 3.11. Let {di}i∈I ∈ F be a sequence in [0, 1]. Let Nj ∈ N, j =
1, . . . , n. Suppose that (A1, . . . , An) ∈ AN1,...,Nn

n ({di}). Then, for any 0 < A′
1 <

. . . < A′
n < 1 satisfying

n∑
j=1

A′
jNj =

n∑
j=1

AjNj and

m∑
j=1

A′
jNj ≤

m∑
j=1

AjNj for 1 ≤ m ≤ n,

we have (A′
1, . . . , A

′
n) ∈ AN1,...,Nn

n ({di}).

Proof. For simplicity we shall sketch the proof only in the special case N1 =
. . . = Nn = 1, where results from the majorization theory are readily applicable.
By [25, Lemma 2.B.1] sequence (A′

1, . . . , A
′
n) can be derived from (A1, . . . , An) by

a successive finite application of T -transforms, also known as convex moves. These
operations correspond to successive applications of Lemma 3.10. Also by analyzing
the proof of [25, Lemma 2.B.1] it is apparent that these T -transforms preserve
strict monotonicity of (A1, . . . , An) at each step. �

3.3. Four point spectrum. As a consequence of Lemma 3.10 we have the

following result about AN1,N2

2 ({di}).

Lemma 3.12. Let {di}i∈I ∈ F be a sequence in [0, 1] and N1, N2 ∈ N. Then,

the set AN1,N2

2 ({di}) consists of a finite number (possibly zero) of line segments
with slopes −N1/N2. One endpoint of each of these line segments must lie in the
boundary of the unit square (0, 1)2.
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Proof. By (2.7) any (A1, A2) ∈ AN1,N2

2 ({di}) must satisfy for some k ∈ Z

C(1/2)−D(1/2) = N1A1 +N2A2 + k.

The above equation defines a line with slope −N1/N2 in (A1, A2) plane which can
intersect the unit square (0, 1)2 only for finitely many values of k ∈ Z. By Lemma
3.10 for any point (A′

1, A
′
2) with 0 < A′

1 < A1 and A2 < A′
2 < 1, which lies on

the same line as (A1, A2), we have (A′
1, A

′
2) ∈ AN1,N2

2 ({di}). This together with
Theorem 3.7 completes the proof. �

As a corollary of Theorem 3.8 and Lemma 3.12, we obtain the following de-
scription of the set A2({di}).

Corollary 3.13. Let {di}i∈I ∈ F be a sequence in [0, 1] satisfying (3.12).
Then, the set A2({di}) is nonempty and it consists of a countable union of line
segments. Moreover, one endpoint of each of these line segments must lie in the
boundary of the unit square.

We shall illustrate Corollary 3.13 for the symmetric geometric sequence already
studied in [17].
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Figure 1. The sets A2({di}) for β = 0.3, 0.5, 0.7, 0.8, resp.
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Example 3.14. Let β ∈ (0, 1) and define the sequence {di}i∈Z\{0} by

di =

{
1− βi i > 0

β−i i < 0
.

Using the characterization from Theorem 2.7 and numerical calculations performed
with Mathematica, Figure 1 depicts the set A2({di}) for different values of the
parameter β.
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