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Oversampling of wavelet frames for real dilations

Marcin Bownik and Jakob Lemvig

Abstract

We generalize the Second Oversampling Theorem for wavelet frames and dual wavelet frames
from the setting of integer dilations to real dilations. We also study the relationship between
dilation matrix oversampling of semi-orthogonal Parseval wavelet frames and the additional shift
invariance gain of the core subspace.

1. Introduction

Oversampling of wavelet frames has been a subject of extensive study by several authors dating
back to the early 1990s. The first oversampling results are due to Chui and Shi [16, 17], who
proved that oversampling by odd factors preserves tightness of dyadic affine frames. This is
now the central result of the subject known as the Second Oversampling Theorem. Its higher
dimensional generalizations to integer matrix dilations were studied by Chui and Shi [18],
Johnson [27], Laugesen [30], and Ron and Shen [31]. In particular, these authors introduced (in
several equivalent forms) the class of oversampling matrices ‘relatively prime’ to a fixed dilation
A and they established several oversampling results for (not necessarily tight) affine frames.
Dutkay and Jorgensen [23] shed a new light on these results by showing that oversampling
of orthonormal (or frame) wavelets by such matrices leads to orthonormal (or frame) super-
wavelets, respectively.

Chui and Sun [22] have completed the understanding of the case of integer dilations by
showing that the class of ‘relatively prime’ matrices is optimal for the Second Oversampling
Theorem; that is, if an oversampling matrix falls out of this class, then the oversampling does
not preserve a tight frame property in general. However, it is possible to give a characterization
of oversampling matrices preserving tightness once affine frame generators are chosen. These
results are also due to Chui and Sun [21, 22] who extended earlier results by Catalán [12].

Despite this progress, much less is known on oversampling of affine systems generated by
non-integer dilations. Chui, Czaja, Maggioni, and Weiss [15] have proved some results on
the oversampling of tight affine frames and dual affine frames generated by special classes of
real dilations. Hernández, Labate, Weiss, and Wilson [25] extended the Second Oversampling
Theorem to (not necessarily tight) affine frames associated with rational dilations. Moreover,
they also considered more general types of scale adaptive oversampling typically arising in the
study of quasi-affine systems; see also [6, 8, 20, 31]. However, these results did not attempt to
cover all possible real dilations.

The goal of this paper is to extend the Second Oversampling Theorem to arbitrary real
dilations. We propose yet another condition on the oversampling lattice which guarantees
preservation of frame bounds of the oversampled affine system. In the case of integer dilations,
our condition is easily seen to be equivalent with the previously mentioned optimal ‘relative
prime’ condition. Moreover, in the case of rational dilations, our result generalizes the above
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mentioned result in [25]. Since our condition is applicable for general real dilations, including
non-integer classes of dilations considered in [15, 25], it unifies and extends previous results.
In particular, our oversampling result is applicable both for non-tight frames and dual
affine frames.

To achieve our goal we introduce and study new concepts in the theory of lattices involving
approximate representatives of distinct cosets and approximate duals. We have built our
methods from scratch since we could not find similar results in the existing literature. We believe
that our results could be of independent interest. There are two key results worth mentioning
here. Our first theorem shows the existence of an approximate constellation for a suitable
collection of lattices. In proving this result, we have adapted the notion of a constellation,
which is borrowed from the coding theory as in the work of Calderbank and Sloane [10],
to the setting of approximate coset representatives. Our second result is an extension of the
duality identity

(Γ ∩ Λ)∗ = Γ∗ + Λ∗ for lattices Λ, Γ ⊂ Rn.

We establish an analogue of this identity for finitely generated (but not necessarily discrete)
subgroups Γ ⊂ Rn in terms of approximate duals. This is shown using arguments involving
uniform distribution of sequences [28].

The remaining elements of our techniques are more standard and involve the use of
almost periodic functions. This technique was pioneered by Laugesen [29, 30] in his work
on translational averaging of the wavelet functional, and later extended by Hernández, Labate,
Weiss, and Wilson [24, 25], and the authors [8]. Finally, the last section relies on a general
result about shift-invariance gain of principal shift-invariant spaces. This is a higher dimensional
analogue of a result due to Aldroubi, Cabrelli, Heil, Kornelson, and Molter [1].

The paper is organized as follows. In Section 2, we introduce and study the notions of
approximate transversals and approximate duals. In Section 3, we show the generalization
of the Second Oversampling Theorem to real dilations. In Section 4, we show oversampling
results for dual affine frames. We also give a counterexample to one of the results claimed in
the paper of Chui, Czaja, Maggioni, and Weiss [15]. Finally, in Section 5, we show results on
the equivalence of tight frame preservation for dilation matrix oversampling of the translation
lattice and the membership in Behera–Weber classes of wavelets [2, 33].

We end this introduction by reviewing some basic definitions. A frame for a separable Hilbert
space H is a countable collection of vectors {fj}j∈J for which there are constants 0 < C1 �
C2 <∞ such that

C1||f ||2 �
∑
j∈J

|〈f, fj〉|2 � C2‖f‖2 for all f ∈ H.

If the upper bound in the above inequality holds, then {fj} is said to be a Bessel sequence with
Bessel constant C2. A frame {fj} is said to be tight if we can choose C1 = C2; if, furthermore,
C1 = C2 = 1, then the sequence {fj} is said to be a Parseval frame.

Two Bessel sequences {fj} and {gj} are said to be dual frames if

f =
∑
j∈J

〈f, gj〉fj for all f ∈ H.

It can be shown that two such Bessel sequences indeed are frames, and we shall say that
the frame {gj} is dual to {fj}, and vice versa. The book by Christensen [14] serves as an
introduction to the frame theory.

For f ∈ L1(Rn), the Fourier transform is defined by

F f(ξ) = f̂(ξ) =
∫

Rn

f(x) e−2πi〈ξ,x〉dx
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with the usual extension to L2(Rn). We will frequently prove our results on the following dense
subspace of L2(Rn)

D = {f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact in Rn \ {0}}. (1.1)

2. Approximate transversals and duals

In this section, we introduce some new notions in the theory of lattices that are understood
here as discrete subgroups of Rn. We refer to the book by Cassels [13] for basic properties of
lattices. In particular, we introduce and study the notions of approximate representatives of
distinct cosets, an approximate transversal constellation, and an approximate dual. We shall
build our theory from scratch since we could not find such results in the existing literature.

The notion of a constellation is frequently used in the coding theory. In particular,
Calderbank and Sloane [10] have investigated signal constellations consisting of a finite number
of points from a lattice Λ, with an equal number of points from each coset of a sublattice Γ ⊂ Λ.
We shall use the same notion albeit in the approximate sense defined below.

Definition 2.1. Suppose that Γ ⊂ Λ are two full rank lattices in Rn and ε � 0. We say that
a set D = {d1, . . . , dl}, where l = #|Λ/Γ| is the order of the quotient group, is an ε-approximate
transversal of Λ/Γ if there exists set D′ = {d′1, . . . , d′l} of representatives of distinct cosets of
Λ/Γ such that |di − d′i| � ε for all i = 1, . . . , l. We say that a multiset (set with multiplicities) K
is an ε-approximate transversal constellation if it is a union of a finite number of ε-approximate
transversals.

The following result is a generalization of [26, Lemma 23.19]; see also [8, Lemma 3.6].

Lemma 2.2. Suppose that Γ ⊂ Λ are two full rank lattices in Rn. Suppose that D is an
ε-approximate transversal constellation of Λ/Γ for some ε � 0. Then

1
#|D|

∑
d∈D

e2πi〈m,d〉 =

{
1 +O(|m| ε) m ∈ Λ∗,
O(|m| ε) m ∈ Γ∗ \ Λ∗,

as ε→ 0.

Proof. Without loss of generality, we can assume that D = {d1, . . . , dl} is an ε-approximate
transversal of Λ/Γ, that is a constellation of only one transversal. Let D′ = {d′1, . . . , d′l} be
representatives of distinct cosets of Λ/Γ. Then, for any m ∈ Rn ⊃ Γ∗,∣∣∣∣∣

l∑
i=1

e2πi〈m,di〉−
l∑

i=1

e2πi〈m,d′
i〉
∣∣∣∣∣ �

l∑
i=1

|e2πi〈m,di〉− e2πi〈m,d′
i〉|

�
l∑

i=1

2π |〈m, di〉− 〈m, d′i〉|

�
l∑

i=1

2π |m| |di − d′i| � 2π |m| lε.

Since, by Hewitt and Ross [26, Lemma 23.19], we have

1
l

l∑
i=1

e2πi〈m,d′
i〉 =

{
1 m ∈ Λ∗,
0 m ∈ Γ∗ \ Λ∗,

the lemma is proved.
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We shall need a result about the existence of an approximate transversal constellation for
suitable collections of lattices which is of independent interest. A prototype of this result for
exact coset representatives takes the following form.

Lemma 2.3. Suppose that we have a finite number of full rank lattices Γi ⊂ Λi, i = 1, . . . , J,
and let li = #|Λi/Γi|. Assume that there exists a full rank lattice Δ such that

Δ ⊂
J⋂

i=1

Λi, (2.1)

Λi ⊂ Δ + Γi for each i = 1, . . . , J. (2.2)

Then, there exists a finite multiset K ⊂ Δ such that

#|K ∩ (γ + Γi)|
#|K| =

1
li

for all γ ∈ Λi, i = 1, . . . , J.

In other words,K consists of an equal number of points from each coset of Λi/Γi, simultaneously
for all i = 1, . . . , J .

In general, the condition (2.1) is too restrictive for our purposes since the intersection
⋂J

i=1 Λi

might be trivial and then (2.2) cannot hold. To remedy this situation, we shall need a variant
of Lemma 2.3 for approximate coset representatives. We shall skip the proof of Lemma 2.3
since it follows by a direct modification of the proof of Lemma 2.4.

Lemma 2.4. Suppose that we have a finite number of full rank lattices Γi ⊂ Λi, i = 1, . . . , J,
and let li = #|Λi/Γi|. Assume that, for all ε > 0, we have

Λi ⊂ Δ(ε) + Γi for each i = 1, . . . , J, where (2.3)

Δ(ε) :=
J⋂

i=1

(Λi +B(0, ε)). (2.4)

Then, for all sufficiently small ε > 0, there exists a finite multiset K = K(ε) ⊂ Δ(ε) such that

#|K ∩ (γ + Γi +B(0, ε))|
#|K| =

1
li

for all γ ∈ Λi, i = 1, . . . , J. (2.5)

Lemma 2.4 can also be formulated in the language of approximate transversals. Suppose
that, for all ε > 0, there exists a set Δ lying in the ε-neighbourhood of each Λi and
containing ε-approximate transversals of each Λi/Γi.Then there exists a subset K ⊂ Δ which
is ε-approximate transversal constellation simultaneously for each Λi/Γi.

Proof of Lemma 2.4. For any ε > 0 we define δ = ε/J . For each i = 1, . . . , J , by (2.3) we
can choose δ-approximate transversal Di := {di

1, . . . , d
i
li
} ⊂ Δ(δ) of Λi/Γi. Define the set K as

an algebraic sum
K = D1 + . . .+DJ .

Treating K as a multiset, K has exactly
∏J

i=1 li elements. Moreover, since each Di ⊂ Δ(δ), we
have that K ⊂ Δ(δJ) = Δ(ε).

Fix some 1 � i0 � J and consider

k0 =
J∑

i=1,i �=i0

di
mi

for some choice of 1 � mi � li. (2.6)
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We claim that {di0
1 + k0, . . . , d

i0
li0

+ k0} is a ε-approximate transversal of Λi0/Γi0 . Indeed, by
(2.4) we can find D′i = {d′i1 , . . . , d′ili} ⊂ Λi0 such that

|d′ij − di
j | < δ for i = 1, . . . , J, j = 1, . . . , li. (2.7)

Furthermore, if δ > 0 is sufficiently small, then D′i0 is an exact transversal (a set of
representatives of distinct cosets) of Λi0/Γi0 . Let

k′0 =
J∑

i=1,i �=i0

d′imi
∈ Λi0 .

Clearly, {d′i01 + k′0, . . . , d
′i0
li0

+ k′0} is also an exact transversal of Λi0/Γi0 . Thus, by (2.7), {di0
1 +

k0, . . . , d
i0
li0

+ k0} is a δJ = ε-approximate transversal of Λi0/Γi0 . This proves the claim.

Since there are precisely
∏J

i=1,i �=i0
li elements k0 of the form (2.6), K is a union of the same

number of ε-approximate transversals of Λi0/Γi0 . Take sufficiently small ε > 0, say

0 < ε < min{|λ| : 0 �= λ ∈ Λi0}/2.
Then we observe that ε-neighbourhoods of distinct cosets of Λi0/Γi0 are disjoint. Thus, for
any γ ∈ Λi0 ,

#|K ∩ (γ + Γi0 +B(0, ε))|
#|K| =

∏J
i=1,i �=i0

li∏J
i=1 li

=
1
li0
.

Since 1 � i0 � J was arbitrary, this shows that (2.5) holds for all sufficiently small ε > 0.

We shall also need some additional results about approximate duals of finitely generated
subgroups of Rn which are of independent interest.

Definition 2.5. Suppose that F ⊂ Rn and ε � 0. Define an ε-approximate dual of F as

F ∗,ε = {x ∈ Rn : 〈x, g〉 ∈ Z + [−ε, ε] for all g ∈ F}.
In the case when ε = 0, we say that F ∗,0 is an exact dual of F , which is denoted simply by F ∗.

The following basic proposition justifies the name for an approximate dual.

Proposition 2.6. Suppose that Λ is a full rank lattice and F is a basis of Λ. Then, for
sufficiently small ε > 0, we have Λ∗,ε = Λ∗. Furthermore, for every ε > 0 there exist δ, ε′ > 0,
such that

Λ∗ +B(0, ε′) ⊂ F ∗,δ ⊂ Λ∗ +B(0, ε).

The proof of Proposition 2.6 is left to the reader.

Lemma 2.7. Suppose that G is a finitely generated subgroup of Rn such that G ∩ Zn = {0}.
Then, for any finite subset F ⊂ G, ε > 0, and full rank sublattice Γ ⊂ Zn, we have

F ∗,ε + Γ = Rn. (2.8)

Proof. First we shall establish a slightly weaker conclusion

F ∗,ε + Zn = Rn. (2.9)

Then, we shall see that (2.9) implies (2.8).
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Assume first that F = {g1, . . . , gd} ⊂ G is linearly independent over Q. For any k ∈ Zn we
define a vector xk = (〈k, g1〉, . . . , 〈k, gd〉) ∈ Rd. Let k1, k2, . . . be an ordering of all elements of
Zn such that i � j implies ||ki||∞ � ||kj ||∞. We claim that the sequence {xki

}i∈N of vectors in
Rd is uniformly distributed mod 1. By the Weyl Criterion (see [28, Theorem 6.2 in Chapter 1]),
this is equivalent to the fact that the sequence of scalars {〈h, xki

〉}i∈N is uniformly distributed
mod 1 for any 0 �= h ∈ Zd. Observe that

〈h, xk〉 = 〈k, y〉 where y =
d∑

j=1

hjgj and h = (h1, . . . , hd).

Moreover, by our hypothesis G ∩ Zn = {0}, y has at least one irrational coordinate. Repeating
the same argument as in [7, Lemma 3.2 in Chapter 2] shows that the sequence {〈ki, y〉}i∈N is
uniformly distributed mod 1. This proves the claim. As a consequence, (2.9) holds.

Next, let F = {g1, . . . , gd′} ⊂ G be an arbitrary finite subset of G. By rearranging the order
of elements in F , we can assume that, for some d � d′, {g1, . . . , gd} are linearly independent
over Q, and the rest of the elements of F are linear combinations thereof; that is, for d < i � d′,

gi =
d∑

j=1

cjgj , cj ∈ Q.

Thus, we can find N ∈ N such that for d < i � d′

gi =
d∑

j=1

dj g̃j , dj ∈ Z, (2.10)

where g̃j = gj/N . Let F̃ = {g̃1, . . . , g̃d, gd+1, . . . , gd′} ⊂ (1/N)G. By the already established
case, we have

{g̃1, . . . , g̃d}∗,ε + Zn = Rn.

Since ε > 0 is arbitrary, using (2.10) we can deduce that

F̃ ∗,ε + Zn = Rn.

We also observe that F̃ ∗,ε ⊂ F ∗,Nε. This proves (2.9) since ε > 0 is arbitrary.
Finally, let Γ ⊂ Zn be a full rank lattice. There exists N ∈ N such that NZn ⊂ Γ. The

assumption G ∩ Zn = {0} actually implies that G ∩ Qn = {0}. In particular, we have (NG) ∩
Zn = {0}. Applying (2.9) to a finite subset NF ⊂ NG we have

Rn = (NF )∗,ε + Zn =
1
N
F ∗,ε + Zn.

Thus,
Rn = F ∗,ε +NZn ⊂ F ∗,ε + Γ,

which completes the proof of Lemma 2.7.

Our next result is a generalization of a duality identity for lattices. If G is a lattice, then we
have (G ∩ Zn)∗ = G∗ + Zn, see Corollary 2.9. However, this conclusion might fail if G is not a
discrete subgroup of Rn. For example, if G ⊂ Rn is dense in Rn and G ∩ Zn = {0}, then this
identity fails. Nevertheless, we have the following extension of this identity as a consequence
of Lemma 2.7.

Theorem 2.8. Suppose that G is a finitely generated subgroup of Rn. Define a lattice (not
necessarily full rank) Γ = G ∩ Zn. Then for any finite subset F ⊂ G and ε > 0 we have

Γ∗ ⊂ F ∗,ε + Zn.
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Proof. Define the ‘rational’ subgroup of G by G1 = G ∩ Qn. Since G is finitely generated,
G1 ⊂ Qn is a lattice (not necessarily full rank). Observe that the quotient group G/G1 is torsion
free and finitely generated. Hence, using the structure theorem for finitely generated abelian
groups, we can find a complimentary subgroup G2 ⊂ G such that the group G decomposes as
an algebraic sum G = G1 +G2 with G1 ∩G2 = {0}.

Let F = {g1, . . . , gd} ⊂ G be any finite subset. We decompose each element of F as gi =
g
(1)
i + g

(2)
i , where g(j)

i ∈ Gj , j = 1, 2. Let Fj = {g(j)
1 , . . . , g

(j)
d }. Observe that (F1)∗,ε ∩ (F2)∗,ε ⊂

F ∗,2ε. Moreover, we have G∗
1 ⊂ (F1)∗,ε. Thus, it suffices to show that

Γ∗ ⊂ (G∗
1 ∩ (F2)∗,ε) + Zn. (2.11)

Take any x ∈ Γ∗. Since Γ = G ∩ Zn = G1 ∩ Zn, by taking duals we have Γ∗ = G∗
1 + Zn. Thus,

we can write x = x1 + z1, where x1 ∈ G∗
1 and z1 ∈ Zn. Since G∗

1 ∩ Zn is a full rank lattice, by
Lemma 2.7, we have

(F2)∗,ε + (G∗
1 ∩ Zn) = Rn.

Hence, we can write x1 = x2 + z2, where x2 ∈ (F2)∗,ε and z2 ∈ G∗
1 ∩ Zn. Consequently,

x2 ∈ (F2)∗,ε ∩G∗
1 and x− x2 = z1 + z2 ∈ Zn. This proves (2.11) and completes the proof of

Theorem 2.8.

As a consequence of Theorem 2.8 we can deduce the duality identity for lattices (2.12).

Corollary 2.9. Suppose Γ and Λ are two lattices in Rn. Then,

(Γ ∩ Λ)∗ = Γ∗ + Λ∗. (2.12)

Proof. The inclusion ⊃ follows immediately from the definition of a dual lattice to Γ ∩ Λ.
To show the converse inclusion, we can assume that both Λ and Γ are full rank lattices. Indeed,
if Λ is not full rank lattice, then we can find a full rank lattice Λ0 ⊃ Λ such that Γ ∩ Λ0 = Γ ∩ Λ.
Assuming that (2.12) holds for the pair Γ and Λ0 yields the same conclusion for Γ and Λ. An
identical argument works for Γ. Moreover, by the change of basis argument we can assume that
Γ = Zn.

Let F be a basis of Λ. Applying Theorem 2.8 with G = Λ yields

(Λ ∩ Zn)∗ ⊂ F ∗,δ + Zn for all δ > 0.

Applying Proposition 2.6, we have

(Λ ∩ Zn)∗ ⊂ Λ∗ + Zn +B(0, ε) for all ε > 0.

Thus, (Λ ∩ Zn)∗ ⊂ Λ∗ + Zn as required. This completes the proof of Corollary 2.9.

It is worth mentioning that the other duality identity

(Γ + Λ)∗ = Γ∗ ∩ Λ∗

is much easier to prove since it follows directly from the definition of a dual lattice. Corollary 2.9
can be also deduced from it and the fact that Γ∗∗ = Γ for an arbitrary subgroup Γ ⊂ Rn.

3. Oversampling

In this section, we introduce our condition on the oversampling lattice (3.3) to show the
generalization of the Second Oversampling Theorem in the setting of real dilations.
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3.1. Oversampling the wavelet system

Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), let Γ be a lattice in Rn, and let A be a fixed n× n expansive
matrix, that is, all eigenvalues λ of A satisfy |λ| > 1. The wavelet system generated by Ψ is

A(Ψ) = {ψj,γ : j ∈ Z, γ ∈ Γ, ψ ∈ Ψ}, (3.1)

where

ψj,γ := DAjTγψ = |detA|j/2
ψ(Aj · −γ) for j ∈ Z, γ ∈ Γ.

Here, DAf(x) = |detA|1/2f(Ax) is the dilation operator and Tγf(x) = f(x− γ) is a transla-
tion operator. If we need to stress the dependence of the underlying dilation matrix A and
translation lattice Γ, we say that the wavelet system A(Ψ) is associated with (A, Γ), or we use
the notation A(Ψ, A, Γ) for (3.1).

In our study of wavelet systems, it will not be necessary to consider arbitrary translation
lattices Γ, and we shall restrict our attention to the standard translation lattice Zn. Indeed,
for A ∈ GLn(R) expansive and Γ = PZn for some P ∈ GLn(R), consider the wavelet system
A(Ψ, A, Γ). By the commutator relations

TkDA = DATAk and D(P−1AP )jDP = DPDAj ,

we see that

A(DP Ψ, Ã,Zn) = DP (A(Ψ, A, Γ)), (3.2)

where the matrix Ã := P−1AP is similar to A. Observe that a matrix similar to an expansive
matrix is again expansive as it has the same eigenvalues. Since DP is unitary, properties such
as the frame and Bessel property carry over between the two systems. Hence, it is possible
to reduce studies of wavelet systems with general translation lattices to the setting of integer
lattices. An example of such a reduction technique is given in Corollary 3.3.

Therefore, we can, without loss of generality, restrict attention to wavelet systems associated
with (A,Zn), that is,

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ},
and oversampling of such systems. Let Λ be a lattice in Rn containing the integer lattice Zn,
that is, Zn ⊂ Λ. Then

Λ∗ ⊂ Zn ⊂ Λ,

where the dual lattice of Λ is

Λ∗ = {η ∈ Rn : 〈η, λ〉 ∈ Z for all λ ∈ Λ}.
The Λ-oversampled wavelet system is just a normalized version of the original wavelet system
with translation lattice Λ:

A(d(Λ)1/2Ψ, A,Λ) = {d(Λ)1/2ψj,λ : j ∈ Z, λ ∈ Λ, ψ ∈ Ψ}.
Here, d(Λ) = |detP | is the determinant of the lattice Λ = PZn for some P ∈ GLn(R). Note
that 0 < d(Λ) � 1 � d(Λ∗) and that d(Λ) = 1 only when Λ = Zn.

Given a matrix B ∈ GLn(R) and a lattice Λ, we define a countable subgroup of Rn by

∑
j∈Z

BjΛ∗ =

⎧⎨
⎩x ∈ Rn : x =

∑
j∈Z

xj , xj ∈ BjΛ∗, xj = 0 for all but finitely many j

⎫⎬
⎭ .

Once the dilation A is chosen, our convention is to let B = AT . We shall prove our main
oversampling result under the assumption that
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⎛
⎝∑

j∈Z

BjΛ∗

⎞
⎠ ∩ Zn ⊂ Λ∗. (3.3)

To achieve this, we shall establish the following key lemma as a consequence of Lemma 2.4 and
Theorem 2.8.

Lemma 3.1. Let A ∈ GLn(R) be expansive and let Λ be a lattice in Rn containing Zn and
satisfying condition (3.3). Then, for any J ∈ N and ε > 0, there exists a set K = KJ,ε, which
is an ε-approximate transversal constellation of AjΛ/AjZn for all |j| � J .

Proof. Fix J ∈ N and let F =
⋃

|j|�2J B
jF0, where F0 is a basis of the lattice Λ∗. By

Proposition 2.6 one can show that, for any ε > 0, there exists δ > 0 such that

F ∗,δ ⊂
⋂

|j|�2J

(AjΛ +B(0, ε)).

Thus, applying Theorem 2.8 to G =
∑

|j|�2J B
jΛ∗ and using G ∩ Zn ⊂ Λ∗ yield

Λ ⊂
⋂

|j|�2J

(AjΛ +B(0, ε)) + Zn.

For any ε > 0 we can find ε′ > 0 such that Ai(B(0, ε′)) ⊂ B(0, ε) for |i| � J . Thus, the above
formula can be strengthened to

AiΛ =
⋂

|j|�2J

(Ai+jΛ +Ai(B(0, ε′)))

+AiZn ⊂
⋂

|j|�J

(AjΛ +B(0, ε)) +AiZn for all |i| � J.

For |i| � J , we define lattices Λi = AiΛ and Γi = AiZn. By Lemma 2.4, for each ε > 0 there
exists a set K = KJ,ε with cardinality #|K| = (#|Λ/Zn|)2J+1, which is the ε-approximate
transversal constellation of each Λi/Γi, |i| � J .

3.2. Second Oversampling Theorem for real dilations

Our main oversampling result takes the following simple form.

Theorem 3.2. Let A ∈ GLn(R) be expansive, B = AT , and Ψ ⊂ L2(Rn). Take Λ ⊃ Zn to
be a lattice in Rn satisfying (3.3). If A(Ψ, A,Zn) is a frame with bounds C1 and C2, then so
is A(d(Λ)1/2Ψ, A,Λ).

Theorem 3.2 automatically implies a more general result for wavelet systems associated with
an arbitrary dilation lattice Γ.

Corollary 3.3. Let A ∈ GLn(R) be expansive, B = AT , Ψ ⊂ L2(Rn), and Γ be a full
rank lattice. Assume that the oversampling lattice Λ ⊃ Γ satisfies⎛

⎝∑
j∈Z

BjΛ∗

⎞
⎠ ∩ Γ∗ ⊂ Λ∗. (3.4)

If A(Ψ, A, Γ) is a frame with bounds C1 and C2, then so is A((d(Λ)/d(Γ))1/2Ψ, A,Λ).
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Proof. Consider the dilation matrix Ã = P−1AP and the oversampling lattice Λ̃ = P−1Λ,
where Γ = PZn for some P ∈ GLn(R). Then the transpose B̃ = ÃT = PTB(PT )−1 and the
dual lattice Λ̃∗ = PT Λ∗. The condition (3.4) implies that⎛
⎝∑

j∈Z

B̃jΛ̃∗

⎞
⎠ ∩ Zn =

⎛
⎝∑

j∈Z

PTBjΛ∗

⎞
⎠ ∩ Zn = PT

⎛
⎝
⎛
⎝∑

j∈Z

BjΛ∗

⎞
⎠ ∩ Γ∗

⎞
⎠ ⊂ PT Λ∗ = Λ̃∗.

Thus, (3.3) holds for the dilation B̃ and the lattice Λ̃. By our hypothesis, the identity (3.2)
implies that A(DP Ψ, Ã,Zn) is a frame with bounds C1 and C2. Therefore, Theorem 3.2
implies that

A(d(Λ̃)1/2DP Ψ, Ã, Λ̃) = DP (A(d(Λ̃)1/2Ψ, A, P Λ̃)) = DP (A((d(Λ)/d(Γ))1/2Ψ, A,Λ))

is also a frame with the same bounds. This concludes the proof of Corollary 3.3.

In order to prove Theorem 3.2, we need the following variant of Bownik and Lemvig [8,
Proposition 3.4] for an arbitrary translation lattice Γ.

Proposition 3.4. Let A ∈ GLn(R) be expansive, B = AT , Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn),
and Γ be a full rank lattice. Suppose that each ψ ∈ Ψ satisfies the local integrability condition∑

j∈Z

|ψ̂(B−jξ)|2 ∈ L1
loc(R

n \ {0}). (3.5)

Then, for each f ∈ D , the function

w(x) =
∑

g∈A(d(Γ)1/2Ψ,A,Γ)

|〈Txf, g〉|2 = d(Γ)
L∑

l=1

∑
j∈Z

∑
γ∈Γ

|〈Txf,DAjTγψl〉|2

is an almost periodic function that coincides pointwise with the absolutely convergent series

w(x) =
L∑

l=1

∑
j∈Z

∑
m∈Γ∗

cj,l(m) e2πi〈Bjm,x〉, (3.6)

where

cj,l(m) =
∫

Rn

f̂(ξ)f̂(ξ +Bjm)ψ̂l(B−jξ)ψ̂l(B−j(ξ +Bjm)) dξ.

We also use the notation

N(Txf, Γ) =
∑

g∈A(d(Γ)1/2Ψ,A,Γ)

|〈Txf, g〉|2 , (3.7)

hence N(f, Γ) = w(0) =
∑L

l=1

∑
j∈Z

∑
m∈Γ∗ cj,l(m).

The proof of Theorem 3.2 relies on the following key result on translational averaging of
wavelet functionals motivated by the results of Laugesen [30]. This theorem is a consequence
of our results on the existence of simultaneous approximate transversal constellations; see
Lemma 3.1.

Theorem 3.5. Let A ∈ GLn(R) be expansive, Ψ ⊂ L2(Rn), and Λ be an lattice in Rn

containing Zn and satisfying condition (3.3). Suppose that the wavelet system A(Ψ, A,Zn) is
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a Bessel sequence. Then, there exists a sequence {DJ}J∈N of finite subsets of Rn such that

N(f,Λ) = lim
J→∞

1
#|DJ |

∑
d∈DJ

N(Tdf,Z
n) for f ∈ D , (3.8)

where D is given by (1.1) and N by (3.7).

Proof. Since A(Ψ, A,Zn) is a Bessel sequence, the series in (3.5) defines a bounded function;
see [8, 24]. Therefore, we can freely apply Proposition 3.4.

Fix J ∈ N and f ∈ D . Let ε > 0, and let K = KJ,ε be an ε-approximate transversal
constellation of AjΛ/AjZn for all |j| � J as provided by Lemma 3.1. We want to express
N(f,Λ) as an average of N(Tdf,Z

n) over such ε-approximate transversal constellations of
AjΛ/AjZn. Thus, we consider

1
#|K|

∑
d∈K

N(Tdf,Z
n) =

1
#|K|

∑
d∈K

L∑
l=1

∑
|j|�J

∑
m∈Zn

cj,l(m) e2πi〈Bjm,d〉

+
1

#|K|
∑
d∈K

L∑
l=1

∑
|j|>J

∑
m∈Zn

cj,l(m) e2πi〈Bjm,d〉

=: I1(J) + I2(J), (3.9)

which follows by (3.6). By the absolute convergence of the sum above, we conclude that
I2(J) → 0 as J → ∞ regardless of the choice of K. Let δm,Λ∗ = 1 if m ∈ Λ∗ and 0 otherwise.
By Lemma 2.2 we have that∣∣∣∣∣∣I1(J) −

L∑
l=1

∑
|j|�J

∑
m∈Λ∗

cj,l(m)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

L∑
l=1

∑
|j|�J

∑
m∈Zn

cj,l(m)

(
1

#|K|
∑
d∈K

e2πi〈Bjm,d〉− δm,Λ∗

)∣∣∣∣∣∣
�

L∑
l=1

∑
|j|�J

∑
m∈Zn

|cj,l(m)|min{O(|Bjm|ε), 1} −→ 0

as ε→ 0. Indeed, the last step follows from the absolute convergence of the series
∑

l,j,m cj,l(m)
and the Lebesgue Dominated Convergence Theorem. Consequently, we can find a sequence
{DJ}J∈N of finite subsets of Rn defined by DJ = KJ,ε for some sufficiently small ε = ε(J) > 0
such that

1
#|DJ |

∑
d∈DJ

N(Tdf,Z
n) = I1(J) + I2(J) −→

L∑
l=1

∑
j∈Z

∑
m∈Λ∗

cj,l(m) = N(f,Λ)

as J → ∞. This completes the proof of Theorem 3.5.

Proof of Theorem 3.2. Assume that the wavelet system A(Ψ, A,Zn) is a frame for L2(Rn)
with bounds C1, C2. By our hypothesis there are constants C1, C2 > 0 so that

C1‖f‖2 � N(f,Zn) � C2‖f‖2 ∀f ∈ L2(Rn).

Let {DJ}J∈N be a sequence of finite subsets such that (3.8) holds. Fix J ∈ N. For each d ∈ DJ ,
we have

C1‖f‖2 � N(Tdf,Z
n) � C2‖f‖2 ∀f ∈ L2(Rn),

where we have used that ‖Txf‖ = ‖f‖ for x ∈ Rn. Adding these inequalities for each d ∈
DJ yields

#|DJ |C1‖f‖2 �
∑

d∈DJ

N(Tdf,Z
n) � #|DJ |C2‖f‖2.
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Taking the limit J → ∞ gives us

C1‖f‖2 � lim
J→∞

1
#|DJ |

∑
d∈DJ

N(Tdf,Z
n) � C2‖f‖2

for all f ∈ L2(Rn). By an application of Theorem 3.5, we arrive at

C1‖f‖2 � N(f,Λ) � C2‖f‖2 for f ∈ D .

Extending these inequalities to all of L2(Rn) by a standard density argument completes the
proof of Theorem 3.2.

Example 1 (Rational dilations in one dimension). Let A = BT = p/q ∈ Q for relatively
prime p, q ∈ N, and let Λ = 1/λZ for some λ ∈ Z. Then Λ∗ = λZ, and condition (3.3) reads⎛

⎝∑
j∈Z

(
p

q

)j

λZ

⎞
⎠ ∩ Z ⊂ λZ. (3.10)

Since, for J ∈ Z, ∑
|j|�J

(
p

q

)j

Z =
1

(pq)J
Z,

condition (3.10) is equivalent to

λZ ∩ (pq)JZ ⊂ λ(pq)JZ ∀J ∈ Z,

or in other words,

lcm(λ, (pq)J )Z ⊂ λ(pq)JZ ∀J ∈ Z.

Hence, λ needs to be relatively prime to (pq)J for J ∈ N, or simply, relatively prime to p
and q. In this case, B = p/q and Λ∗ = λZ satisfy (3.3). Thus, if A(Ψ, p/q,Z) is a frame with
bounds C1 and C2, then so is A(λ−1/2Ψ, p/q, 1/λZ) whenever λ is relatively prime to p and q.
However, note that such B = p/q and Λ∗ = λZ do not satisfy any of the conditions (i)–(iv) in
Proposition 3.6 in the next section, in particular, BΛ∗ �⊂ Λ∗. Therefore, none of the previously
known equivalent conditions on oversampling lattices in the integer setting, which are described
in the next subsection, are satisfactory for non-integer dilations.

3.3. Related work for integer and rational dilations

The Second Oversampling Theorem is well-known for integer, expansive dilations and assump-
tions on the oversampling lattice Λ as (3.11) or (3.12) below. We briefly review the relationship
between previous results and Theorem 3.2.

Laugesen [30, Theorem 6.1] proved the Second Oversampling Theorem under the assumption
that A is prime relative to Λ and that A preserves the lattice Λ:

BZn ∩ Λ∗ ⊂ BΛ∗ ⊂ Λ∗. (3.11)

The result in [30, Theorem 6.1] is stated for both expansive and amplifying dilations; in this
paper we only consider expansive matrices.

The formulation of Ron and Shen [31, Theorem 4.19] of the same result uses the assumption

BjZn ∩ Λ∗ = BjΛ∗ for all j � 0. (3.12)

This condition is equivalent to (3.11). It is obvious (take j = 1) that (3.12) implies that
BΛ∗ ⊂ Λ∗.
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Yet another equivalent set of assumptions is used in the formulation of the Second
Oversampling Theorem of Johnson [27, Theorem 3.2]:

AΛ ⊂ Λ and A−1Zn ∩ Λ = Zn. (3.13)

Note that the assumption Zn ⊂ Λ in [27, Definition 2.2] is not necessary since it is implied
by (3.13).

Finally, Chui and Sun [21, 22] have completed the theory of oversampling of tight affine
systems with integer dilations. In [22, Theorem 4.1] they characterized lattices Λ for which
the conclusion of the Second Oversampling Theorem holds. The oversampling by Λ preserves
tightness for all tight affine frames if and only if Λ satisfies (3.12) and hence any of its equivalent
forms listed above. Moreover, Chui and Sun characterized the preservation of tightness for fixed
generators Ψ of a tight affine frame in terms of explicit equations involving generators in the
frequency domain and identities involving so-called ‘oversampled frame operators’ in the space
domain.

In light of the results of Chui and Sun [22], it is not surprising that, for integer dilations,
all of the previously studied conditions on tightness preserving lattices Λ are equivalent to our
newly introduced condition (3.3). We state these conditions in the proposition below.

Proposition 3.6. Suppose A = BT ∈Mn(Z) is invertible and Zn ⊂ Λ. Then, the following
assertions are equivalent:

(i) BZn ∩ Λ∗ ⊂ BΛ∗ ⊂ Λ∗;
(ii) BjZn ∩ Λ∗ = BjΛ∗ for all j � 0;
(iii) AΛ ⊂ Λ and A−1Zn ∩ Λ = Zn;
(iv) BΛ∗ ⊂ Λ∗ and (Λ∗ \BΛ∗) ⊂ (Zn \BZn);
(v) BjZn ∩ Λ∗ ⊂ BjΛ∗ for all j ∈ Z;
(vi) (

∑
j∈Z

BjΛ∗) ∩ Zn ⊂ Λ∗.

Proof. (i) ⇒ (ii): For j = 0 there is nothing to prove since Λ∗ ⊂ Zn. For j = 1 we only need
to prove BZn ∩ Λ∗ ⊃ BΛ∗, but this follows from Λ∗ ⊂ Zn and BΛ∗ ⊂ Λ∗. We now prove (ii) for
j = 2. Using BZn ⊂ Zn and BZn ∩ Λ∗ ⊂ BΛ∗, we find

B2Zn ∩ Λ∗ = B2Zn ∩ Λ∗ ∩BZn

⊂ B2Zn ∩BΛ∗ = B(BZn ∩ Λ∗)

⊂ B(BΛ∗) = B2Λ∗.

The other inclusion follows from

B2Λ∗ = B(BΛ∗) ⊂ B(BZn ∩ Λ∗)

= B2Zn ∩BΛ∗ ⊂ B2Zn ∩ Λ∗,

where we have used BΛ∗ ⊂ Λ∗ and BZn ∩ Λ∗ ⊃ BΛ∗ from the case j = 1. The argumentation
is similar for j � 3.

(ii) ⇒ (i): Take j = 1 in (ii), that is, we have BZn ∩ Λ∗ = BΛ∗. It follows that BΛ∗ ⊂ Λ∗

and BZn ∩ Λ∗ ⊂ BΛ∗.
(ii) ⇔ (iii) is proved in [27, p. 636]; alternatively is (i) ⇔ (iii) proved in [27, p. 637].
(i) ⇒ (iv) is proved in [30, p. 227]. (iv) ⇒ (i): Suppose x ∈ Λ∗. If x /∈ BΛ∗, then x /∈ BZn.

In other words, if x ∈ BZn, then x ∈ BΛ∗. Hence, BZn ∩ Λ∗ ⊂ BΛ∗.
(i) ⇒ (v): This implication is immediate for j � 0 by (ii). If j < 0, then (v) is equivalent to

Zn ∩B−jΛ∗ ⊂ Λ∗, which holds by BΛ∗ ⊂ Λ∗.
(v) ⇒ (i): Taking j = 1 and j = −1 in (v) shows the first and the second inclusion in (i),

respectively.
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(v) ⇔ (vi): Take x ∈∑j∈Z
BjΛ∗. Since (v) ⇒ (i), we know that BΛ∗ ⊂ Λ∗. Hence, x ∈ Bj0Λ∗

for some j0 ∈ Z. This shows the implication (v) ⇒ (vi). The opposite implication is trivial.

Example 2 (Rational dilations in higher dimensions). Hernández, Labate, Weiss, and
Wilson [25, Theorem 2.12] have proved the Second Oversampling Theorem for a class of
rational, expansive dilations A = PQ−1 ∈ GLn(Q), where P,Q ∈Mn(Z) are invertible, and
P commutes with Q. The assumptions on the oversampling lattice are

PT Zn ∩ Λ∗ = PT Λ∗, QT Zn ∩ Λ∗ = QT Λ∗, (3.14)

which are higher dimensional analogues of Example 1. We remark that in [25, Theorem 2.12]
it is also assumed that RPR−1, RQR−1 ∈Mn(Z) for Λ = R−1Zn, but this is equivalent to
PT Λ∗ ⊂ Λ∗ and QT Λ∗ ⊂ Λ∗, and therefore follows from (3.14).

We shall prove that their result follows from Theorem 3.2. To see this, assume that the
assumption of Hernández, Labate, Weiss, and Wilson [25, Theorem 2.12] holds and note that
(by Proposition 3.6, (i) ⇒ (iv)) it then follows that

(Λ∗ \ PT Λ∗) ⊂ (Zn \ PT Zn) (3.15)

and

(Λ∗ \QT Λ∗) ⊂ (Zn \QT Zn). (3.16)

By commutativity of PT and QT , equation (3.15) implies

(QT Λ∗ \ PTQT Λ∗) ⊂ (QT Zn \ PTQT Zn) ⊂ (Zn \ PTQT Zn),

which in turn implies that

(Λ∗ \ PTQT Λ∗) ⊂ [(Λ∗ \QT Λ∗) ∪QT Λ∗] \ PTQT Λ∗

⊂ [(Zn \QT Zn) ∪QT Λ∗] \ PTQT Λ∗

⊂ (Zn \QT Zn) ∪ (Zn \ PTQT Zn)

= (Zn \ PTQT Zn),

where we have used (3.16) in the second step. We have showed that

(Λ∗ \ PTQT Λ∗) ⊂ (Zn \ PTQT Zn)

holds, which (by Proposition 3.6 (iv) ⇒ (v)), for B = PTQT , implies that

(PTQT )jZn ∩ Λ∗ ⊂ (PTQT )jΛ∗ for all j ∈ Z,

that is,

Zn ∩ (PTQT )−jΛ∗ ⊂ Λ∗ for all j ∈ Z.

Since (PT )−JΛ∗ =
∑

|j|�J(PT )jΛ∗ for any J ∈ N, we have, in particular, that

Zn ∩ (QT )−J
∑
|j|�J

(PT )jΛ∗ ⊂ Λ∗,

and by the commutativity of QT and PT that

Zn ∩
∑
|j|�J

(PT )j(QT )−JΛ∗ ⊂ Λ∗.

Since (QT )jΛ∗ ⊂ (QT )−JΛ∗ for |j| � J , it then follows that

Zn ∩
∑
|j|�J

(PT )j(QT )−jΛ∗ ⊂ Λ∗,
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which, since J > 0 is arbitrary, implies

Zn ∩
∑
j∈Z

(PT )j(QT )−jΛ∗ ⊂ Λ∗.

Using the commutativity of PT and QT , the last equation implies that (3.3) holds.

3.4. Oversampling with the support condition

In the following theorem we relax the condition (3.3) from Theorem 3.2 by supposing a
support condition. The result resembles somewhat [16, Theorem 3], referred to as the First
Oversampling Theorem.

Theorem 3.7. Let A ∈ GLn(R) be expansive and Ψ ⊂ L2(Rn). For J0 ∈ N0 take Λ ⊃ Zn

to be a lattice in Rn satisfying: ⎛
⎝∑

j∈Z

BjΛ∗

⎞
⎠ ∩ Zn ⊂ B−J0Λ∗. (3.17)

Suppose that every ψ ∈ Ψ satisfies the support condition:

ψ̂(ξ)ψ̂(ξ + k) = 0 for all k ∈ Zn \BJ0Zn. (3.18)

Then, if A(Ψ) is a frame with bounds C1 and C2, so is A(d(A−J0Λ)1/2Ψ, A,A−J0Λ).

Proof. We shall only sketch the proof since it is similar to that of Theorem 3.2. Again,
the key ingredient is to show the translational averaging formula (3.8). Since A(Ψ, A,Zn) is a
Bessel sequence, we can freely apply Proposition 3.4.

First observe that (3.17) implies that Λ∗ = Λ∗ ∩ Zn ⊂ B−J0Λ∗. By taking duals, we have
Λ ⊃ AJ0Λ and thus Λ ⊂ A−J0Λ. Hence, it is meaningful to talk about the quotient groups
Aj−J0Λ/AjZn for j ∈ Z. Fix J ∈ N. Mimicking the proof of Lemma 3.1 we can show that
for all ε > 0, there exists K = KJ,ε which is an ε-approximate transversal constellation of
Aj−J0Λ/AjZn for all |j| � J .

Fix f ∈ D . As in the proof of Theorem 3.5, we consider I1(J) and I2(J) defined in
equation (3.9). As before we have I2(J) → 0 as J → ∞. Since cj,l(m) = 0 for all m ∈ Zn \
BJ0Zn by (3.18), we have that

I1(J) =
L∑

l=1

∑
|j|�J

∑
m∈(BJ0Zn)∩Zn

cj,l(m)
1

#|K|
∑
d∈K

e2πi〈Bjm,d〉.

As in the proof of Theorem 3.5, by Lemma 2.2 one can show that

I1(J) −→
L∑

l=1

∑
|j|�J

∑
m∈(BJ0Λ∗)∩Zn

cj,l(m) =
L∑

l=1

∑
|j|�J

∑
m∈BJ0Λ∗

cj,l(m)

as ε→ 0. The last step is a consequence of BJ0Λ∗ ⊂ Λ∗ ⊂ Zn. It follows that we can find a
sequence {DJ}J∈N of finite subsets of Rn such that

1
#|DJ |

∑
d∈DJ

N(Tdf,Z
n) −→

L∑
l=1

∑
j∈Z

∑
m∈BJ0Λ∗

cj,l(m) = N(f,A−J0Λ)

as J → ∞. The rest of proof goes along the lines of the proof of Theorem 3.2.
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Remark 3.8. Observe that (3.17) implies the following weaker condition:

BJ0+jZn ∩ Λ∗ ⊂ BjΛ∗ for all j ∈ Z. (3.19)

Moreover, under the extra assumptions A ∈Mn(Z) and BΛ∗ ⊂ Λ∗, one can show, by replicating
the proof of Proposition 3.6, that condition (3.17) is equivalent with

BJ0+1Zn ∩ Λ∗ ⊂ BΛ∗. (3.20)

Recall that, under these assumptions, condition (3.3) from Theorem 3.2 is equivalent to BZn ∩
Λ∗ ⊂ BΛ∗ which is more restrictive on A and Λ than (3.20). Indeed, for n = 1 with A = a > 1
and Λ = Z/λ, where a, λ ∈ N, condition (3.3) is satisfied if and only if a and λ are relative
prime, while (3.20) and hence (3.17) are satisfied exactly when aλ divides lcm(aJ0+1, λ). In
particular, for any given a, λ ∈ N, we can always find a J0 ∈ N0 such that (3.17) is satisfied.

4. Oversampling of dual frames for real dilations

In this section, we establish the analogues of Theorems 3.2 and 3.7 for dual affine frames.
We also give a counterexample to a result of Chui, Czaja, Maggioni, and Weiss [15] on the
oversampling of rationally dilated dual affine frames.

For Bessel affine systems A(Ψ, A, Γ) and A(Φ, A, Γ), we define, for each α ∈ Zn,

tΓα(ξ) =
L∑

l=1

∑
j∈Z:B−jα∈Γ∗

ψ̂l(B−jξ)φ̂l(B−j(ξ + α)).

It is well known that two Bessel families A(Ψ, A, Γ) and A(Φ, A, Γ) are dual frames if and only
if tΓα(ξ) = δα,0 for almost every ξ and all α ∈ Zn. The proof of this result can be found in [15,
Theorem 4] and [24, Theorem 9.6].

4.1. The Second Oversampling Theorem for dual frames

Before we present the main results of this section, we introduce yet another condition on the
oversampling lattice Λ ⊃ Zn:

BjZn ∩ Λ∗ ⊂ BjΛ∗ for all j ∈ Z. (4.1)

This new assumption on Λ is obviously weaker than (3.3). The following result can then be
seen as an analogue of Theorem 3.2 for dual affine frames.

Theorem 4.1. Let A ∈ GLn(R) be expansive and Ψ,Φ ⊂ L2(Rn). Suppose that either of
the following assertions holds.

(i) The oversampling lattice Λ ⊃ Zn satisfies (4.1), and the oversampled affine systems
A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ) are Bessel sequences.

(ii) The oversampling lattice Λ ⊃ Zn satisfies (3.3).

Then, if A(Ψ) and A(Φ) are dual frames, so are A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ).

Proof. (i) By Chui, Czaja, Maggioni, and Weiss [15, Theorem 4] it suffices to prove that
tΛα(ξ) = δα,0 for α ∈ Zn. From our hypothesis we know that tZ

n

α (ξ) = δα,0. Fix α ∈ Zn. We first
note that

{j ∈ Z : B−jα ∈ Λ∗} ⊂ {j ∈ Z : B−jα ∈ Zn}, (4.2)

since Λ∗ ⊂ Zn. Then we claim that equality between the above sets holds when {j ∈ Z :
B−jα ∈ Λ∗} is non-empty. To see this, take j ∈ Z so that B−jα ∈ Zn. By assumption there is
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a j0 ∈ Z such that B−j0α ∈ Λ∗. Thus, by (4.1),

α ∈ BjZn ∩Bj0Λ∗ = Bj0(Bj−j0Zn ∩ Λ∗) ⊂ Bj0(Bj−j0Λ∗) = BjΛ∗,

that is, B−jα ∈ Λ∗.
If {j ∈ Z : B−jα ∈ Λ∗} = ∅ for some (non-zero) α ∈ Zn, then trivially tΛα(ξ) = 0. On the other

hand, if {j ∈ Z : B−jα ∈ Λ∗} is non-empty, then tΛα(ξ) = tZ
n

α (ξ) = δα,0 by the claim above. The
conclusion is that tΛα(ξ) = δα,0 for α ∈ Zn.

(ii) By Theorem 3.2 the oversampled systems A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ)
are frames and hence, in particular, Bessel sequences. The result now follows directly from
Theorem 4.1(i).

As a direct consequence of the proof of Theorem 4.1(i) we have the following oversampling
result for Parseval (tight) frames.

Theorem 4.2. Let A ∈ GLn(R) be expansive and Ψ ⊂ L2(Rn). Take Λ ⊃ Zn to be a lattice
in Rn satisfying (4.1). If A(Ψ) is a Parseval frame, then so is A(d(Λ)1/2Ψ, A,Λ).

4.2. Related work

Laugesen [30, Theorem 8.3] has proved the Second Oversampling Theorem for dual frames for
integer (and expansive or amplifying) dilations A ∈Mn(Z) under the assumption (3.11) and,
as usual, Zn ⊂ Λ. Within the settings of expansive dilations, [30, Theorem 8.3] is therefore a
special case of Theorem 4.1.

Chui, Czaja, Maggioni, and Weiss have three versions of the Second Oversampling Theorem
for dual frames [15, Proposition 1]. In our notation, their results can be summarized as follows:

(i) The first result uses the assumptions [15, (4.1) & (4.2)] and that some power of B
preserves the lattices Zn and Λ∗ (a priori need not be the same power), that is, there exist
γ, γ′ ∈ N such that

BγZn ⊂ Zn, Zn ∩BjZn = {0} for 0 < j < γ, (4.3)

Bγ′
Λ∗ ⊂ Λ∗, Λ∗ ∩BjΛ∗ = {0} for 0 < j < γ′, (4.4)

Λ∗ \Bγ′
Λ∗ ⊂ Zn \BγZn. (4.5)

As we will see in Remark 4.3 below, the powers γ and γ′ must be actually equal, and
consequently our condition (4.1) will hold. In particular, the hypothesis [15, (4.1)] is
unnecessary.

(ii) The second statement is incorrect (see Example 3 below for a counterexample).
(iii) The third result uses the assumptions Λ∗ ⊂ Zn and BjZn ∩ Zn = {0} for all j > 0. This

implies BjZn ∩ Zn = {0} for all j �= 0, which implies our condition (4.1) since Λ∗ ⊂ Zn. We
also note that the condition A ∈ E3(CB) in [15], that is, BjΛ∗ ∩ Λ∗ = {0} for all j > 0, is
implied by BjZn ∩ Zn = {0} for all j > 0. Hence, A ∈ E3(B) ∩ E3(CB) could be replaced by
A ∈ E3(B) in [15, Proposition 1(iii)].

Consequently, the oversampling result in [15] is also a special case of Theorem 4.1. We also
remark that the necessary condition that the oversampled affine systems are Bessel sequences
is missing in all three statements in [15, Proposition 1]. This condition can of course be left out
if the second oversampling theorem for frames is available (for example, as in Theorem 4.1(ii))
or if one is working with tight frames (for example, as in Theorem 4.2). However, in general
we believe the following is an open problem.
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Question 1. Let Ψ ⊂ L2(Rn) and A ∈ GLn(R) be expansive. Suppose that an affine
system A(Ψ) is a Bessel sequence and a lattice Λ ⊃ Zn. Is the oversampled affine system
A(d(Λ)1/2Ψ, A,Λ) necessarily a Bessel sequence?

Remark 4.3. Assume that a dilation B and a lattice Λ satisfy (4.3)–(4.5). By the Smith
normal form theorem (see [32, Theorem 3.7]), there is a basis v1, . . . , vn of the lattice Λ∗ and
integers αi ∈ N (i = 1, . . . , n) satisfying 1 � α1 � . . . � αn such that α1v1, . . . , αnvn is a basis
of the lattice Bγ′

Λ∗. Since Bγ′
Λ∗ is a proper sublattice of Λ∗ (B is expansive), not all αi will

be equal to 1; in particular αn � 2. Define w1 = v1 + vn, . . . , wn−1 = vn−1 + vn, and wn = vn,
that is, considered as (coordinate) column vectors we define W = V P , where

W = [w1 . . . wn], V = [v1 . . . vn], P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 0 0
. . . 0

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that Λ∗ = V Zn = V PZn = WZn since the matrix P is integer valued and detP = 1.
Therefore, {w1, . . . , wn} is also a basis of Λ∗, but with the property that wi /∈ Bγ′

Λ∗ for all
i = 1, . . . , n.

Now, by (4.5), we have wi ∈ Zn, and thus Λ∗ ⊂ Zn. Combining this with (4.3) and (4.4)
implies that γ′ � γ. Using the fact that there exists m ∈ N such that mZn ⊂ Λ∗, which, for
example, follows from formula (2.3) in [8] with m = d(Λ∗), we can also deduce that γ � γ′.
Thus, conditions (4.3)–(4.5) imply that Bγ ∈Mn(Z), Λ∗ ⊂ Zn, BγΛ∗ ⊂ Λ∗, and

Λ∗ \BγΛ∗ ⊂ Zn \BγZn.

By the equivalence (iv) ⇔ (v) in Proposition 3.6 applied for the dilation Bγ , we deduce that
(4.1) holds for j ∈ γZ. If j �∈ γZ, then BjZn ∩ Λ∗ ⊂ BjZn ∩ Zn = {0}, and thus (4.1) holds for
all j ∈ Z.

Example 3. We consider oversampling of dual frames in L2(R) with dilation parameter
A = 3

2 . In this setting, Proposition 1(ii) from [15] states that if A(ψ, 3
2 ,Z) and A(φ, 3

2 ,Z)
are dual frames, so are A(2−1/2ψ, 3

2 ,Z/2) and A(2−1/2φ, 3
2 ,Z/2); hence, in particular, if

A(ψ, 3
2 ,Z) is a Parseval frame, then so is A(2−1/2ψ, 3

2 ,Z/2). We shall exhibit a generator
ψ ∈ L2(R) contradicting this statement. Note that the conclusion from our Theorem 4.1 is
that oversampling lattices Λ = 1/λZ with λ ∈ {1, 5, 7, 11, . . .} will guarantee preservation of
tightness/duality; see Example 1. The definition of ψ is

ψ̂(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ξ ∈ [43 ,
3
2 ),

1√
2

ξ ∈ [−1,− 2
3 ) ∪ [1, 4

3 ) ∪ [ 32 , 2],

− 1√
2

ξ ∈ [− 3
2 ,−1),

0 otherwise,

see also Figure 1.
We will first show that A(ψ, 3

2 ,Z) indeed is a Parseval frame. By Chui and Shi [19,
Corollary 2] an affine system of the form A(λ−1/2ψ, 3

2 , 1/λZ) is a Parseval frame if and only
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1

− 1

1 2− 1− 2 ξ3
2

4
3− 3

2 − 2
3

− 1√
2

1√
2

Figure 1. Graph of ψ̂.

1

−1

1 2 3−1−2−3 ξ

− 1√
2

1√
2

Figure 2. Graph of ψ̂( 3
2
(ξ + 2)) (dashed), ψ̂( 3

2
ξ) (solid), and ψ̂( 3

2
(ξ − 2)) (dotted).

if, for almost every ξ ∈ R,

∑
j∈Z

∣∣∣∣∣ψ̂
((

3
2

)j

ξ

)∣∣∣∣∣
2

= 1, (4.6)

s∑
j=0

ψ̂

((
3
2

)j

ξ

)
ψ̂

((
3
2

)j

(ξ + 2sλt)

)
= 0 for s = 0, 1, . . . and t ∈ Z \ (2Z ∪ 3Z). (4.7)

It is easy to see, for example, from Figure 1, that equation (4.6) is satisfied. Since

supp ψ̂((3
2 )j(· + 2st)) ⊂ [−2, 2] − 2st for j � 0, (4.8)

we have that

| supp ψ̂((3
2 )j ·) ∩ supp ψ̂(( 3

2 )j(· + 2st))| = 0 for |t| � 5 and s � 0.

Therefore, we only need to verify (4.7) with λ = 1 for t = ±1. This is trivial when s = 0 since
ψ̂ has disjoint support with both ψ̂(· + 1) and ψ̂(· − 1). For t = ±1 we have

ψ̂(ξ)ψ̂(ξ − 2t) + ψ̂( 3
2ξ)ψ̂( 3

2 (ξ − 2t)) = 1
21[t,1/3+t](ξ) − 1

21[t,1/3+t](ξ) = 0,

as seen from Figures 1 and 2. This shows (4.7) for s = 1. When s � 2, the equations in (4.7)
are trivially satisfied by (4.8), which, in turn, proves that A(ψ, 3

2 ,Z) is a Parseval frame.
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For λ = 2 equation (4.7) with s = 0 and t = ±1 becomes ψ̂(ξ)ψ̂(ξ ± 2) = 0, which is clearly
not satisfied (see Figure 1). Therefore A(2−1/2ψ, 3

2 ,Z/2) is not a Parseval frame contradicting
[15, Proposition 1(ii)]. On the other hand, we observe directly from the characterizing equations
(4.6) and (4.7) that A(λ−1/2ψ, 3

2 , 1/λZ) actually is a Parseval frame for any λ � 4.
The proof of Chui, Czaja, Maggioni, and Weiss [15, Proposition 1(ii)] is based on higher

dimensional analogues of the characterizing equations (4.6) and (4.7). The mistake in the
proof follows from the fact that the parameter s is not only present in the ψ̂((3

2 )j(· + 2st))-
term, but also determines the number of terms in the sum (4.7). Therefore one cannot replace
only one instance of s with s+ 1 as done in the proof without changing the conditions in a
profound way.

4.3. Oversampling of dual frames with the support condition

The following result is an analogue of Theorem 3.7 for dual affine frames using the weaker
condition (3.19) instead of (3.17).

Theorem 4.4. Let A ∈ GLn(R) be expansive and Ψ,Φ ⊂ L2(Rn). For J0 ∈ N0 take Λ ⊃ Zn

to be a lattice in Rn satisfying (3.19). Suppose that, for every l = 1, . . . , L,

ψ̂l(ξ)φ̂l(ξ + k) = 0 for all k ∈ Zn \BJ0Zn, (4.9)

and that A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ) are Bessel sequences. If A(Ψ) and A(Φ) are
dual frames, then so are A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ).

Proof. By Chui, Czaja, Maggioni, and Weiss [15, Theorem 4] it suffices to prove that

tΛα(ξ) =
L∑

l=1

∑
j∈Z:B−jα∈Λ∗

ψ̂l(B−jξ)φ̂l(B−j(ξ + α)) = δα,0

for α ∈ Zn. From our hypothesis we have that tZ
n

α (ξ) = δα,0. Fix α ∈ Zn. We can assume that
{j ∈ Z : B−jα ∈ Λ∗} is non-empty; otherwise, we have nothing to prove. In this case, we claim
that

{j ∈ Z : B−jα ∈ Λ∗} ⊃ {j ∈ Z : B−jα ∈ BJ0Zn}.
To see this, take j ∈ Z so that B−jα ∈ BJ0Zn. By the assumption on α, there is a j0 ∈ Z such
that B−j0α ∈ Λ∗. Thus, by (3.19),

α ∈ BJ0+jZn ∩Bj0Λ∗ = Bj0(BJ0+j−j0Zn ∩ Λ∗) ⊂ Bj0(Bj−j0Λ∗) = BjΛ∗,

that is, B−jα ∈ Λ∗.
In tZ

n

α (ξ) we sum over {j ∈ Z : B−jα ∈ Zn}, but since ψ̂l(B−jξ)φ̂l(B−j(ξ + α)) = 0 for all
B−jα ∈ Zn \BJ0Zn by (4.9), this can be replaced with {j ∈ Z : B−jα ∈ BJ0Zn}. In other
words, tZ

n

α (ξ) = tA
−j

Z
n

α (ξ). Therefore, by (4.2) and the claim, we conclude that tΛα(ξ) = δα,0.

5. Tight oversampling and shift invariance gain

In the final section we restrict our attention to the setting of integer dilations. Our goal is
to provide a link between the improved shift invariance of the core space of an orthogonal
wavelet and dilation matrix oversampling, that is, oversampling by special classes of lattices of
the form Λ = A−sZn, s ∈ N. These types of lattices are the antipodes of admissible lattices for
oversampling listed in Proposition 3.6. Thus, they might appear as the worst choice of lattices
for showing oversampling results.
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In spite of this, we show that this class of lattices plays an important role in linking
oversampling with additional shift invariance of the core space. More precisely, the preservation
of the tight frame property when oversampling by such lattices is actually equivalent with the
membership in Behera–Weber classes of wavelets [2, 33]. Other results on the dilation matrix
oversampling were obtained earlier in [9, 15]. By Remark 3.8 our results on oversampling with
the support condition, Theorems 3.7 and 4.4, are also applicable for lattices Λ = A−sZn since
both (3.17) and (3.19) hold with J0 = s.

Suppose that ψ ∈ L2(Rn) is a semi-orthogonal Parseval wavelet. This means that A(ψ) =
{ψj,k : j ∈ Z, k ∈ Zn} is a Parseval frame and

〈ψj,k, ψj′,k′〉 = 0 for all j �= j′ ∈ Z, k, k′ ∈ Zn.

The space of negative dilates of ψ is defined by

V = V (ψ) = span{ψj,k : j < 0, k ∈ Zn}.
Following Behera [2] and Weber [33], we define the classes of wavelets with respect to the

extent of shift invariance of corresponding spaces of negative dilates.

Definition 5.1. We say that a semi-orthogonal Parseval wavelet ψ belongs to the class Lr,
r ∈ N ∪ {0}, if V (Ψ) is shift invariant (SI) under translations in A−rZn, in short, A−rZn-SI.
We say that ψ ∈ L∞ if V (Ψ) is invariant under all translations Ty, y ∈ Rn.

By definition Behera–Weber classes are nested, that is, Lr ⊂ Lr+1. However, it is much less
obvious that the above inclusions are proper, that is, Lr �= Lr+1 for all r = 0, 1, . . .. This result
is due to Behera [2, Theorem 3.4].

Theorem 5.2. Suppose ψ ∈ L2(Rn) is a semi-orthogonal Parseval wavelet associated with
dilation A ∈Mn(Z). Then, for any r ∈ N ∪ {∞}, the following are equivalent:

(i) ψ ∈ Lr;
(ii) W (ψ) = span{ψ0,k : k ∈ Zn} is A−rZn-SI;
(iii) |K ∩ (K + k)| = 0 for all k ∈ Zn \BrZn, where K = supp ψ̂;
(iv) The oversampled wavelet systems A(|detA|−s/2ψ,A,A−sZn) are Parseval frames for

each s = 1, . . . , r.

When r = ∞, we use the convention that A−rZn = Rn and BrZn = {0}. Thus, (ii) reads
that W (ψ) is invariant under all translations in Rn, which is easily seen to be equivalent with
ψ ∈ L∞, and thus ψ is a minimally supported frequency semi-orthogonal Parseval wavelet,
that is, |ψ̂| = 1K for some measurable set K ⊂ Rn.

Proof. The equivalence (i) ⇔ (ii) for orthogonal wavelets is shown in [2, Lemma 2.2]. The
following argument extends this result to Parseval semi-orthogonal wavelets.

First, assume (ii). If W (ψ) is A−rZn-SI, then so are the spaces DAj (W (ψ)) for j � 0. Since
ψ is a semi-orthogonal wavelet, we have

V (ψ) =
⊕
j<0

DAj (W (ψ)) =

⎛
⎝⊕

j�0

DAj (W (ψ))

⎞
⎠

⊥

,

and thus (i) holds. Conversely, (i) and the identity W (ψ) = DA(V (ψ)) � V (ψ) imply (ii).
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The equivalence (ii) ⇔ (iii) for orthonormal wavelets can be found in [2, Theorem 2.5]. The
following argument extends this result to Parseval semi-orthogonal wavelets as a consequence
of a more general lemma about shift-invariance gain for SI spaces, which is motivated by the
results from [1]. Indeed, (ii) ⇔ (iii) follows from Lemma 5.3 with V = W (ψ) and Λ = A−rZn.

Lemma 5.3. Suppose that V is a principal Zn-SI subspace generated by ϕ, and Zn ⊂ Λ.
Then, V is Λ-SI if and only if

|K ∩ (k +K)| = 0 for all k ∈ Zn \ Λ∗, where K = supp ϕ̂. (5.1)

Proof. The fact that V is a principal SI space with respect to shifts in Zn implies that

V = {f ∈ L2(Rn) : f̂(ξ) = m(ξ)ϕ̂(ξ) a.e. ξ, for some measurable Zn-periodic m},
see [3] or [4]. If V is also Λ-SI, then we also have

V = {f ∈ L2(Rn) : f̂(ξ) = m̃(ξ)ϕ̂(ξ) a.e. ξ, for some measurable Λ∗-periodic m̃}.
Let S =

⋃
γ∈Λ∗([0, 1]n + γ) and K = supp ϕ̂. Since m̃ = 1S is Λ∗-periodic, there exists Zn-

periodic m such that

m̃(ξ)ϕ̂(ξ) = m(ξ)ϕ̂(ξ) for a.e. ξ.

This implies that m(ξ) = 1 for almost every ξ ∈ K ∩ S. Thus, for a fixed k0 ∈ Zn \ Λ∗, we have
m̃(ξ − k0) = 0 and m(ξ − k0) = 1 for almost every ξ ∈ K ∩ S. Thus, we must have ϕ̂(ξ − k0) =
0 for such ξ, which shows that |K ∩ (k0 +K) ∩ S| = 0. Replacing S by its translate k + S shows
that |K ∩ (K + k0) ∩ (k + S)| = 0 for all k ∈ Zn, and thus (5.1) holds.

Conversely, assume (5.1). Let D � 0 be the set of representatives of distinct cosets of Zn/Λ∗.
Suppose that f ∈ L2(Rn) belongs to the Λ-SI space generated by ϕ, that is, f̂(ξ) = m̃(ξ)ϕ̂(ξ)
almost everywhere for some measurable Λ∗-periodic function m̃. Define the Zn-periodic function

m(ξ) =
∑
d∈D

m̃(ξ + d)1K̃(ξ + d) where K̃ =
⋃

γ∈Λ∗
(K + γ).

Our assumption (5.1) implies that |(K̃ − d) ∩K| = 0 for d ∈ D \ {0}, and hence

m(ξ)ϕ̂(ξ) =
∑
d∈D

m̃(ξ + d)1K̃(ξ + d)ϕ̂(ξ) = m̃(ξ)ϕ̂(ξ) for a.e. ξ.

This shows that Λ-SI space generated by ϕ actually coincides with V . This completes the proof
of Lemma 5.3.

Finally, the equivalence (iii) ⇔ (iv) can be deduced from wavelet characterizing equations
for integer dilations [5, 11] as in the work of Catalán [12] and Chui and Sun [21, 22]. Indeed,
the fact that both A(ψ,A,Zn) and A(|detA|−s/2ψ,A,A−sZn), s ∈ N, are Parseval frames
implies that

s−1∑
j=0

ψ̂(Bjξ)ψ̂(Bj(ξ + q)) = 0 for a.e. ξ and for q ∈ Zn \BZn. (5.2)

In particular, (5.2) with s = 1 implies that |K ∩ (q +K)| = 0 for q ∈ Zn \BZn. Then,
by induction, (5.2) implies that |K ∩ (Bs−1q +K)| = 0 for q ∈ Zn \BZn and s = 1, . . . , r.
Since

⋃r
s=1B

s−1(Zn \BZn) = Zn \BrZn, we have (iii). Conversely, (iii) implies that formula
(5.2) holds for s = 1, . . . , r. Thus, by Chui and Sun [22, Theorem 2.1] the affine systems
A(|detA|−s/2ψ,A,A−sZn), s = 1, . . . , r, are Parseval frames, which is the assertion (iv). This
completes the proof of Theorem 5.2.
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