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Abstract Let A be an expansive dilation on R” and w a Muckenhoupt Ax(A)
weight. In this paper, for all parameters « € R and p,q € (0, 00), the authors
identify the dual spaces of weighted anisotropic Besov spaces Bg, 4(A; w) and Triebel—
Lizorkin spaces Fl‘;‘ ¢(A;w) with some new weighted Besov-type and Triebel-
Lizorkin-type spaces. The corresponding results on anisotropic Besov spaces Bg q(As
) and Triebel-Lizorkin spaces Fl‘;‘ q(A; ) associated with p4-doubling measure p
are also established. All results are new even for the classical weighted Besov and
Triebel-Lizorkin spaces in the isotropic setting. In particular, the authors also obtain
the g-transform characterization of the dual spaces of the classical weighted Hardy
spaces on R”.
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1 Introduction

There were many efforts on generalizing various specific function spaces to applica-
tions of analysis such as PDEs, harmonic analysis and approximation theory (see, for
example [1-3,11-13,15,16,23-25,29,32-34,37,38]). This gave rise to the study of
Besov and Triebel-Lizorkin spaces which form a unifying class of function spaces
containing many well-known classical function spaces such as Lebesgue spaces, Hardy
spaces and Hardy—Sobolev spaces.

In particular, there were also several efforts to extending the classical function
spaces arising in harmonic analysis from Euclidean spaces and isotropic settings
to other domains and anisotropic settings. Calderén and Torchinsky [10-12] intro-
duced and investigated Hardy spaces associated with anisotropic dilations. A theory
of anisotropic Hardy spaces and their weighted counterparts were recently developed
by Bownik et al. in [1,7]. Anisotropic Besov and Triebel-Lizorkin spaces including
their weighted variants (more generally, associated with doubling measures) were also
introduced and studied (see, for example [2-5,15,25]). In these papers, the discrete
wavelet transform, the atomic and molecular decompositions of these spaces, and the
dual spaces of anisotropic Triebel-Lizorkin spaces without weights were established.
However, the duality of weighted anisotropic Triebel-Lizorkin spaces in [4, Theo-
rem 4.10] was obtained under an additional assumption that the considered expansive
dilations admit a Meyer-orthonormal wavelet.

In this paper, we introduce some new weighted anisotropic Besov-type and Triebel—
Lizorkin-type spaces and we identify the dual spaces of weighted anisotropic Besov
and Triebel-Lizorkin spaces with these new weighted spaces. We point out that our
results are new even for the classical weighted Besov and Triebel-Lizorkin spaces
in the isotropic setting. In particular, by relaxing the assumption that w € A,(R")
(the class of Muckenhoupt’s weights) into w € A (R"), our results also improve the
results obtained by Bui in [9], Roudenko in [28] and Frazier and Roudenko in [19],
which are respectively [9, Theorem 2.10] and the scalar versions of [28, Theorem
A1(3)]and [19, Theorem 5.9] on the dual spaces of the matrix-weighted Besov spaces.
As a special case of our results on the weighted Triebel-Lizorkin spaces in isotropic
settings, we also obtain the ¢-transform characterization of the dual spaces of the
classical weighted Hardy spaces on R", which also seems new. Recall that the classi-
cal weighted Hardy spaces on R” and their dual spaces were first studied by Garcia-
Cuerva in [20]. The wavelet characterizations of the weighted Hardy spaces on R”
and their dual spaces were obtained in [21,27,40].

Let A be an expansive dilation on R” (see [1] or Definition 2.1 below) and w
a Muckenhoupt A (A) weight associated with A (see [5] or Definition 2.2
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below). In what follows, for any p € (0, o], p’ denotes the conjugate index of
p, namely, p’ = oo when p € (0,1] and p’ = 1/(1 — 1/p) when p € (1, co].
In this paper, for all parameters ¢ € R, t € [0, 00) and p, g € (0, co], we intro-
duce new weighted anisotropic Besov-type spaces B;’:; (A; w) and Triebel-Lizor-
kin-type spaces F;’j;(A; w) (see Definitions 2.4 and 2.5 below). By establishing
the duality results on their corresponding sequence spaces, we prove that, for all
o € Rand p,qg € (0,00), the dual space of the weighted anisotropic Besov space

Bg’q(A; w) is B;,a;,naxﬂ/p’l}(A; w) (see Theorem 2.2 below), and the dual space of

the weighted anisotropic Triebel-Lizorkin space F ;" g(Asw) is F(I_,O;’/l/ pHi/a-1 (A; w)
when p € (0, 1] or FI;O;’,O(A; w) when p € (1, 00) (see Theorem 2.1 below). These
results are also true for those anisotropic Besov spaces B;’," ¢(A; ) and Triebel—

Lizorkin spaces F 1?, q(As ) associated with p4-doubling measure y (see Theorem 4.1
below).

We remark that when w = 1, forany ¢ € R, p € (0,1],9 € (0,00) and
0= 1/p+1/q'—1, F_,O;’/TO (A; w) = Fo‘o?‘;g””‘l (A) with equivalent norms (see Cor-
ollary 2.1(ii) below), w‘i{ich further shows the coincidence of our results on duality with
existing known results in [4] in unweighted case. Moreover, if w = land A = 2 [,,«,,
where I, denotes the n x n unit matrix, then the Triebel-Lizorkin-type spaces
F g:‘; (A; w) were introduced and studied in [41,42], and it was proved in [30,41-43]
that they include several classical spaces such as Triebel-Lizorkin spaces (see [32]),
O spaces (see [14]), Morrey spaces and part of Morrey—Campanato spaces; while, in
this case, the Besov-type spaces Bg:; (A; w) are just the Besov spaces Bgfg”l (A).
This reflects the difference between Bg;; (A; w) and F;‘j; (A; w).

Two key ideas used in the proofs of Theorems 2.1 and 2.2 are that, differently from
the proofs on the duality in [4,17,27,39], we adopt the notion of the tents (see [3] or
(2.1) below) for dilated cubes and also introduce the notion of the pseudo-maximal
dilated cubes, which are used to subtly classify dilated cubes (see (3.12) below). In
this sense, the proofs of Theorems 2.1 and 2.2 are quite geometrical.

The organization of this paper is as follows. In Sect. 2, we present some basic
notions and the duality results on weighted anisotropic Besov and Triebel-Lizorkin
spaces, whose proofs are given in Sect. 3. In Sect. 4, we prove that the duality results
in Sect. 2 are also true for anisotropic Besov and Triebel-Lizorkin spaces associated
with doubling measures. We point out that all results of this paper are also true for
inhomogeneous spaces with slight modifications (see, for example [32,43]). We omit
the details.

Finally, we make some conventions on symbols. Throughout the paper, we denote
by C a positive constant which is independent of the main parameters, but it may
vary from line to line. Constants with subscripts, such as Cp, do not change in dif-
ferent occurrences. The symbol A < B means that A < CB and the symbol A ~ B
means that A < B and B < A. Denote by #E the cardinality of the set E. We
will use the convention that the conjugate exponent q' satisfies 1/q + 1/q" = 1 if
l<g<oocandq =o0if0 <g <1.WealsosetN = {1,2,...},Z; = {0}JUN
and Z'| = (Z4)".If E is a subset of R", we denote by x g the characteristic function
of E.
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2 Main results

We begin with the notion of expansive dilations on R" (see [1]).

Definition 2.1 A real n x n matrix A is called an expansive dilation, shortly a dilation,
if maxyeq(a) || > 1, where o (A) is the set of all eigenvalues of A. A quasi-norm asso-
ciated with expansive matrix A is a Borel measurable mapping p4 : R" — [0, 00),
for simplicity, denoted as p, such that

(1) p(x) > 0forx # O;
(i) p(Ax) = bp(x) for x € R"?, where b = | det A|;
(iii)) p(x +y) < H[p(x) + p(y)] for all x, y € R”, where H > 1 is a constant.

Throughout the whole paper, we always let A be an expansive dilation on R"” and
b = | det A|. The set Q of dilated cubes of R" is defined by

Q0={0=A/(0, )" +k):jeZ kel

For any Q = A/ ([0, 1)" + k), let the symbol scale (Q) = j and X = A'k be the
“lower-left corner” of Q. We see that for any fixed j € Z, {Q = A/ ([0, D" + k) :
k € Z"} is a partition of R". For any P € Q, let

T(P)={Qe€Q: QNP £, scale (Q) < scale (P)} 2.1

be the tent of P (see [3, Definition 2.4]).
We now recall the weight class of Muckenhoupt associated with A introduced in [5].

Definition 2.2 Let p € [1,0), A be a dilation and w a non-negative and almost
everywhere positive measurable function on R”. A function w is said to belong to the
weight class A,(A) = A, (R"; A) of Muckenhoupt, if there exists a positive constant
C such that when p € (1, 00),

p—1

sup sup 157 / w(y)dyt 157" / w1 =D ay <C,
xeR" keZ
B, (x, bk) B, (x,bk)

and when p =1,

sup sup bk / w(y) dy esssup [u)(y)]*1 <C,
xeR" keZ yeBp(x,bk)
By (x, b¥)

and the minimal constant C as above is denoted by C), 4,,(w). Here, for all x € R”"
andk € Z, B,(x,b") = {y e R" : p(x —y) < bF}.
Define A (A) = U1§p<oo Ap(A).
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For all p € (0,00) and w € Ay (A), the weighted Lebesgue space LY (®R") is
defined to be the space of all measurable functions on R” such that || f|| LRy =
o [f @ 1Pw(x) dx} P < oo,

Denote by S(R") the set of all Schwartz functions on R" and S’ (R") its ropological
dual space. As in [18], we set

Seo(R") = 1¢ € S(RY) : /qb(x)x“ dx =0, aelZ
Rn

We consider So (R") as a subspace of S(R"), including the topology. Thus, Sx (R")
is a complete metric space (see, for example [31, p.21, (3.7)]). Let S (R") be the
topological dual space of S (R™) with the weak-+ topology.

Definition 2.3 Let A be an expansive dilation and A* its transpose. Define %50 (R")
to be the set of all ¢ € S(R") such that

(i) suppg C [—m, w]"\{0},
(i) sup;ez [P((A*)/&)| > 0 forall & € R"\{0}.

Obviously, Y50 (R") C Seo(R™).

Now let us first recall the notion of the weighted anisotropic Triebel-Lizorkin
spaces in [5] and then introduce some new weighted anisotropic Triebel-Lizorkin-type
spaces. In what follows, for all Q € Q, let jo = —scale (Q) and ¢ = XQ|Q|’1/2.

Definition 2.4 Let w € Ax(A), ¢ € Y R"),a € R, p € (0,0), g € (0, o0] and
T € [0, 00).

(i) The weighted anisotropic Triebel-Lizorkin space FI‘]" q(A; w) is defined to be
the set of all f € S_ (R") such that

Q=

1 Wiy, vy = | 1 2 1917 *10jg * Flx0) < o0,

0eQ L2 @)

where and in what follows, forall j € Zand x € R", ¢;(x) = b{(p(A/x). The corre-
sponding discrete weighted anisotropic Triebel-Lizorkin space f [‘;‘ 4(A; w) is defined
to be the set of all complex-valued sequences s = {sp}pco such that

Q=

sl g, camy = || 1 2 (101 Isol%0) < o0,

gee LD (R
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(i1) The weighted anisotropic Triebel-Lizorkin-type space F,‘f; (A; w) is defined
to be the set of all f € S, (R") such that

) 1
1A ?

10|

q
= / IQI_"‘IcpJ * f)xe()—— ) w(x) dx
" peo [w(P)] l 0T ¢ w(Q)

Its corresponding discrete weighted anisotropic Triebel-Lizorkin-type space

f,‘," ’qf (A; w) is defined to be the set of all complex-valued sequences s = {sp}pcQ
such that

1
(YT p— /
frattm = peg tw(P)e | J

< Q.

1
P

{E
q q
D (IQI_QISQIZQ(X)J(QA))} () dx

QeT(P)

It is understood that the above definitions need the usual modification when ¢ = oo.

Remark 2.1 (i) Integrating the norm of || -|| z« (A:w) OVEr cubes Q with fixed scale
AN
Jj yields a familiar equivalent form

1/q

1 g amy = | 207 e0s % f17
< L @)

(i) The weighted anisotropic Triebel-Lizorkin space F,‘;‘ q (A; w) and its discrete
variant f° [‘j‘ q(A; w) were first introduced in [5]. Moreover, when p, g € (0, 00),
by the ¢-transform characterization of Fl‘;‘ q (A; w) (see [5, Theorem 3.5]) and the
fact that sequences with finite support are dense in f I‘j‘ q (A; w) (see [5, p. 1452]),
we know that Sy (R") is dense in F"‘ (A w).

(iii)) We point out that in Definition 2. 4(11) when w = 1 and A = 2 [,,«,, the space

;’; (R™) and its corresponding discrete sequences spaces were introduced in
[30,41,42] (see also [43] for inhomogeneous versions).

The following is the main theorem of this paper.

Theorem 2.1 Leta € R, p,g € (0,00), 70 = 1/p+1/q' — 1 and w € Ax(A).
Then,

®

: * £47A; w), p e (0,1],
( paq (A w)) =1 a0
Jp g (Asw), pe(l,00).
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More precisely, | is a bounded linear functional on fp""q (A; w) ifand only if | is of the
form

1A = (A1) = z hofg. where k= {ho}geq € [, (Asw), (2.2)
QeQ
Sfor some sequence t = {tp}pecg C C such that

1 [y < O 10
(fg(asw) 1]l 0.y P € (1.00).
P9

(i)
o0, T .
[ B w, pe© 1),

FE (Aw) =1
( p.q w)) [FI;‘);’/O(A;w), p € (1,00)

in the following sense. For each g € Fq_,O;’,m (A; w)when p e (0, 1]org e F[;‘);,O(A; w)
when p € (1, 00), the map

1) = (f. g) = / FCO90) dx, 23)
Rn

defined initially for all f € Soo(R"), has a bounded linear extension to Fl‘;‘, q (A; w).
Conversely, any bounded linear functional | on Fl‘f’q (A; w) is of the form (2.3) and

I [Vl P E @1
(Fg,q(A;w)) ”g”F‘,"‘*?(A;w), R
P.q

Observe that Theorem 2.1 when w = 1 includes [4, Theorem 4.8] which briefly
states as follows:

” s ’ ’
(F‘O{7 (A)) .O0,00
lp’,q’(A)’ p € llﬂco)

Indeed, let w = 1, p,q € (0,00) and 19 = 1/p + l/q/. — 1. By definitions of
these spaces, we immediately have that when p € (1, 00), F ;',’;g (A) = Fp"‘, q(A)s and
when p = 1, F,“"(A; w) = Fo:)“ (A). By the following Corollary 2.1(ii), when

q'.q’ q’
p € (0, 1), we also have Ffoé’fo(A; w) = F&?;l/p_l(A). This shows the above
claim. Moreover, Theorem 5.1 when w = 1 and A = 21,4, coincides with the

corresponding classical results in [17, Section 5].
As a consequence of Theorem 2.1 and [4, Theorem 4.2], we have the following
result.
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Corollary 2.1 Leta € R, g € (1,00] and t € (1/q, o0).

(1) If w € Ax(A), then the space fgg oo (As w) is isomorphic with the space

T 1/g+1
[ (As w) via the map {sg}peo {M

{soloeg € foo,oo(Aa w),

sotoeg. That is, for all

[w(Q)~Vat!
lisoloeoll fo wiam ~ || g7 *

o] -
QeQl| farr (Asw)

@) If w =1, then f;‘qf (A;w) = fa+r la (A; w) with equivalent norms.
The same conclusions are true for the spaces Fg) ’qf (A; w).
The proof of Corollary 2.1 is given in Sect. 3. We point out that part (ii) of Cor-

ollary 2.1 may not be true if w # 1. We give a counter-example on I-dimensional
Euclidean space R as follows.

Example 2.1 Leta e R,q € (1, 0], 7 € (1/g,00),A=2,¢ € (0, 00) and w(x) =
|x|e € Axo(A) (see [22, p.286, Example 9.1.7]). In this case, we know that Q is the
set of all classical dyadic cubes in R. Now, we construct a sequence s = {sp}pcQ

such that ||S||fa+r 4 (A =1 but ”S”f,}’f;}(A;w) = 00. Since

sl jutet/a gy = SUP Q17T D 5o Q12 (see [4, 2.17))),
e ' 0eQ

wesets = {sg}geg Withsg = [Q|*T7~1/4+1/2 forall Q € Q. Then ||s”f'ot+r—l/q(A.

w)
=1.
On the other hand,
. 1/q
1 _ . 10l
ISl o 4.0y = SUP ———— 10175017 Q1? ———w(Q)
Jag (Aw) = 220 [w(P)]7 QE;P) [w(Q)]9
1/q

—wp ——— Y |Q|”1[ﬂ]q1
reo Pl | 2=, Lu@)

|P| T+1-1/q
> sup |:—i| .
peg Lw(P)
Let O = {Q = [2k,2FtY) : k € 7Z}. Then, for any P € Q and w(x) = |x|¢, we

24 e k(t+1) T :
have w(P) = f2k |x|*dx ~ 2 . Combining this, the above estimate, £ > 0 and
T € (1/g, 00), we obtain that ||S||f‘“ A > 2~kt(+1=1/9) By letting k — —00, we

further obtain that [|s|| fe.r 4,,,) = 00, Wh]Ch implies that the spaces fe'e Y4 4; w)

and fq,q (A; w) are not the same spaces with equivalent norms.
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We also have the corresponding duality theory for weighted anisotropic Besov
spaces. Let us begin with recalling the notion of the weighted anisotropic
Besov spaces introduced in [2] and then introduce some new weighted anisotropic
Besov-type spaces.

Definition 2.5 Let w € A (A), ¢ € YR, a € R, p,g € (0,00] and T €
[0, 00).

(i) The weighted anisotropic Besov space B;’," q (A; w) is defined to be the set of all
f € S (R™) such that

ST
<

W lagam = {2 | 2 [ 107710 F0r0m wwdx

i 0eQ
J €z scale (Q)=—j R

< OQ.

The corresponding discrete weighted anisotropic Besov space Bg, ¢(A; w) is defined
to be the set of all complex-valued sequences s = {sg}pco such that

Il m = {2 | 2 [ (07 kolfow)” wwdx | | <o,

j 0€Q
J €L scale (Q)=—j R

(i) The weighted anisotropic Besov-type space Bjy §(A; w) is defined to the set of
all f € S (R") such that

p K
1A ger (= Z/ > IQI_“ij*f(x)l% w(x) dx
j €Z R» scaleQ(Z)Q: —J
< OQ.

The corresponding discrete weighted anisotropic Besov-type space B?,:;(A; w) is
defined to be the set of all complex-valued sequences s = {sp}gcg such that

1
g -
)4 » q

(Asw) = Z / Z |Q|_a|SQ|M w(x)dx < 0.
€z | gn [w(O)]

lls llee

€
scale (Q)=—j

It is understood that the above definitions need the usual modifications when g = oo
or p = oo.
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Remark 2.2 (i) Integrating the norm of || -|| z« (A:w) OVer cubes Q with fixed scale
p.g
Jj yields a familiar equivalent form

a/p)

g am = { 2| [ 6710 ol s
JEZ | R

(i) The weighted anisotropic Besov space Bg 4(A; w) and its discrete counterpart
were first introduce(} in [2]. Moreover, when p, g € (0, 00), by the ¢-transform
characterization of BI‘;" q(As w) (see [2, Theorem 3.5]) and the fact that sequences

with finite support are dense in 15;’ q(As w) (see [2, p.553]), we know that S (R)
is dense in B;’,"q(A; w).

(iii) Observe that when w = 1, the Besov space Bg:;(A; w) coincides with
Bg;f’l(A); see Proposition 2.1. This is in contrast with Fjy'7 (A; w), where
the parameter t plays a significant role; see Remark 2.1(iii).

From Definition 2.5, we can immediately deduce the following result.

Proposition 2.1 Letw = 1,0 € R, p,q € (0, 0] and t € [0, 00). Then,

b2T (A w) = b2 (4)

and B;’,‘j; (A; w) = Bgfg’_l (A) with equivalent norms.

Example 2.2 In general, Proposition 2.1 may not be true when w 1. For example,
letting the dimensionn = I, = 0,p =g = 00,A = 2 and s = {sp}pco With
s = |0|7~1/2 for all Q € Q, we see that

lIsllze—1 4 = sup 101> Tlsgl =1
00,00 (A) 00

and

sl casuy = sup Isol1Q1'?/[w(Q)] = sup o1/ w(]" .

Choose w(x) = |x| for all x € R. Then, for all j € Z,

. T
2/ _
15l amy = Sup QW > | —— | 22777,
' QeQ 5 Xdx

Letting j — —oo, we obtain |[|s||;0.- = oo, which implies that the spaces

co(Asw)

l:)crx;,éo(A) and Bg&foo(A; w) are not the same.

We have the following duality results on weighted anisotropic Besov spaces, which
is another main theorem of this paper.
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Theorem 2.2 Leta € R, p, g € (0,00) and w € Axo(A). Then

(b (A w))* _ paqmax{l/p 1}(A w)

in the sense of (2.2), and

( (A w))*_ ;aqmax{l/pl}(A w)

in the sense of (2.3).

Remark 2.3 (i) We point out that the duality results obtained in Theorem 2.2 when
w = land A = 21,,«, generalize the classical results on Besov spacesin[17,32].
(ii) Theorem 2.2 when A = 21,, and w € Amax(p,1}(R") (the class of Muck-
enhoupt’s weights) coincides with the scalar versions of [28, Theorem A1(3)]

(p €[1,00)) and [19, Theorem 5.9] (p € (0, 1)).

We finish this section by giving a couple of equivalent descriptions of anisotropic
weighted Besov-type spaces and Triebel-Lizorkin-type spaces for certain parameters.

Definition 2.6 Let w € Ax(A),a € R,q € (0,00),790 = 1/q +1/q' — 1 and
71 = max{l/q, 1}.
(i) The space F,, F "’(A w) is defined to be the set of all f € S, (R") such that

’

-4 a
D o107

17 = S0 . / 0] |¢,-Q*f(x>|_> dx
“’(P”” 0<Tip) (w7

with the usual modification made when ¢’ = oo.
(ii) The space Ba 7! (A w) is defined to the set of all f € S, (R") such that

/

-
1155, ) = § 22 / Z 101 %lg; * f(x)l% dx
a9 JEZ R ['LU(Q)] 7

scdle (Q)_—j
< 0

with the usual modification made when ¢’ = oo.

Comparing with the definitions of F o o (A; w) and B“ ;! o (A; w), we find thatin the

definitions of F%™ '(A; w) and Ba o (A w) the 1ntegrals are not weighted. However,
the two couples 0? spaces are equlvalent as follows.

Corollary 2.2 Let w € Ax(A),a € R, g € (0,00), 7o =1/qg+1/q' — 1 and 7| =
max{1l/q, 1}. Then Fa TO(A w) = ‘HO(A w) and Ba o (A w) = arl,(A w)
with equivalent norms
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_ By adapting the proof of Lemma 3.1 below, we show that Lemma 3.1 also holds with
F;,’ ;0, (A; w) and B;‘,’ Tq‘, (A; w) replaced, respectively, by an,’ ;0, (A; w) and Bg,’ Tq‘/ (A; w)
albeit with the same sequence spaces f:,;? (A; w)and [)Z,’ qu, (A; w). Once this is shown,
Corollary 2.2 follows immediately. We omit the details.

3 Proofs of Theorems 2.1 and 2.2

Let us begin with recalling some notation. For all functions ¢ on R*, x € R", j €
Z,k € Z"and Q = A7/ ([0, 1)" +k), letpg(x) = |Q|%<pj (x —xg), where | - | means
the Lebesgue measure on R”.

Lety € S (R").Forall f € S_ (R"), recall that the -transform S, is defined by
So(f) ={(Sp(fNoloeo = {{f. o)} pc0, and the inverse g-transform T, is defined
by T, (1) = ZQEQ tog initially for finitely supported sequences t = {tgp}pecg C C;
see [3].

In what follows, for simplicity, we use the symbol A‘I", q (A; w) to denote either the
space B;‘qq(A; w) or the space F[‘f’q (A; w), and use the symbol aj, ,(A; w) to denote
the corresponding sequence spaces. Likewise we introduce the symbols A%’,;(A; w)
and d} g (A; w).

The @-transform characterizations for weighted anisotropic Besov and Triebel—
Lizorkin spaces in Definitions 2.4 and 2.5 are presented as follows.

Lemma 3.1 Let w € Ax(A), 0, ¥ € Yoo(R"),a € R, p,q € (0,00) and 19 =
1/p + 1/q’ — 1. Then, the following hold.

(i) The @-transform S, is bounded, respectively, from the spaces A'%’q(A; w),

F;‘,’Z’, (A; w), FI‘;‘,’%,(A; w) and BZ;H;X{I/”’”(A; w) to the corresponding dis-
crete spaces with the same parameters.

(ii) Theinverse g-transform Ty is bounded, respectively, fromthe spacesa, ,(A; w),

f;,’;“, (A; w), f;”.(;/(A; w), and BZ}?XWP’”(A; w) to the corresponding contin-
uous spaces with the same parameters.

(iii) Assume that ¢ and  additionally satisfy Zjez P(ANIE)Y (A¥)E) = 1 for
all & € R"\{0}, where A* denotes the transpose of A. Then, Ty o S, is the

identity on A"]",’q (A; w), F;‘,”Z‘),(A; w), Fz/’g,(A; w) and BZ;E?‘XW!I’I}(A; w).

We first point out that Lemma 3.1 may be true for A%7(A; w) and their
corresponding spaces of sequences with full indices. However, to limit the length of
this paper, we only indicate how to show Lemma 3.1 in these special indices described
therein, which is enough for applications of this paper.

The results in Lemma 3.1 associated with Besov spaces B;‘,‘ q (A; w) and Triebel—
Lizorkin spaces FI‘;‘ q(A; w) were, respectively, obtained in [2,3]. The results in
Lemma 3.1 associated with the spaces A%:;(A; w) can be obtained by a modifica-
tion of the proofs for [3, Theorem 3.12] with p € (0, co) and [2, Theorem 1.1]; see
also [26, Lemma 3.9]. We give some details only on the space F;‘,ZO, (A; w) and its

sequence space f';,’;‘? (A; w).
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Using Lemma 3.1, by repeating the proofs of [5, Corollary 3.7] and [2, Corollary
3.7], we have the following conclusion. We omit the details.

Corollary 3.1 Let o, w, p,q and to be as in Lemma 3.1. Then the spaces
A% Az w), FE(A;w), FS0 (A w) and BS™YP D (A w) are independent of
the choices of ¢.

For any w € Ay (A) with g, = inf{€ € [1,00) : w € AK(A)},')L,r € (0, 00)
satisfying some additional conditions, the sequence s = {sg}pcg € f;‘,:;o,(A; w) and
its majorant sequence s, = {(s,) 0} e defined by

1/r

T [spl”
Gride = ,;Q (141017 p(xg —xp)] ’

scale (P)=scale (Q)

by following the proofs of [3, Lemma 3.10] and [26, Lemma 3.9], we see that the key
of the proof of Lemma 3.1 in this case is to show ||s|| 70 Ay ||S:i)»|| 40 (42 )

once this is done, the other details are similar to those of the proof of [3, Theorem
3.12]. Now let us show this conclusion.

Lemma3.2 Let w € Ax(A),a € R, p,q € (0,00), 70 = 1/p+1/qg' —1,r €
[q', o0l and & € (1/q" + quwmax{1/p, 1 — 1/q'}, 00). Then there exists a positive
constant C such that for all sequences s = {sp}peg € f;’? (A; w) and their majo-

rant sequences S:A = {(s;‘, ,)oloeo,
-, < * -, < -, .
”S”f:/;‘),(A;w) = ”Shk”fj;g(f\;w) = C”S”f:/_zo,(f\;w)

Proof The first inequality is obvious, and we only need to prove the second inequality.
Foralla € R, w € Ax(A), p,q € (0,00)and tp = 1/p + 1/q' — 1, we have

1
Il et gy ~ S0P § ———————
fq/.q/(A’w) PeQ [UJ(P)]q (%—1)4—1

1

7

q

x > (107 Pisol) @@ E G
QeT(P)

By similarity, we only give the proof for the case that ¢’ € (1, 00). Forany P € Q,
by [3, Lemma 2.9], there exists a positive integer cq such that

U 0 C B,(xp, b0TsU PNy and B (cp, =05l Py = p - (32)
Q€T (P)

where cp is the center of P. Then for any fixed P € Q, let

BP = Bp(-xP7 3H2bc0+scale(P))’
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where H is as in Definition 2.1. Let
Up, ={P' € Q: scale (P") = scale (P), P' N Bp # (I}

and 173,, = Upreuy, P’. Thus, by the fact that {P’ € Q : scale (P’) = scale (P)} is
a partition of R", we have that

2 -2 2t 2 2.

ReQ P'eUp ReT (P) P'NUg, =0  ReT(P).RNUp, =0
scale (R)= scale (Q) P scale (R)=scale (Q) scale(P’):l:cale(P) scale(R):scaleI(JQ)

which, together with the well-known inequality that for all y € (0, 1) and {a;}; C C,

14
Dlajl| =D lajl” (33)
J J
and | Q| = |R| when scale (Q) = scale (R), further implies that

l _ 1 ’ Y
—— o 2o (12D [w())'
[w(P)]"'7 0eT (P)
1ol ’ /
< S Y S |RI7 = sp|? [w(Q)]'
- 1_1+1 -1 — rq'
[w(P)]‘I( )+ 0eT(P) P/EUBP } ](e;)fz’(})/; o [1+4+ 0] )O(XQ xR)]

2 2 2

19 (*—1)-‘1' .
[w(P)] QeT(P)  P'nUg,=#  ReT(P).RNUp,=f
scale (P')= sc..ile(P) scale (R)=scale (Q)

=1+

Step 1. Prove I < ||s|| P

0 A For any R € Q, let

Mpgro={Q € T(P): scale (Q) = scale (R), |Q|_1,0(xQ — XR) < b},
and
Mg =1{Q € T(P) : scale (Q) = scale (R),b' <|Q|"'p(xg —xg) < ')
for all / € N. Then we have

_ RI7 G0 [sp |7 [w(Q)]'~7
e 2 2 2 (10T g — ol

1
[w(P)]q( L €Up, RET(P))I€Ls QMp,
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Since A > 1/q" +q (1 —1/q"), we choose g € (qy, 00) sufficiently close to g,, such
that 2 > 1/q¢’ + g(1 — 1/q’). Forany Q € Mg and P’ € Ug,, by [3, Lemma 2.9]
and [7, Proposition 2.6(i)], we have w(R) < b7 w(Q) and w(P) ~ w(P’). More-
over, by an elementary lattice counting lemma (see [6, Lemma 2.8]), tMg ; < b and
gUp, < 1. From the above estimates, A > 1/¢’ + ¢(1 — 1/¢’) and (3.1), it follows
that

[ < z ; z (|R|2 a|SR|)q zblq(q—l)-H —2q']

~ 'd-n+1 C[w(R)-1
= [w(P) D j ity W]
S 15050 4,0
which is the desired inequality.

Step 2. Prove J < |s|% ‘”O(A For any fixed P € Q, Q € 7(P), P/ € Q with

P'N UBP = () and scale(P ) = scale(P), and any R € T (P’) with RN 173[, =0
and scale (R) = scale (Q),by (3.2) and Bp = B, (xp, 3H?>b0+ 54 (P)y « g we
obtain

p(xp —xp) < H*[p(xp —x0) + p(xg — xg) + p(xg — xp/)]
< H2[2bco+scale(P) +,O(XQ _xR)]’

which, together with
p(xRr —xp)

H
> 2Hbcg+ scale (P)

/O(XR _ xQ) > _ ,O(XQ _ xP) > 3Hbco+scale (P) _ bcg—i—scale (P)

implies that
plxp —xpr) < 2H?p(xg — xp). (34)
Moreover, by P’ N l~/3P = {J and scale (P’) = scale (P), we have

(P € Q: P'NUp, =, scale (P') = scale (P)}
C{P € Q:plxp —xp) > 3H>pOT5UP) geale (P') = scale (P)}
— U {P/ cQ: 3H2bco+scale(P)+j <plxp—xp) < 3H2bco+scale (P)+j+1’
JEL4
scale (P’) = scale (P)}

= U Vp ). (3.5)

Since » > 1/¢" + qymax{l/p, 1 — 1/q’}, we choose ¢ € (g, c0) sufficiently
close to gy, such that A > 1/q¢’ + gmax{1/p, 1 — 1/q’}. Notice that for any j € Z
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and P’ € VP,j7by p’ C Bp(xP, 4H3bco+scale(P)+j+1)’ W(BP(XP, b—co+scale(P))) ~
w(B,(cp, p—cotscale (P)yy B,(cp, b0t scale(P)y « P and[7, Proposition 2.6(i)], we
have

w(P’) < w(Bp(xp, 4H3bco+scale(P)+j+l)) 5 b-’qw(Bp(xp, b—co+scale(P)))
S BITw (B, (cp, =0T (Plyy < pidy(p), (3.6)

Symmetrically, we also have
w(P) < b/w(P). (3.7)

Moreover, forany j € Zy, k € Z,, Q € T (P) with scale (P) = scale (Q)+k, P’ €
Vp,j, R € T(P’) with RN Up, = ¥ and scale (R) = scale (Q), by (3.4), we obtain

Furthermore, for any j € Zi,k € Zy, P € Vpj,Q € T(P), R € T(P') with
RN UBP = () and scale (R) = scale (Q) = scale (P) — k, by

R C B,(xp, 4H3bC()+Scale(P)+j+]) C B,(co, 5H4bco+scale(P)+j+]),
B,(cg, b=0Fscale (@) 0 and [7, Proposition 2.6(i)], we have

w(R) < w(B,(co, 5H4b60+scale(P)+j+1))
< b‘?(j+k)w(Bp(cQ’ b—co+scale(Q))) < bg(j+k)w(Q)_ 39)

Thus, for any p € (0, 00), ¢’ € (1, 00) and P € Q, using (3.5) through (3.9),
#H{Q € T(P) : scale (Q) + k = scale (P)} < bF

and #Vp ;
we obtain

< b/ (see [6, Lemma 2.8]), (3.2) and A > 1/q" +gmax{l/p, 1 —1/q'},

~

e SID WD M) 3

q (*—1)+1
[w P ] QeT (P) 7. P'eV,
( ) keZ + scale(QH—k scale (P) ]E + €VPp.j

X

73! , ,

Z |R|4 (i—a)|SR|q [w(Q)]l_‘I
—1 _ '

ReT(P)).RNUp , =0 [1+10| ,O(XQ xr)]+
scale (R)=scale (Q)
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plald' (G =D+1]

2202

" _n+1
keZy jezs Pevp, lw(PHIT 7Y

IR17 G |54 [w(R)]'—4 pTUH@' =D

Z bra’(j+k)

ReT (P))
~ 7

/ ~ 7 a7 ; ]+‘IL,)L /)
< IIsI% 2 pKla@’ =D+1-24'] E pl 52
S ”f“‘/?’,(A;w)

a4 k€Z+ j€Z+
< s %
~ »T0 . ’

fq/,q/(Asw)

which is also the desired inequality.
Combining the estimates of I and J, by the arbitrariness of P € O, we have

Il 70 gy S ST 770 400
PSS g (Asw) Ty g (A50)
which completes the proof of Lemma 3.2. O

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 Lettg = 1/p +1/q' — 1 and w € Ay (A). We prove Theo-
rem 2.1 in three steps. )
Step 1. Proof of (f;,’"q(A; w))* = fI;fZP(A; w) with (p, g) € (1, 00) x (0, 00).

We first prove fp_,O;’,O(A; w) C (f;,’"q(A; w))*. For any

t=1{to}oeg € f,% (A w),

d.eﬁne a linear functional ¢; on f.[‘j"q(A; w) by £,(s) = ZQeQ sotp for all s €
1‘,’" 4(A; w). By applying Holder’s inequality twice when ¢ € (1, 00), or by the
imbedding f'I‘j‘,q(A; w) — fpo"l(A; w) when g € (0, 1], we have

6Ol = [ 3 101 sol Tt ol o To () dx
R» QeQ

< sl g a1 o0y

which ylelds ”El”(f‘g,q(A; w))* <

t f—a, B
. = | ”fp,,qi’m;w)
(f2 (A5 w))*.
Let us prove the converse by referring some ideas from [17, p.78]. Since
sequences with finite support are dense in f 1. q(A; w), each bounded linear functional

and hence fp_,fZ/O(A; w) C

L e (f;j"q(A; w))* must be of the form £(s) = ZQEQ sotg forsomer = {tp}peo C
C. It suffices to show that ”t”fl;:?(A;w) < ”l”(fﬁ,q(A; w))*-
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Forall p, ¢ € (0, ool let L (¢£9) be the space of all sequences {fi}jer of functions
on R" such that

1/q

ezl ooy = |1 D1l < o0,
jEZ P
Li®™)
By [4, Proposition 4.3], we know that (L{Z,(Z‘f))* = Lg/ (K‘f/) for all p € (1, o0) and
q € (0, 00). Notice that the map In : fl‘j"q(A; w) — L% (%) defined by setting, for
alls € f) ,(A; w),In(s) = {f;};, where f; = > e 0)=—; |21 s0 X0 for all
j € Z, is a linear isometry onto a subspace of L, (£9).

When p € (1, 00) and g € [1, o0), by the Hahn—Banach theorem, there exists an
ﬁ € (L (Zq))* with ||e||(fo( (A; w))* — ||£||(fa (A; w))* such that@ oln=¢.

In other words, there exists g = {gj}jez € Li (Zq) with ||g||L,, @) <

€1l fo (. wy) Such that for all s € f&  (A; w),
p.qAs ,

Z solo =/ij(x)§j(x)w(x)dx.

0eQ Rn JEZ

By taking s = 0 for all but one dilated cube, we obtain

o = / 10177 2g; (0)yw(x) dx (3.10)

for all cubes Q With scale (Q) = —
Forany f € L! loc AR™; w), which denotes the space of all locally integrable func-
tions on the measure w(x)dx, define the weighted anisotropic Hardy-Littlewood

maximal function of f by My, (f)(x) = sup,cpeco @ fQ | f (y)|w(y) dy. Then by
[3, Lemma 2.9 and Theorem 2.8] and the fact that w(x) dx is a p4-doubling mea-
sure (see Sect. 4 below), we have the vector-valued maximal inequality that for all

p € (1,00),q € (1, 00] and functions { f;}; L% (¢4,

1/q
(me’) q :

Ll (R

()

Ll (R

which together with (3.10) yields that
11 0 asy = MM DYzl gy S 1907y S 180Gy

and hence (f“ (A; w)* c f°

g (A; w). This finishes the proof of Step 1 when
p e, oo)andq € [1, 00).
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To complete the proof of Step 1, it suffices to prove (f g(As w)* C f ,a ,O(A w)
when p € (1,00) and g € (0, 1) We need to use Verbltsky s method from [35,36]
(see also [4]). In fact, since ] € (f[‘j‘,q(A, w))* is of the form £(s) = ZQEQ sotp for
some f = {to}peco C C, we know that there exists a positive constant C such that for
alls € fpo"q(A; w),

€)= | D sofo| < Clsll s (a:u-
0eQ

Define Q' = {Q € Q: 19 # 0},ug = sgipforall Q € Qandcg = |Q|7% /2|to|~!
for all Q € Q. Then the above inequality can be rewritten as

1/q

Huglgealln < C |1 D lugli(co)xo

0eQ L2 @™

Then applying [4, Theorem 4.4(i1)] with0 < ¢ <r =1 < p < 0o, we obtain that

_ ol 1"
T / sup [IQI“ 21 22N oy ax
0w 0 xeo 2hw(0)

=/ sup  [cow(Q)] ™ w(x)dx < oo,
i QeQ' . xeQ

which implies that ( f;;‘ ¢ (A w))* C fp_/O;,O (A; w), and hence completes the proof of
Step 1.

Step 2. Proof of (f"‘ (A; w)* = f_'”o(A; w) for (p, g) € (0, 1] x (1, c0).
For any ¢ € f * TO(A w), observe that

1

q

10| ) d
—a, 7 = d
I|t|| “0 (4 w) = Q[w(P)]TO /Q ET(P) (IQI 7o (Q)XQ(x) w(x)dx

/

I ol q
~ —_— « , (3.11
0 TP | 2 (i (Q)) me s e

Q€T (P)

where 7 (P) is the tent of P defined in (2.1).
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Forany s = {sg}geo € [ ,(A; w).q € (1,00), @ € Rand k € Z, let

1/q

Q= {xeR": 1> N0 Isoltot  >2"1,
0eQ

Q= {x eR": My,(xq,)(x) > 1/2} and

Re={0 € Q:w(@ N > w(Q)/2, w(Q N Q1) =w(Q)/2}.

Then, we see that

(i) forall k € Z, Q41 C Qi and 4 C
(ii) forany k, j € Z withk # j, Rk NR; =;
(iii) R" = Urez Uger, O;

(iv) Uger, Q C Su:

) w(p) S w().

We point out that (v) holds by the L2 (R")-boundedness of M,,. Moreover, we say that
Q e Qis pseudo -maximal in Ry 1f there is no other P € Ry such that scale (Q) <
scale (P) and Q N P # (. Notice that the pseudo-maximal cubes in Ry are disjoint
with each other. Then, we obtain a classification for R; associated with pseudo-
maximal cubes in Ry such that any O € Ry belongs to one and only one tent of
pseudo-maximal cubes. Precisely, pick any pseudo-maximal cube Q in Ry, denoted
by Q(l), and set

Te(@") ={Q e Ri: @ N QW # 0, scale (Q) =< scale (Q')).
Then, we pick another pseudo-maximal cube P in Ry, denoted by 0@, and set
T(Q®) ={Q e R\T(Q") : QN 0P # 4, scale (Q) < scale (Q)).

Inductively, for any j € N, pick any pseudo-maximal cube R in Ry, denoted by
0U+tD and set

ﬁ(é(ﬂ_l)) = {0 € Ri\ Uézl ﬁ(é(@) 0N é(j+1)7é @, scale (Q)< scale(é(jﬂ))}.

Thus, Ry = U jeNﬁ(é Y )). For simplicity, let ﬁk be the set of all pseudo-maximal
cubes in R chosen as above. Then

U 7. (3.12)
éeﬁk

Furthermore, by the fact that the pseudo-maximal cubes in TR are disjoint with each
other, (iv) and (v), we have
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> w(Q) = w(u) S wSw). (3.13)
OeRy

Now let us first prove that fq_,o;’,m(A; w) C (f;,"’q(A; w))*. For anytefq_,";’,m(A; w),
define a linear functional ¢; on fl‘j‘,q(A; w) by £ (s) = ZQGQ soto for any s €

% ,(A; w). Then for all & € R,q € (1,00), p € (0, 1], by (i), (3.12), Holder’s
inequality with ¢, (3.11), (3.3), Holder’s inequality for ¢/p and (3.13), we have

LOI=Y > Y e Hselw @t 0 eliol — 2
keZ geRy 0eTi(Q) [w(Q)] ¢

1
<SS ST o sehfw(Q)

7
keZ geRy LOeTi(0)

1

1 q, !
| > (IQI“IfQIIQI_Z 'Q') w(0)
2. w(Q)
0€Ti(Q)

~ _P

keZ geRy

LYy
x| >0 01 s w(Q)
0€7:(0)

Sl (g SO w

keZ | 0eRy
— f]j P
1
<| D0 D> 10 2seh?w(Q)
L OcRi 0Tk ()
Sl pero .
Lo (Asw)
: py
p 1
_r g1
x Aol " | D 101 2 1seh w(Q) SN ER E)
keZ QeRy

Moreover, notice that for any k € Z and Q € Ry, we have w(Q N Q1) < w(Q)/2,
which implies that w(Q N (Qk+1)c) > w(Q)/2. By this and Q C €2, we obtain that



234 B. Lietal.

w(@N (ﬁk\QkH)) > w(Q)/2, which, together with (iii) and the definition of Q2 1,
yields that

> 101 Tsoh w (@) | S / > (101 IsolXo () w(x) dx

QeRs 2\t QERx
1
< 2M w17,

Combining this and (3.14) yields that |£;(s)] K fo (Aiw) which
p.q ’

< £l .-
S Il e )

further implies that [[€; [ fa (4. ) and hence quO;v/fo(A; w) C
p.q ’ )

(f”‘ (A; w))*.

Conversely, since sequences with finite support are dense in f I‘j‘ q(A; w),each £ €
(fl‘j"q(A; w))* must be of the form £(s) = ZQEQ sotg forsomet = {rp}peo C C.
It suffices to show that ”[”f:—,a,,ro(A;w) < ”gn(fﬁ.q(f\: W)

For any P € Q, define a measure v by v(Q) = w(Q)/w(P) if QNP #  and
scale (Q) < scale (P) or else v(Q) = 0. Then, for any (p, q) € (0, 1] x (1, c0), by
(3.11), we have

< It s-e
~ ” ”fq,i];o(A;w)’

1410y

1

7

~sup; > (|Q|“|rQ| 'Q') w(Q) ,,
peo [W(P)]® (Q)

QeT(P)
1
1 -1 10 w(Q)
~ sup (IQI“ 2ro I—)
PeQ [w(P)]7 QE;P) ©) wr)
119
~ sup [IQI"‘ er—]
PeQ [w(P)]p -1 w(Q) 0€Q| 40’ (1)
s |3 jorhie 120 M
PeQ [w(P)]7 " Islla=] 0eT(P) () Cw(P)
S Nl gy as e SuP ; sup {|Q|a+2SQ] :
PQ [w(P)]7 ! Bhaw=! w(P) 0eT(P) | fa (A;w)

where and in what follows, for s = {sp}pecg and g € (1, 00),

1/q

Isllesy = 1 D Isol?v(Q)
0€Q
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Notice that by [3, Lemma 2.9], there exist positive constants cg and ¢ such that

U ©QcByr.b®P)
Q€T (P)

and B,(cp, b™“'|P|) C P, where cp is the center of P. Thus, for any fixed ¢ > gy,
by [8, Proposition 2.5] with w € A, (A), we have

wl J @] <w®B,(cp,b®P))
QeT(P)

< bq(CO+C1)U)(Bp(CP,b_CI|P|)) < w(P), (3.15)

which, together with Holder’s inequality, yields that

{|Q|“+i ]
50
w(P)
0eT(P) fo (A w)
| 1
| [ 5 ,
= w(P) / > Usolxe)? | w(x)dx
(Ugerr) @ | 0€T(P)
1 5 lfg %
= w(P) > lseliw@ | |w| | ©
QeT(P) 0eT(P)

1
S TwP)1P ™ Islleawy-

Combining these estimates yields that || 7| f < €1l fa (A w))* which further

—a, rO(A
implies that f TEN (A w) D (fp“ (A w))* This ﬁmshes the proof of Step 2.

Step 3. Proofof (fl‘j"q(A, w)* = [P (A; w) for (p, q) € (0, 1] x (0, 1.

For any (p, g) € (0, 1] x (0, 1] and o € R, by (3.3), we obtain that fp’q(A, w) C
f;‘l(A' w), and hence (f;‘l(A' w))* C (f;‘q(A' w))*. Thus, to prove that
( f (A w)* D F2230(A; w), we only need to show ( f"‘ LA w))* D fi
(A w) Forany k € Z and o € R, set

Q=4xeR": Z 101 %IsglXo(x) > 28 1,
0eQ

and €, Ry and é as in Step 2. Then, by an argument similar to that of Step 2, we
obtain (f"‘l(A W)* D ol (A; w).
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Conversely, notice that for any £ € ( f;‘ q(A; w))*, £ must be of the form £(s) =
ZQEQ sotg forsome t = {tp}peo C C. Then, it suffices to prove that

W pestrot sy S Mg sy

For any fixed Q € Q, define a sequence s¢ = {(s2)r}rco by Q)r=1if R = Q
orelse (s@)z = 0. Then, we have

el g1y
ro.nd (Ajw)
1 _1 |0
=sup ———— sup Q[ ar ol——-—=
PeQ [w(P)]r ! 0eT(P) w(Q)
1 _1 |R|
= sup — sup | D IR TRl DR
PeQ [w(P)]? ' 0eT(P) |4t w(R)
1
= ||£||(fa (A; w))* sup
[w(P)]
X sup ||{|R|“+f(sQ>R[w<R>]—1}ReQ||fet (A: )"
QeT (P) P
By (3.15), we know that for any p € (0, 1] and fixed P € Q,
1 _
sup [{IRI*T 2O rIw(R] Yreal o (a1 u)
Q€T (P) i
1
1 g 1
= swp wQI" '<|w| |J 0 < w(p))r!
QeT(P) QeT(P)

By this, we finally obtain ||¢|| ;-a1/p-1,,. S Wl fa (4. 0yy%-
Joosd P (A w) (fF. 4 (As w))
Combining Step 1 through Step 3, we obtain that the desired duality results for the
discrete Triebel-Lizorkin spaces f p"‘, g (A w).
Applying Lemma 3.1 and similarly to the proof of [17, Theorem 5.13], we also
obtain the corresponding duality results for Triebel-Lizorkin spaces, which completes
the proof of Theorem 2.1. O

Next we give the proof of Corollary 2.1.

Proof of Corollary 2.1 Leta € R,q € (1,00],7 > 1/q and w € Ay (A). Define
pe€@,1)suchthatt =1/p — 1. )
By [4, Theorem 4.2] we have that the dual of the space f p_ ;‘, (A; w) can be identi-

fied with fgo’oo(A; w), albeit with a different pairing than the standard scalar product
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pairing (2.2). That is,

max(1,1/p)
A={Aglgeg = A, Hwp = Z ,\Qg%
0eQ

On the other hand, Theorem 2.1(i) states that the dual of f;;‘, (A; w) is fog* (A; w),
where 19 = 1/p + 1/q — 1 = © + 1/q. Therefore, the spaces f:go,oo(A; w) and

fq };H/ 7(A; w) are isomorphic. The isomorphism map is given by the multiplier oper-

ator {sg}pcg > {lw(IQQ)‘JWsQ}QGQ. Consequently, in the unweighted case w = 1 we

have the identification fg‘o‘” (A;w) = f;’ qr +l/q (A; w). The same conclusions for the

oo
continuous spaces F,? ’qr (A; w) follow as a consequence of Theorem 2.1. This finishes
the proof of Corollary 2.1. O

We finally give the proof of Theorem 2.2.

Proof of Theorem 2.2 Leta e R, 79 = 1/p+ 1/q’ — 1 and w € Ax(A).

Since the proof is similar to that of Theorem 2.1, we only prove Theorem 2.2 under
the cases of (p, g) € (0, 1] x (1, 00) and (p, q) € (1, 0) x (0, 00).

Step 1. Proof of (5% ,(A; w))* = B;O“;]E/"(A; w) for (p, q) € (0, 1] x (1, 00).

We first prove (b%’q(A; w))* D Bgoa;;,/p(A; w). For any ¢ € B;/a‘;fo (A; w), define
a linear functional £, on 5%  (A; w) by £,(s) = X e soip forall s € b% (A w).
We only need to show that ||¢; ”(l}g,q(A; wyr = ||t||Bo_oa‘1//p(A;w).

For any (p, g¢) € (0, 1] x (1, co), by Holder’s inéquality and (3.3), we have

€ (s)] < 10172 |5 [w(Q)]7
je% scale%;:—j [w(Q)]7 w(Q)

=3 > 0 Hiselw(Q)F

JEZ scale (Q)=—j

x[ sup IQI“_;ISQIIQI[w(Q)]Il’}
scale (Q)=—j

1
’y =

q |4
< I35, cas ) Z[ sup .IQI"‘_5ISQIIQI[w(Q)]_"}

jeZ scale (Q)=—j
= ”s”[;%,q(A? w) ||t”1§;°f;]l,/p(A;w)’
which implies that ||Z,||([,%‘q(A; ) = ”t”b;‘f;;/”(A;w)'
Conversely, for any £ € (b'g’q(A'; y}))*, £ must be of the form £(s) = ZQGQ solo
forsome t = {tp}peco C C. Then, it is left to show ||t||]jo_oa-;11//,,(A;w) < ||£”(15%,q(f\: w))*-
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Notice that

< ot 17
Iellyetip gy = SUP § D sup tol——— .
00,q’ ? PeQ j=— scale (P) scale (Q)=—j,0€7T (P) [w(Q)]F

Since for any P € Q, there are finitely many cubes Q in 7 (P) with scale (Q) = —J,
then for each j > — scale (P), there exists a cube Q ; satisfying that scale (Q ;) = —j
and Q; € 7 (P) such that

|Q|a+l/2 |Q |(x+l/2

sup ltol————— = |t | ———
wale (7. 0eT Py 2 Tw(@17P — " Tw(o 1P’

and hence

1
’y =

|Q | 2 /
§ J
”l”»,zx.l’/p( ‘w) = Ssup |lQ |

1
PeQ Jj=-—scale (P) [w(Q])]p

= sup sup
PeQl{sg;)j=—scate Py llea <1

1g;

|OQ; I"‘+2
— 1950
[w(Q)]»

IA

1€l s, a5 wyye

X sup sup
PeQ 50, 1=~ scate (P llea <1

Q[+
SQ——
[w(Q)]» Q€{Qj:j>—scale (P)}

b9 (A3 w)

However,

[solor* 2o/}

. < s, }j=—scate (P)llea-
b%'q(A; w)

0e{Q:j=—scale (P)}

Thus, we obtain ||t||b7a 1/1;(A

. N
Step 2. Pfoofof (bp,q(A,.w))* = bp,,OO(A, w) for (P, q) € (1,00) x (0, 1].
To show b;,“;(A; w) C (b9, (A: w))*, forany r € b_""l (A; w), we define a lin-

ear functional ¢, onb‘;‘, (A; w) byE,(s) ZQGQSQIQ foranys eb“ (A w). We
only need to prove that ||K,||(ba (A wyr = IEll;- el (41 Indeed for any p e (1,00)
ploo

) < ”EH(’}%, (A ) This finishes the proof of Step 1.
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and g € (0, 1], by Holder’s inequality and (3.3), we have

L@l =S S 10 Hsolw(@1F 101 Hig 2 [w(0))' 7

JEZ scale (Q)=—j (Q)

<S> Ao TIsh w(Q)

JEZ | scale (Q)=—j
1

csp| Y (|Q|“—|rQ| '(QQ')) w(Q)

JEL | scale (Q)=—j

< |Is|l7 . =l 4. s
= ” ”bz.q(A’w)” ”bp’o,(oo(A’w)

which implies that ||£,||(b¢; L (A w)* < ”t”b—/a,l (Arw)’
’ pl.oo

Conversely, for any £ € (l}%y 4(A; w))*, £ must be of the form £(s) = ZQEQ solo
for some t = {tp}peg C C. Then, to complete the proof of Theorem 2.2, it suffices
to show that

. < :
“t“b;’o,t;;(A;w) ~ M”(b%.q(/‘:w”*'
Indeed, we have

“t ||b;;x;(A’w)

1
I

Py
=sup| > (IQI"“ItI @ )

J€L | scale (Q)=—j [w(Q)]I’
1 10|

= sup sup Z |Q|¢ Yosj)o—

JELIG)) 0} 0e0eQ:scate (@)=—jiler =1 | seate (0)=—j (w(Q)]»
< ”E”(ba (A; w))* sup sup

JEZI{(s}) 0} 0ei0eQ:scale (0)=—jllep <1
_1 10|
X [IQI“ 2(sjlo—
[w(Q)]» Qe{QeQ:scale (Q)=—j} b";qu(A;w)

= ”E”(]}%,q(A; w))*>

where
1/p

1{Gs)) 0} 0et0e: scate (@)=—j | o» = > lspol”
scale (Q)=—j
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From this, we deduce that ||7]| ;—« < 1€l B2 (A w))* and then complete the proof
P, pP.q ’

! (Asw)
for the case that (p, g) € (1, oo] x (0, 1].

Now combining the existing proved results for discrete Besov spaces and
Lemma 3.1, by a similar proof to that of [17, Theorem 5.13], we obtain the desired
result for Besov spaces, which completes the proof of Theorem 2.2. O

4 Duality of Besov and Triebel-Lizorkin spaces associated with doubling
measures

This section focuses on a more general setting involving anisotropic Besov and
Triebel-Lizorkin spaces associated with p4-doubling measures. We show that Theo-
rems 2.1 and 2.2 are still true with A, (A) weights replaced by p4-doubling measures.
Recall that p4-doubling measures are first introduced in [2].

Definition 4.1 A non-negative Borel measure o on R” is called a p4-doubling mea-
sure if there exists a nonnegative constant 8 = S(u) such that for all x € R” and
r >0, 1(By, (x,br)) < bPu(B,, (x.r)).

We point out that for any w € A (A), du(x) = w(x)dx (with respect to a quasi-
distance p4) also defines a p4-doubling measure albeit with a positive constant C (see
[7, Proposition 2.6(1)]).

Deﬁnitiqn 4.2 let o € R, p,q € (0,00) and u be a ps-doubling measure. The
spaces Ag’ q(A; ) and A%:;(A; ), and their corresponding sequence spaces are
defined as in Definitions 2.4 and 2.5 with w(x) dx, w(P) and w(Q) replaced, respec-

tively, by dpu(x), w(P) and n(Q).

The spaces F ;@," q(As ), B;" ¢ (A: ) and their corresponding sequences spaces men-
tioned above were introduced, respectively, in [3,2].
Similarly to the proof of Theorems 2.1 and 2.2, we have the following conclusion.

Theorem 4.1 Let  be a ps-doubling measure, p, q, 19 and « the same as in Theo-
rems 2.1 and 2.2. Then Theorems 2.1 and 2.2 still hold with those mentioned spaces
associated A~ weight replaced by the corresponding spaces associated with
pa-doubling measures as in Definition 4.2.

To prove Theorem 4.1, we first point out that, with a similar proof, Lemma 3.1 is
also true for the spaces associated with p4-doubling measures. With this, the proof
of Theorem 4.1 is nearly the same as those of Theorems 2.1 and 2.2. We give some
details for the special cases for the reader’s convenience to show their differences.

Proof of Theorem 4.1 Since the proof is nearly verbatim repetition of the proofs of
Theorems 2.1 and 2.2, we only give details for (/) (A; w)* = fp_,aq’,O(A; 1) in the
case (p, q) € (1, 00) x (0, og). )

We first prove that fp_/f);’/ (A; ) C (fp,(Asp))*. For any t = {tolgeo €

pr“’éP(A; 1), define a linear functional ¢, on fg’q(A; w) by £;(s) = ZQGQ solo
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forall s € fl‘j‘ q(A; w). By applying Holder’s inequality twice for g > 1, while for
q € (0, 1), using the imbedding /¢ (A; p) — f;,l(A; i), we have

1€: (s)] 5/ > IQI*“ISQI)TQ(x)IQI“ItQIﬂig(x)du(x)
2 0c0 n(Q)

< : .
<l ”.fﬁ‘,q(A;M) ”t”fp/:?m;“)’

which yields that ||€t”(f'§‘.q(/43ﬂ))*

(f9 ,(As )™
Conversely, since sequences with finite support are dense in f; (A; n), each

r—a,0 4.
< ||t||fp_,f‘q'?(A;u)’ and hence fp,’q, (A;n) C

bounded linear functional ¢ € ( f [‘;‘ q(A; w))* must be of the form £(s) = spt¢ for
some ¢ = {tg}geo C C. It suffices to show that ||t||f;29(A;m < ||l||(f»po<q(A;ﬂ))*.

Let LZ(N) be the space of all sequences { f;};cz of functions on R" such that
1/q

[{fi}jez “L,‘i(eq) = Z £l < 0.

JEL »
LE (R

We know that (Lﬁgﬁq))* = Lﬁ/(ﬁq/) for p € (1,00) and ¢ € (0, 00). Notice

that the map In : f  (A; u) — LI (¢7) defined by In(s) = {fj},, where f; =

2 scale (0)=—j 1Q17*soXo for all j € Z, is a linear isometry onto a subspace of

LI (e9).

_ When p € (1, 00) qyd q € [1, 00), by the Hahn—Banach theogem, there exists an

€ e (L (¢9))* with ||‘3||<f;;,q<A;m>* = ||5||<.fﬁq<A;u>>* such that £ o In = ¢. In other

words, there exists g ={g;};ez € Lﬁ (K"/) with ||g||

forall s € /& (A; ),

Ll[:’(gq/)S”K”(f'g,q(A;M))* SuCh that

Z solo =/ij(s)gj(x)du(x). @.1)
0eQ R~ JEZL

By taking 59=0 for all but one dilated cube, we obtain o= [,, |0 =126, (x) dp(x)
for all cubes Q with scale (Q) = —J.
Forany f € L! (R"; 1), define the anisotropic Hardy—Littlewood maximal func-

loc
tion of f by M, (f)(x) = sup,cpeo ﬁ fQ | f ()] di(y). Then by [4, Proposition
4.3], we know that the vector-valued maximal inequality holds for M. Then, by (4.1)
and the vector-valued maximal inequality for M,, with p" € (1, o0) and ¢’ € (1, o0],
we obtain that

14100 = MDYzl gy S 1907 gy S W0ty

o,
g

which implies that (¢, (A; u))* C fl;"‘q’,O(A; ).
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When p € (1, oo) and g € (0, 1) s1m11ar1y to Step 1 of the proof for Theorem 2.1,
we also obtain ( fp q(A w)* fp & (A w), and hence complete the proof of The-
orem 4.1. O

We point out that when dilation A admits a Meyer-type wavelet ¥, Bownik [4,
Theorem 4.10] determined the dual spaces of Triebel-Lizorkin spaces with p4 dou-
bling measures under the pairing

max{l
=S S oo (Q)|]Q| . “2)
Yel QeQ

Theorem 4.1 identifies the dual spaces of Fl‘}, g (A ) for arbitrary dilation A under the
pairing ( f, g) = fR" f(x)g(x) dx. Since the pairings used in [4] and here are different,
the dual spaces also appear differently. A question posed in [4, p. 155] asks whether the
duality (4.2) holds without the assumption on the existence of Meyer-type wavelets.
While our paper does not answer this question it provides the duality result without
this extra assumption. The duality in Theorem 4.1 for anisotropic Besov spaces with
doubling measures is new.

As an application of Theorem 4.1, let us discuss a particular class of Triebel—
Lizorkin spaces associated with Hardy spaces. There are several equivalent defini-
tions of Hardy spaces. The weighted Hardy spaces associated with A (A) defined
via maximal functions or the atomic decomposition were studied in [7]. We define
two kinds of Hardy spaces with p4-doubling measure p via the Littlewood—Paley
g-function space and via the square function.

Definition 4.3 Let p € (0, 00), ¢ € Y (R") and  be a p4-doubling measure.
(i) Define the anisotropic Hardy space H? (A; i) with a p4-doubling measure p
via the Littlewood—Paley g-function by

HP (A ) = (f € SR 1l o gas iy = 190 (D gy < 00}
where the anisotropic Littlewood—Paley g-function g, (f) of f is defined by
1/2
g (=D lei=fP]
JEZL

(ii) Define the anisotropic Hardy space HP (A; i) with a p4-doubling measure u
via the square function by

HP(A; ) = {f € SR 1 flarai = 180Nl o gny < 00},
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where for any x € R", the anisotropic square function Sy(f) of f is defined by
1/2

Sp(fHx) = 1> b / |f * o) dy

k€Z B (x.bky

Corollary 4.1 Let p € (0, 00) and p be a ps-doubling measure. Then,

(i) HP(A; ) = ﬁp(A; n) = F;?,z(A; W) with equivalent norms;
() (HP(A; w)* = Fyy """V 2(A; ) in the sense of (2.3).

A weighted anisotropic product version of the first equality in Corollary 4.1(i) has
been obtained in [26, Theorem 2.2]. With an obvious modification on its proof therein,
namely, via replacing the weighted product measure in the proof of [26, Theorem 2.2]
by du(x) here and then repeating the proof therein, we have H? (A; pn) = HP (A; )
with equivalent norms. The spaces H P(A;p) = F 2’2(A; w) with equivalent norms
follow directly from their definitions, which completes the proof of Corollary 4.1().
Corollary 4.1(ii) is a simple corollary of Corollary 4.1(i) and Theorem 4.1. We omit
the details.
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