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Abstract Let A be an expansive dilation on Rn and w a Muckenhoupt A∞(A)

weight. In this paper, for all parameters α ∈ R and p, q ∈ (0, ∞), the authors
identify the dual spaces of weighted anisotropic Besov spaces Ḃα

p,q (A;w) and Triebel–
Lizorkin spaces Ḟα

p,q(A;w) with some new weighted Besov-type and Triebel–
Lizorkin-type spaces. The corresponding results on anisotropic Besov spaces Ḃα

p,q(A;
µ) and Triebel–Lizorkin spaces Ḟα

p,q(A;µ) associated with ρA-doubling measure µ

are also established. All results are new even for the classical weighted Besov and
Triebel–Lizorkin spaces in the isotropic setting. In particular, the authors also obtain
the ϕ-transform characterization of the dual spaces of the classical weighted Hardy
spaces on Rn .
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1 Introduction

There were many efforts on generalizing various specific function spaces to applica-
tions of analysis such as PDEs, harmonic analysis and approximation theory (see, for
example [1–3,11–13,15,16,23–25,29,32–34,37,38]). This gave rise to the study of
Besov and Triebel–Lizorkin spaces which form a unifying class of function spaces
containing many well-known classical function spaces such as Lebesgue spaces, Hardy
spaces and Hardy–Sobolev spaces.

In particular, there were also several efforts to extending the classical function
spaces arising in harmonic analysis from Euclidean spaces and isotropic settings
to other domains and anisotropic settings. Calderón and Torchinsky [10–12] intro-
duced and investigated Hardy spaces associated with anisotropic dilations. A theory
of anisotropic Hardy spaces and their weighted counterparts were recently developed
by Bownik et al. in [1,7]. Anisotropic Besov and Triebel–Lizorkin spaces including
their weighted variants (more generally, associated with doubling measures) were also
introduced and studied (see, for example [2–5,15,25]). In these papers, the discrete
wavelet transform, the atomic and molecular decompositions of these spaces, and the
dual spaces of anisotropic Triebel–Lizorkin spaces without weights were established.
However, the duality of weighted anisotropic Triebel–Lizorkin spaces in [4, Theo-
rem 4.10] was obtained under an additional assumption that the considered expansive
dilations admit a Meyer-orthonormal wavelet.

In this paper, we introduce some new weighted anisotropic Besov-type and Triebel–
Lizorkin-type spaces and we identify the dual spaces of weighted anisotropic Besov
and Triebel–Lizorkin spaces with these new weighted spaces. We point out that our
results are new even for the classical weighted Besov and Triebel–Lizorkin spaces
in the isotropic setting. In particular, by relaxing the assumption that w ∈ Ap(Rn)

(the class of Muckenhoupt’s weights) into w ∈ A∞(Rn), our results also improve the
results obtained by Bui in [9], Roudenko in [28] and Frazier and Roudenko in [19],
which are respectively [9, Theorem 2.10] and the scalar versions of [28, Theorem
A1(3)] and [19, Theorem 5.9] on the dual spaces of the matrix-weighted Besov spaces.
As a special case of our results on the weighted Triebel–Lizorkin spaces in isotropic
settings, we also obtain the ϕ-transform characterization of the dual spaces of the
classical weighted Hardy spaces on Rn , which also seems new. Recall that the classi-
cal weighted Hardy spaces on Rn and their dual spaces were first studied by García-
Cuerva in [20]. The wavelet characterizations of the weighted Hardy spaces on Rn

and their dual spaces were obtained in [21,27,40].
Let A be an expansive dilation on Rn (see [1] or Definition 2.1 below) and w

a Muckenhoupt A∞(A) weight associated with A (see [5] or Definition 2.2
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below). In what follows, for any p ∈ (0, ∞], p′ denotes the conjugate index of
p, namely, p′ ≡ ∞ when p ∈ (0, 1] and p′ ≡ 1/(1 − 1/p) when p ∈ (1, ∞].
In this paper, for all parameters α ∈ R, τ ∈ [0, ∞) and p, q ∈ (0, ∞], we intro-
duce new weighted anisotropic Besov-type spaces Ḃα,τ

p,q(A;w) and Triebel–Lizor-
kin-type spaces Ḟα,τ

p,q (A;w) (see Definitions 2.4 and 2.5 below). By establishing
the duality results on their corresponding sequence spaces, we prove that, for all
α ∈ R and p, q ∈ (0, ∞), the dual space of the weighted anisotropic Besov space
Ḃα

p,q(A;w) is Ḃ−α,max{1/p,1}
p′,q ′ (A;w) (see Theorem 2.2 below), and the dual space of

the weighted anisotropic Triebel–Lizorkin space Ḟα
p,q(A;w) is Ḟ−α,1/p+1/q ′−1

q ′,q ′ (A;w)

when p ∈ (0, 1] or Ḟ−α,0
p′,q ′ (A;w) when p ∈ (1, ∞) (see Theorem 2.1 below). These

results are also true for those anisotropic Besov spaces Ḃα
p,q(A;µ) and Triebel–

Lizorkin spaces Ḟα
p,q(A;µ) associated with ρA-doubling measure µ (see Theorem 4.1

below).
We remark that when w ≡ 1, for any α ∈ R, p ∈ (0, 1], q ∈ (0, ∞) and

τ0 = 1/p+1/q ′−1, Ḟ−α,τ0
q ′,q ′ (A;w) = Ḟ−α+1/p−1

∞,∞ (A) with equivalent norms (see Cor-
ollary 2.1(ii) below), which further shows the coincidence of our results on duality with
existing known results in [4] in unweighted case. Moreover, if w ≡ 1 and A ≡ 2 In×n ,
where In×n denotes the n × n unit matrix, then the Triebel–Lizorkin-type spaces
Ḟα,τ

p,q (A;w) were introduced and studied in [41,42], and it was proved in [30,41–43]
that they include several classical spaces such as Triebel–Lizorkin spaces (see [32]),
Q spaces (see [14]), Morrey spaces and part of Morrey–Campanato spaces; while, in
this case, the Besov-type spaces Ḃα,τ

p,q(A;w) are just the Besov spaces Ḃα+τ−1
p,q (A).

This reflects the difference between Ḃα,τ
p,q(A;w) and Ḟα,τ

p,q (A;w).
Two key ideas used in the proofs of Theorems 2.1 and 2.2 are that, differently from

the proofs on the duality in [4,17,27,39], we adopt the notion of the tents (see [3] or
(2.1) below) for dilated cubes and also introduce the notion of the pseudo-maximal
dilated cubes, which are used to subtly classify dilated cubes (see (3.12) below). In
this sense, the proofs of Theorems 2.1 and 2.2 are quite geometrical.

The organization of this paper is as follows. In Sect. 2, we present some basic
notions and the duality results on weighted anisotropic Besov and Triebel–Lizorkin
spaces, whose proofs are given in Sect. 3. In Sect. 4, we prove that the duality results
in Sect. 2 are also true for anisotropic Besov and Triebel–Lizorkin spaces associated
with doubling measures. We point out that all results of this paper are also true for
inhomogeneous spaces with slight modifications (see, for example [32,43]). We omit
the details.

Finally, we make some conventions on symbols. Throughout the paper, we denote
by C a positive constant which is independent of the main parameters, but it may
vary from line to line. Constants with subscripts, such as C0, do not change in dif-
ferent occurrences. The symbol A ! B means that A ≤ C B and the symbol A ∼ B
means that A ! B and B ! A. Denote by %E the cardinality of the set E . We
will use the convention that the conjugate exponent q ′ satisfies 1/q + 1/q ′ = 1 if
1 < q ≤ ∞ and q ′ = ∞ if 0 < q ≤ 1. We also set N ≡ {1, 2, . . .}, Z+ ≡ {0} ∪ N
and Zn

+ = (Z+)n . If E is a subset of Rn , we denote by χE the characteristic function
of E .
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2 Main results

We begin with the notion of expansive dilations on Rn (see [1]).

Definition 2.1 A real n×n matrix A is called an expansive dilation, shortly a dilation,
if maxλ∈σ(A) |λ| > 1, where σ(A) is the set of all eigenvalues of A. A quasi-norm asso-
ciated with expansive matrix A is a Borel measurable mapping ρA : Rn → [0, ∞),
for simplicity, denoted as ρ, such that

(i) ρ(x) > 0 for x += 0;
(ii) ρ(Ax) = bρ(x) for x ∈ Rn , where b ≡ | det A|;

(iii) ρ(x + y) ≤ H [ρ(x) + ρ(y)] for all x, y ∈ Rn , where H ≥ 1 is a constant.

Throughout the whole paper, we always let A be an expansive dilation on Rn and
b ≡ | det A|. The set Q of dilated cubes of Rn is defined by

Q ≡ {Q ≡ A j ([0, 1)n + k) : j ∈ Z, k ∈ Zn}.

For any Q ≡ A j ([0, 1)n + k), let the symbol scale (Q) ≡ j and xQ ≡ A j k be the
“lower-left corner” of Q. We see that for any fixed j ∈ Z, {Q ≡ A j ([0, 1)n + k) :
k ∈ Zn} is a partition of Rn . For any P ∈ Q, let

T (P) ≡ {Q ∈ Q : Q ∩ P += ∅, scale (Q) ≤ scale (P)} (2.1)

be the tent of P (see [3, Definition 2.4]).
We now recall the weight class of Muckenhoupt associated with A introduced in [5].

Definition 2.2 Let p ∈ [1, ∞), A be a dilation and w a non-negative and almost
everywhere positive measurable function on Rn . A function w is said to belong to the
weight class Ap(A) ≡ Ap(Rn; A) of Muckenhoupt, if there exists a positive constant
C such that when p ∈ (1, ∞),

sup
x∈Rn

sup
k∈Z





b−k

∫

Bρ(x, bk )

w(y) dy










b−k

∫

Bρ(x,bk )

[w(y)]−1/(p−1) dy






p−1

≤ C,

and when p = 1,

sup
x∈Rn

sup
k∈Z





b−k

∫

Bρ(x, bk )

w(y) dy






{

esssup
y∈Bρ(x,bk )

[w(y)]−1

}

≤ C,

and the minimal constant C as above is denoted by C p,A,n(w). Here, for all x ∈ Rn

and k ∈ Z, Bρ(x, bk) ≡ {y ∈ Rn : ρ(x − y) < bk}.
Define A∞(A) ≡ ⋃

1≤p<∞ Ap(A).
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For all p ∈ (0, ∞) and w ∈ A∞(A), the weighted Lebesgue space L p
w(Rn) is

defined to be the space of all measurable functions on Rn such that ‖ f ‖L p
w(Rn) ≡

{
∫
Rn | f (x)|pw(x) dx}1/p < ∞.
Denote by S(Rn) the set of all Schwartz functions on Rn and S ′(Rn) its topological

dual space. As in [18], we set

S∞(Rn) ≡




φ ∈ S(Rn) :
∫

Rn

φ(x)xα dx = 0, α ∈ Zn
+




 .

We consider S∞(Rn) as a subspace of S(Rn), including the topology. Thus, S∞(Rn)

is a complete metric space (see, for example [31, p. 21, (3.7)]). Let S ′
∞(Rn) be the

topological dual space of S∞(Rn) with the weak-∗ topology.

Definition 2.3 Let A be an expansive dilation and A∗ its transpose. Define S∞(Rn)

to be the set of all ϕ ∈ S(Rn) such that

(i) supp ϕ̂ ⊂ [−π, π ]n\{0},
(ii) sup j∈Z |ϕ̂((A∗) jξ)| > 0 for all ξ ∈ Rn\{0}.

Obviously, S∞(Rn) ⊂ S∞(Rn).
Now let us first recall the notion of the weighted anisotropic Triebel–Lizorkin

spaces in [5] and then introduce some new weighted anisotropic Triebel–Lizorkin-type
spaces. In what follows, for all Q ∈ Q, let jQ ≡ − scale (Q) and χ̃Q ≡ χQ |Q|−1/2.

Definition 2.4 Let w ∈ A∞(A), ϕ ∈ S∞(Rn), α ∈ R, p ∈ (0, ∞), q ∈ (0, ∞] and
τ ∈ [0, ∞).

(i) The weighted anisotropic Triebel–Lizorkin space Ḟα
p,q(A;w) is defined to be

the set of all f ∈ S ′
∞(Rn) such that

‖ f ‖Ḟα
p,q (A;w) ≡

∥∥∥∥∥∥∥





∑

Q∈Q
(|Q|−α|ϕ jQ ∗ f |χQ)q






1
q
∥∥∥∥∥∥∥

L p
w(Rn)

< ∞,

where and in what follows, for all j ∈ Z and x ∈ Rn , ϕ j (x) ≡ b jϕ(A j x). The corre-
sponding discrete weighted anisotropic Triebel–Lizorkin space ḟ α

p,q(A;w) is defined
to be the set of all complex-valued sequences s ≡ {sQ}Q∈Q such that

‖s‖ ḟ α
p,q (A;w) ≡

∥∥∥∥∥∥∥





∑

Q∈Q
(|Q|−α|sQ |χ̃Q)q






1
q
∥∥∥∥∥∥∥

L p
w(Rn)

< ∞.
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(ii) The weighted anisotropic Triebel–Lizorkin-type space Ḟα,τ
p,q (A;w) is defined

to be the set of all f ∈ S ′
∞(Rn) such that

‖ f ‖Ḟα,τ
p,q (A;w)

≡ sup
P∈Q

1
[w(P)]τ






∫

P




∑

Q∈T (P)

(
|Q|−α|ϕ jQ ∗ f (x)|χQ(x)

|Q|
w(Q)

)q




p
q

w(x) dx






1
p

< ∞.

Its corresponding discrete weighted anisotropic Triebel–Lizorkin-type space
ḟ α,τ

p,q (A;w) is defined to be the set of all complex-valued sequences s ≡ {sQ}Q∈Q
such that

‖s‖ ḟ α,τ
p,q (A;w) ≡ sup

P∈Q

1
[w(P)]τ






∫

P




∑

Q∈T (P)

(
|Q|−α|sQ |χ̃Q(x)

|Q|
w(Q)

)q




p
q

w(x) dx






1
p

< ∞.

It is understood that the above definitions need the usual modification when q = ∞.

Remark 2.1 (i) Integrating the norm of ‖ ·‖ Ḟα
p,q (A;w) over cubes Q with fixed scale

j yields a familiar equivalent form

‖ f ‖Ḟα
p,q (A;w) ≡

∥∥∥∥∥∥∥





∑

j∈Z
bq jα|ϕ j ∗ f |q






1/q
∥∥∥∥∥∥∥

L p
w(Rn)

.

(ii) The weighted anisotropic Triebel–Lizorkin space Ḟα
p,q(A;w) and its discrete

variant ḟ α
p,q(A;w) were first introduced in [5]. Moreover, when p, q ∈ (0, ∞),

by the ϕ-transform characterization of Ḟα
p,q(A;w) (see [5, Theorem 3.5]) and the

fact that sequences with finite support are dense in ḟ α
p,q(A;w) (see [5, p. 1452]),

we know that S∞(Rn) is dense in Ḟα
p,q(A;w).

(iii) We point out that in Definition 2.4(ii), when w ≡ 1 and A ≡ 2 In×n , the space
Ḟα,τ

p,q (Rn) and its corresponding discrete sequences spaces were introduced in
[30,41,42] (see also [43] for inhomogeneous versions).

The following is the main theorem of this paper.

Theorem 2.1 Let α ∈ R, p, q ∈ (0, ∞), τ0 = 1/p + 1/q ′ − 1 and w ∈ A∞(A).
Then,

(i)

(
ḟ α

p,q(A;w)
)∗

=
{

ḟ −α,τ0
q ′,q ′ (A;w), p ∈ (0, 1],

ḟ −α,0
p′,q ′ (A;w), p ∈ (1, ∞).
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More precisely, l is a bounded linear functional on ḟ α
p,q(A;w) if and only if l is of the

form

l(λ) = 〈λ, t〉 ≡
∑

Q∈Q
λQtQ, where λ ≡ {λQ}Q∈Q ∈ ḟ α

p,q(A;w), (2.2)

for some sequence t ≡ {tQ}Q∈Q ⊂ C such that

||l||(
ḟ α

p,q (A;w)
)∗ ∼






||t || ḟ
−α,τ0
q′,q′ (A;w)

, p ∈ (0, 1],
||t || ḟ −α,0

p′,q′ (A;w)
, p ∈ (1, ∞).

(ii)

(
Ḟα

p,q(A;w)
)∗

=
{

Ḟ−α,τ0
q ′,q ′ (A;w), p ∈ (0, 1],

Ḟ−α,0
p′,q ′ (A;w), p ∈ (1, ∞)

in the following sense. For each g ∈ Ḟ−α,τ0
q ′,q ′ (A;w) when p ∈ (0, 1] or g ∈ Ḟ−α,0

p′,q ′ (A;w)

when p ∈ (1, ∞), the map

l( f ) = 〈 f, g〉 ≡
∫

Rn

f (x)g(x) dx, (2.3)

defined initially for all f ∈ S∞(Rn), has a bounded linear extension to Ḟα
p,q(A;w).

Conversely, any bounded linear functional l on Ḟα
p,q(A;w) is of the form (2.3) and

||l||(
Ḟα

p,q (A;w)
)∗ ∼






||g||Ḟ
−α,τ0
q′,q′ (A;w)

, p ∈ (0, 1],
||g||Ḟ−α,0

p′,q′ (A;w)
, p ∈ (1, ∞).

Observe that Theorem 2.1 when w ≡ 1 includes [4, Theorem 4.8] which briefly
states as follows:

(
Ḟα

p,q(A)
)∗

=





Ḟ

−α+ 1
p −1

∞,∞ (A), p ∈ (0, 1),

Ḟ−α
p′,q ′(A), p ∈ [1, ∞).

Indeed, let w ≡ 1, p, q ∈ (0, ∞) and τ0 = 1/p + 1/q ′ − 1. By definitions of
these spaces, we immediately have that when p ∈ (1, ∞), Ḟα,0

p,q (A) = Ḟα
p,q(A), and

when p = 1, Ḟ−α,τ0
q ′,q ′ (A;w) = Ḟ−α

∞,q ′(A). By the following Corollary 2.1(ii), when

p ∈ (0, 1), we also have Ḟ−α,τ0
q ′,q ′ (A;w) = Ḟ−α+1/p−1

∞,∞ (A). This shows the above
claim. Moreover, Theorem 2.1 when w ≡ 1 and A ≡ 2In×n coincides with the
corresponding classical results in [17, Section 5].

As a consequence of Theorem 2.1 and [4, Theorem 4.2], we have the following
result.
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Corollary 2.1 Let α ∈ R, q ∈ (1, ∞] and τ ∈ (1/q, ∞).

(i) If w ∈ A∞(A), then the space ḟ α
∞,∞(A;w) is isomorphic with the space

ḟ α,τ
q,q (A;w) via the map {sQ}Q∈Q 4→ { [w(Q)]τ−1/q+1

|Q| sQ}Q∈Q. That is, for all

{sQ}Q∈Q ∈ ḟ α
∞,∞(A;w),

‖{sQ}Q∈Q‖ ḟ α∞,∞(A;w) ∼
∥∥∥∥∥

{ [w(Q)]τ−1/q+1

|Q| sQ

}

Q∈Q

∥∥∥∥∥
ḟ α,τ
q,q (A;w)

.

(ii) If w ≡ 1, then ḟ α,τ
q,q (A;w) = ḟ α+τ−1/q

∞,∞ (A;w) with equivalent norms.

The same conclusions are true for the spaces Ḟα,τ
q,q (A;w).

The proof of Corollary 2.1 is given in Sect. 3. We point out that part (ii) of Cor-
ollary 2.1 may not be true if w +≡ 1. We give a counter-example on 1-dimensional
Euclidean space R as follows.

Example 2.1 Let α ∈ R, q ∈ (1, ∞], τ ∈ (1/q, ∞), A = 2, , ∈ (0, ∞) and w(x) =
|x |, ∈ A∞(A) (see [22, p. 286, Example 9.1.7]). In this case, we know that Q is the
set of all classical dyadic cubes in R. Now, we construct a sequence s ≡ {sQ}Q∈Q
such that ‖s‖ ḟ α+τ−1/q

∞,∞ (A;w)
= 1 but ‖s‖ ḟ α,τ

q,q (A;w) = ∞. Since

‖s‖ ḟ α+τ−1/q
∞,∞ (A;w)

≡ sup
Q∈Q

|Q|−(α+τ−1/q)|sQ ||Q|−1/2 (see [4, (2.17)]),

we set s ≡ {sQ}Q∈Q with sQ ≡ |Q|α+τ−1/q+1/2 for all Q ∈ Q. Then ‖s‖ ḟ α+τ−1/q
∞,∞ (A;w)

≡ 1.
On the other hand,

‖s‖ ḟ α,τ
q,q (A;w) = sup

P∈Q

1
[w(P)]τ





∑

Q∈T (P)

|Q|−αq |sQ |q |Q|−q/2 |Q|q
[w(Q)]q w(Q)






1/q

= sup
P∈Q

1
[w(P)]τ





∑

Q∈T (P)

|Q|τq
[ |Q|
w(Q)

]q−1





1/q

≥ sup
P∈Q

[ |P|
w(P)

]τ+1−1/q

.

Let Q̃ ≡ {Q ≡ [2k, 2k+1) : k ∈ Z}. Then, for any P ∈ Q̃ and w(x) = |x |,, we

have w(P) =
∫ 2k+1

2k |x |,dx ∼ 2k(,+1). Combining this, the above estimate, , > 0 and
τ ∈ (1/q, ∞), we obtain that ‖s‖ ḟ α,τ

q,q (A;w) " 2−k,(τ+1−1/q). By letting k → −∞, we

further obtain that ‖s‖ ḟ α,τ
q,q (A;w) = ∞, which implies that the spaces ḟ α+τ−1/q

∞,∞ (A;w)

and ḟ α,τ
q,q (A;w) are not the same spaces with equivalent norms.
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We also have the corresponding duality theory for weighted anisotropic Besov
spaces. Let us begin with recalling the notion of the weighted anisotropic
Besov spaces introduced in [2] and then introduce some new weighted anisotropic
Besov-type spaces.

Definition 2.5 Let w ∈ A∞(A), ϕ ∈ S∞(Rn), α ∈ R, p, q ∈ (0, ∞] and τ ∈
[0, ∞).

(i) The weighted anisotropic Besov space Ḃα
p,q(A;w) is defined to be the set of all

f ∈ S ′
∞(Rn) such that

‖ f ‖Ḃα
p,q (A;w) ≡






∑

j∈Z




∑

Q∈Q
scale (Q)=− j

∫

Rn

|Q|−αp|ϕ j ∗ f (x)χQ(x)|p w(x) dx





q
p





1
q

< ∞.

The corresponding discrete weighted anisotropic Besov space ḃα
p,q(A;w) is defined

to be the set of all complex-valued sequences s ≡ {sQ}Q∈Q such that

‖s‖ḃα
p,q (A;w) ≡






∑

j∈Z




∑

Q∈Q
scale (Q)=− j

∫

Rn

(
|Q|−α|sQ |χ̃Q(x)

)p
w(x) dx





q
p





1
q

< ∞.

(ii) The weighted anisotropic Besov-type space Ḃα,τ
p,q(A;w) is defined to the set of

all f ∈ S ′
∞(Rn) such that

‖ f ‖Ḃα,τ
p,q (A;w) ≡






∑

j ∈ Z





∫

Rn




∑

Q∈Q
scale (Q) = − j

|Q|−α |ϕ j ∗ f (x)| |Q|χQ(x)

[w(Q)]τ





p

w(x) dx





q
p





1
q

< ∞.

The corresponding discrete weighted anisotropic Besov-type space ḃα,τ
p,q(A;w) is

defined to be the set of all complex-valued sequences s ≡ {sQ}Q∈Q such that

‖s‖ḃα,τ
p,q (A;w) ≡






∑

j∈Z




∫

Rn




∑

Q∈Q
scale (Q)=− j

|Q|−α|sQ | |Q|χ̃Q(x)

[w(Q)]τ





p

w(x) dx





q
p





1
q

< ∞.

It is understood that the above definitions need the usual modifications when q = ∞
or p = ∞.
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Remark 2.2 (i) Integrating the norm of ‖ ·‖ Ḃα
p,q (A;w) over cubes Q with fixed scale

j yields a familiar equivalent form

‖ f ‖Ḃα
p,q (A;w) =






∑

j∈Z




∫

Rn

b jpα|ϕ j ∗ f (x)|pw(x) dx




q/p






1/q

.

(ii) The weighted anisotropic Besov space Ḃα
p,q(A;w) and its discrete counterpart

were first introduced in [2]. Moreover, when p, q ∈ (0, ∞), by the ϕ-transform
characterization of Ḃα

p,q(A;w) (see [2, Theorem 3.5]) and the fact that sequences
with finite support are dense in ḃα

p,q (A;w) (see [2, p. 553]), we know thatS∞(Rn)

is dense in Ḃα
p,q(A;w).

(iii) Observe that when w ≡ 1, the Besov space Ḃα,τ
p,q(A;w) coincides with

Ḃα+τ−1
p,q (A); see Proposition 2.1. This is in contrast with Ḟα,τ

p,q (A;w), where
the parameter τ plays a significant role; see Remark 2.1(iii).

From Definition 2.5, we can immediately deduce the following result.

Proposition 2.1 Let w ≡ 1, α ∈ R, p, q ∈ (0, ∞] and τ ∈ [0, ∞). Then,

ḃα,τ
p,q(A;w) = ḃα+τ−1

p,q (A)

and Ḃα,τ
p,q(A;w) = Ḃα+τ−1

p,q (A) with equivalent norms.

Example 2.2 In general, Proposition 2.1 may not be true when w +≡ 1. For example,
letting the dimension n = 1, α = 0, p = q = ∞, A = 2 and s ≡ {sQ}Q∈Q with
sQ ≡ |Q|τ−1/2 for all Q ∈ Q, we see that

‖s‖ḃτ−1∞,∞(A) ≡ sup
Q∈Q

|Q|1/2−τ |sQ | = 1

and

‖s‖ḃ0,τ
∞,∞(A;w)

≡ sup
Q∈Q

|sQ ||Q|1/2/[w(Q)]τ = sup
Q∈Q

[|Q|/w(Q)]τ .

Choose w(x) ≡ |x | for all x ∈ R. Then, for all j ∈ Z,

‖s‖ḃ0,τ
∞,∞(A;w)

= sup
Q∈Q

[|Q|/w(Q)]τ ≥
[

2 j

∫ 2 j+1

2 j x dx

]τ

" 2− jτ .

Letting j → −∞, we obtain ‖s‖ḃ0,τ
∞,∞(A;w)

= ∞, which implies that the spaces

ḃτ−1
∞,∞(A) and ḃ0,τ

∞,∞(A;w) are not the same.

We have the following duality results on weighted anisotropic Besov spaces, which
is another main theorem of this paper.
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Theorem 2.2 Let α ∈ R, p, q ∈ (0, ∞) and w ∈ A∞(A). Then

(ḃα
p,q(A;w))∗ = ḃ−α,max{1/p,1}

p′,q ′ (A;w)

in the sense of (2.2), and

(Ḃα
p,q(A;w))∗ = Ḃ−α,max{1/p,1}

p′,q ′ (A;w)

in the sense of (2.3).

Remark 2.3 (i) We point out that the duality results obtained in Theorem 2.2 when
w ≡ 1 and A ≡ 2In×n generalize the classical results on Besov spaces in [17,32].

(ii) Theorem 2.2 when A ≡ 2In×n and w ∈ Amax{p,1}(Rn) (the class of Muck-
enhoupt’s weights) coincides with the scalar versions of [28, Theorem A1(3)]
(p ∈ [1, ∞)) and [19, Theorem 5.9] (p ∈ (0, 1)).

We finish this section by giving a couple of equivalent descriptions of anisotropic
weighted Besov-type spaces and Triebel–Lizorkin-type spaces for certain parameters.

Definition 2.6 Let w ∈ A∞(A), α ∈ R, q ∈ (0, ∞), τ0 ≡ 1/q + 1/q ′ − 1 and
τ1 ≡ max{1/q, 1}.

(i) The space F̃α,τ0
q ′,q ′ (A;w) is defined to be the set of all f ∈ S ′

∞(Rn) such that

‖ f ‖F̃
α,τ0
q′,q′ (A;w) ≡ sup

P∈Q

1
[w(P)]τ0






∫

P

∑

Q∈T (P)



|Q|−α |ϕ jQ ∗ f (x)|χQ(x)|Q|1− 1
q′

[w(Q)]1− 1
q′




q ′

dx






1
q′

< ∞

with the usual modification made when q ′ = ∞.
(ii) The space B̃α,τ1

q ′,q ′(A;w) is defined to the set of all f ∈ S ′
∞(Rn) such that

‖ f ‖B̃
α,τ1
q′,q′ (A;w) ≡






∑

j∈Z

∫

Rn

∑

Q∈Q
scale (Q)=− j



|Q|−α|ϕ j ∗ f (x)| |Q|1− 1
q′ χQ(x)

[w(Q)]τ1− 1
q′




q ′

dx






1
q′

< ∞

with the usual modification made when q ′ = ∞.

Comparing with the definitions of Ḟα,τ0
q ′,q ′(A;w) and Ḃα,τ1

q ′,q ′(A;w), we find that in the

definitions of F̃α,τ0
q ′,q ′(A;w) and B̃α,τ1

q ′,q ′(A;w), the integrals are not weighted. However,
the two couples of spaces are equivalent as follows.

Corollary 2.2 Let w ∈ A∞(A), α ∈ R, q ∈ (0, ∞), τ0 ≡ 1/q + 1/q ′ − 1 and τ1 ≡
max{1/q, 1}. Then Ḟα,τ0

q ′,q ′(A;w) = F̃α,τ0
q ′,q ′(A;w) and Ḃα,τ1

q ′,q ′(A;w) = B̃α,τ1
q ′,q ′(A;w)

with equivalent norms.
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By adapting the proof of Lemma 3.1 below, we show that Lemma 3.1 also holds with
Ḟα,τ0

q ′,q ′(A;w) and Ḃα,τ1
q ′,q ′(A;w) replaced, respectively, by F̃α,τ0

q ′,q ′(A;w) and B̃α,τ1
q ′,q ′(A;w)

albeit with the same sequence spaces ḟ α,τ0
q ′,q ′(A;w) and ḃα,τ1

q ′,q ′(A;w). Once this is shown,
Corollary 2.2 follows immediately. We omit the details.

3 Proofs of Theorems 2.1 and 2.2

Let us begin with recalling some notation. For all functions ϕ on Rn, x ∈ Rn, j ∈
Z, k ∈ Zn and Q ≡ A− j ([0, 1)n +k), let ϕQ(x) ≡ |Q| 1

2 ϕ j (x − xQ), where | · | means
the Lebesgue measure on Rn .

Let ϕ ∈ S∞(Rn). For all f ∈ S ′
∞(Rn), recall that the ϕ-transform Sϕ is defined by

Sϕ( f ) ≡ {(Sϕ( f ))Q}Q∈Q ≡ {〈 f, ϕQ〉}Q∈Q, and the inverse ϕ-transform Tϕ is defined
by Tϕ(t) ≡ ∑

Q∈Q tQϕQ initially for finitely supported sequences t ≡ {tQ}Q∈Q ⊂ C;
see [3].

In what follows, for simplicity, we use the symbol Ȧα
p,q(A;w) to denote either the

space Ḃα
p,q(A;w) or the space Ḟα

p,q(A;w), and use the symbol ȧα
p,q(A;w) to denote

the corresponding sequence spaces. Likewise we introduce the symbols Ȧα,τ
p,q(A;w)

and ȧα,τ
p,q(A;w).

The ϕ-transform characterizations for weighted anisotropic Besov and Triebel–
Lizorkin spaces in Definitions 2.4 and 2.5 are presented as follows.

Lemma 3.1 Let w ∈ A∞(A), ϕ, ψ ∈ S∞(Rn), α ∈ R, p, q ∈ (0, ∞) and τ0 =
1/p + 1/q ′ − 1. Then, the following hold.

(i) The ϕ-transform Sϕ is bounded, respectively, from the spaces Ȧα
p,q(A;w),

Ḟα,τ0
q ′,q ′(A;w), Ḟα,0

p′,q ′(A;w) and Ḃα,max{1/p,1}
p′,q ′ (A;w) to the corresponding dis-

crete spaces with the same parameters.
(ii) The inverseϕ-transform Tψ is bounded, respectively, from the spaces ȧα

p,q (A;w),

ḟ α,τ0
q ′,q ′(A;w), ḟ α,0

p′,q ′(A;w), and ḃα,max{1/p,1}
p′,q ′ (A;w) to the corresponding contin-

uous spaces with the same parameters.
(iii) Assume that ϕ and ψ additionally satisfy

∑
j∈Z ϕ̂((A∗) jξ)ψ̂((A∗) jξ) = 1 for

all ξ ∈ Rn\{0}, where A∗ denotes the transpose of A. Then, Tψ ◦ Sϕ is the
identity on Ȧα

p,q(A;w), Ḟα,τ0
q ′,q ′(A;w), Ḟα,0

p′,q ′(A;w) and Ḃα,max{1/p,1}
p′,q ′ (A;w).

We first point out that Lemma 3.1 may be true for Ȧα,τ
p,q(A;w) and their

corresponding spaces of sequences with full indices. However, to limit the length of
this paper, we only indicate how to show Lemma 3.1 in these special indices described
therein, which is enough for applications of this paper.

The results in Lemma 3.1 associated with Besov spaces Ḃα
p,q(A;w) and Triebel–

Lizorkin spaces Ḟα
p,q(A;w) were, respectively, obtained in [2,3]. The results in

Lemma 3.1 associated with the spaces Ȧα,τ
p,q(A;w) can be obtained by a modifica-

tion of the proofs for [3, Theorem 3.12] with p ∈ (0, ∞) and [2, Theorem 1.1]; see
also [26, Lemma 3.9]. We give some details only on the space Ḟα,τ0

q ′,q ′(A;w) and its

sequence space ḟ α,τ0
q ′,q ′(A;w).
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Using Lemma 3.1, by repeating the proofs of [5, Corollary 3.7] and [2, Corollary
3.7], we have the following conclusion. We omit the details.

Corollary 3.1 Let α,w, p, q and τ0 be as in Lemma 3.1. Then the spaces
Ȧα

p,q(A;w), Ḟα,τ0
q ′,q ′(A;w), Ḟα,0

p′,q ′(A;w) and Ḃα,max{1/p,1}
p′,q ′ (A;w) are independent of

the choices of ϕ.

For any w ∈ A∞(A) with qw ≡ inf{, ∈ [1, ∞) : w ∈ A,(A)}, λ, r ∈ (0, ∞)

satisfying some additional conditions, the sequence s ≡ {sQ}Q∈Q ∈ ḟ α,τ0
q ′,q ′(A;w) and

its majorant sequence s∗
r,λ ≡ {(s∗

r,λ)Q}Q∈Q defined by

(s∗
r,λ)Q ≡






∑

P∈Q
scale (P)= scale (Q)

|sP |r
[1 + |Q|−1ρ(xQ − xP )]λr






1/r

,

by following the proofs of [3, Lemma 3.10] and [26, Lemma 3.9], we see that the key
of the proof of Lemma 3.1 in this case is to show ‖s‖ ḟ

α,τ0
q′,q′ (A;w) ∼ ‖s∗

r,λ‖ ḟ
α,τ0
q′,q′ (A;w);

once this is done, the other details are similar to those of the proof of [3, Theorem
3.12]. Now let us show this conclusion.

Lemma 3.2 Let w ∈ A∞(A), α ∈ R, p, q ∈ (0, ∞), τ0 ≡ 1/p + 1/q ′ − 1, r ∈
[q ′, ∞] and λ ∈ (1/q ′ + qw max{1/p, 1 − 1/q ′}, ∞). Then there exists a positive
constant C such that for all sequences s ≡ {sQ}Q∈Q ∈ ḟ α,τ0

q ′,q ′(A;w) and their majo-
rant sequences s∗

r,λ ≡ {(s∗
q ′,λ)Q}Q∈Q,

‖s‖ ḟ
α,τ0
q′,q′ (A;w) ≤ ‖s∗

r,λ‖ ḟ
α,τ0
q′,q′ (A;w) ≤ C‖s‖ ḟ

α,τ0
q′,q′ (A;w).

Proof The first inequality is obvious, and we only need to prove the second inequality.
For all α ∈ R, w ∈ A∞(A), p, q ∈ (0, ∞) and τ0 ≡ 1/p + 1/q ′ − 1, we have

‖s‖ ḟ
α,τ0
q′,q′ (A;w) ∼ sup

P∈Q





1

[w(P)]q ′( 1
p −1)+1

×
∑

Q∈T (P)

(
|Q|−α+1/2|sQ |

)q ′
[w(Q)]−(q ′−1)






1
q′

. (3.1)

By similarity, we only give the proof for the case that q ′ ∈ (1, ∞). For any P ∈ Q,
by [3, Lemma 2.9], there exists a positive integer c0 such that

⋃

Q∈T (P)

Q ⊂ Bρ(xP , bc0+ scale (P)) and Bρ(cP , b−c0+ scale (P)) ⊂ P, (3.2)

where cP is the center of P . Then for any fixed P ∈ Q, let

BP ≡ Bρ(xP , 3H2bc0+ scale (P)),
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where H is as in Definition 2.1. Let

UBP ≡
{

P ′ ∈ Q : scale (P ′) = scale (P), P ′ ∩ BP += ∅
}

and ŨBP ≡ ∪P ′∈UBP
P ′. Thus, by the fact that {P ′ ∈ Q : scale (P ′) = scale (P)} is

a partition of Rn , we have that

∑

R∈Q
scale (R)= scale (Q)

=
∑

P ′∈UBP

∑

R∈T (P ′)
scale (R)= scale (Q)

+
∑

P ′∩ŨBP
=∅

scale (P ′)= scale (P)

∑

R∈T (P ′),R∩ŨBP
=∅

scale (R)= scale (Q)

,

which, together with the well-known inequality that for all γ ∈ (0, 1) and {a j } j ⊂ C,




∑

j

|a j |




γ

≤
∑

j

|a j |γ (3.3)

and |Q| = |R| when scale (Q) = scale (R), further implies that

1

[w(P)]q ′( 1
p −1)+1

∑

Q∈T (P)

(|Q|−α+ 1
2 |(s∗

r,λ)Q |)q ′ [w(Q)]1−q ′

≤ 1

[w(P)]q ′( 1
p −1)+1

∑

Q∈T (P)

∑

P ′∈UBP

∑

R∈T (P ′)
scale (R)= scale (Q)

|R|q ′( 1
2 −α)|sR |q ′ [w(Q)]1−q ′

[1 + |Q|−1ρ(xQ − xR)]λq ′

+ 1

[w(P)]q ′( 1
p −1)+1

∑

Q∈T (P)

∑

P ′∩ŨBP
=∅

scale (P ′)= scale (P)

∑

R∈T (P ′),R∩ŨBP
=∅

scale (R)= scale (Q)

· · ·

≡ I + J.

Step 1. Prove I ! ‖s‖q ′

ḟ
α,τ0
q′,q′ (A;w)

. For any R ∈ Q, let

MR,0 ≡ {Q ∈ T (P) : scale (Q) = scale (R), |Q|−1ρ(xQ − xR) < b},

and

MR,l ≡ {Q ∈ T (P) : scale (Q) = scale (R), bl ≤ |Q|−1ρ(xQ − xR) < bl+1}

for all l ∈ N. Then we have

I = 1

[w(P)]q ′( 1
p −1)+1

∑

P ′∈UBP

∑

R∈T (P ′)

∑

l∈Z+

∑

Q∈MR,l

|R|q ′( 1
2 −α)|sR |q ′ [w(Q)]1−q ′

[1 + |Q|−1ρ(xQ − xR)]λq ′ .



Duality of weighted anisotropic Besov and Triebel–Lizorkin spaces 227

Since λ > 1/q ′ + qw(1 − 1/q ′), we choose q̃ ∈ (qw, ∞) sufficiently close to qw such
that λ > 1/q ′ + q̃(1 − 1/q ′). For any Q ∈ MR,l and P ′ ∈ UBP , by [3, Lemma 2.9]
and [7, Proposition 2.6(i)], we have w(R) ! bq̃lw(Q) and w(P) ∼ w(P ′). More-
over, by an elementary lattice counting lemma (see [6, Lemma 2.8]), %MR,l ! bl and
%UBP ! 1. From the above estimates, λ > 1/q ′ + q̃(1 − 1/q ′) and (3.1), it follows
that

I !
∑

P ′∈UBP

1

[w(P ′)]q ′( 1
p −1)+1

∑

R∈T (P ′)

(|R| 1
2 −α|sR |)q ′

[w(R)]q ′−1

∑

l∈Z+

bl [̃q(q ′−1)+1−λq ′]

! ‖s‖q ′

ḟ
α,τ0
q′,q′ (A;w)

,

which is the desired inequality.
Step 2. Prove J ! ‖s‖q ′

ḟ
α,τ0
q′,q′ (A;w)

. For any fixed P ∈ Q, Q ∈ T (P), P ′ ∈ Q with

P ′ ∩ ŨBP = ∅ and scale (P ′) = scale (P), and any R ∈ T (P ′) with R ∩ ŨBP = ∅
and scale (R) = scale (Q), by (3.2) and BP ≡ Bρ(xP , 3H2bc0+ scale (P)) ⊂ UBP , we
obtain

ρ(xP − xP ′) ≤ H2[ρ(xP − xQ) + ρ(xQ − xR) + ρ(xR − xP ′)]
≤ H2[2bc0+ scale (P) + ρ(xQ − xR)],

which, together with

ρ(xR − xQ) ≥ ρ(xR − xP )

H
− ρ(xQ − xP ) ≥ 3Hbc0+ scale (P) − bc0+ scale (P)

≥ 2Hbc0+ scale (P),

implies that

ρ(xP − xP ′) ≤ 2H2ρ(xQ − xR). (3.4)

Moreover, by P ′ ∩ ŨBP = ∅ and scale (P ′) = scale (P), we have

{P ′ ∈ Q : P ′ ∩ ŨBP = ∅, scale (P ′) = scale (P)}
⊂ {P ′ ∈ Q : ρ(xP − xP ′) ≥ 3H2bc0+ scale (P), scale (P ′) = scale (P)}
=

⋃

j∈Z+

{P ′ ∈ Q : 3H2bc0+ scale (P)+ j ≤ ρ(xP − xP ′) < 3H2bc0+ scale (P)+ j+1,

scale (P ′) = scale (P)}
≡

⋃

j∈Z+

VP, j . (3.5)

Since λ > 1/q ′ + qw max{1/p, 1 − 1/q ′}, we choose q̃ ∈ (qw, ∞) sufficiently
close to qw such that λ > 1/q ′ + q̃ max{1/p, 1 − 1/q ′}. Notice that for any j ∈ Z+
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and P ′ ∈ VP, j , by P ′ ⊂ Bρ(xP , 4H3bc0+ scale (P)+ j+1), w(Bρ(xP , b−c0+ scale (P))) ∼
w(Bρ(cP , b−c0+ scale (P))), Bρ(cP , b−c0+ scale (P)) ⊂ P and [7, Proposition 2.6(i)], we
have

w(P ′) ≤ w(Bρ(xP , 4H3bc0+ scale (P)+ j+1)) ! b jq̃w(Bρ(xP , b−c0+ scale (P)))

! b jq̃w(Bρ(cP , b−c0+ scale (P))) ! b jq̃w(P). (3.6)

Symmetrically, we also have

w(P) ! b jq̃w(P ′). (3.7)

Moreover, for any j ∈ Z+, k ∈ Z+, Q ∈ T (P) with scale (P) = scale (Q)+k, P ′ ∈
VP, j , R ∈ T (P ′) with R ∩ UBP = ∅ and scale (R) = scale (Q), by (3.4), we obtain

b j+k+ scale (R) ∼ ρ(xP − xP ′) ! ρ(xQ − xR). (3.8)

Furthermore, for any j ∈ Z+, k ∈ Z+, P ∈ VP, j , Q ∈ T (P), R ∈ T (P ′) with
R ∩ ŨBP = ∅ and scale (R) = scale (Q) = scale (P) − k, by

R ⊂ Bρ(xP , 4H3bc0+ scale (P)+ j+1) ⊂ Bρ(cQ, 5H4bc0+ scale (P)+ j+1),

Bρ(cQ, b−c0+ scale (Q)) ⊂ Q and [7, Proposition 2.6(i)], we have

w(R) ≤ w(Bρ(cQ, 5H4bc0+ scale (P)+ j+1))

! bq̃( j+k)w(Bρ(cQ, b−c0+ scale (Q))) ! bq̃( j+k)w(Q). (3.9)

Thus, for any p ∈ (0, ∞), q ′ ∈ (1, ∞) and P ∈ Q, using (3.5) through (3.9),

%{Q ∈ T (P) : scale (Q) + k = scale (P)} ! bk

and %VP, j ! b j (see [6, Lemma 2.8]), (3.2) and λ > 1/q ′ + q̃ max{1/p, 1 − 1/q ′},
we obtain

J ! 1

[w(P)]q ′( 1
p −1)+1

∑

k∈Z+

∑

Q∈T (P)
scale (Q)+k= scale (P)

∑

j∈Z+

∑

P ′∈VP, j

×
∑

R∈T (P ′),R∩UBP
=∅

scale (R)= scale (Q)

|R|q ′( 1
2 −α)|sR |q ′ [w(Q)]1−q ′

[1 + |Q|−1ρ(xQ − xR)]λq ′
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!
∑

k∈Z+

bk
∑

j∈Z+

∑

P ′∈VP, j

b j q̃[q ′( 1
p −1)+1]

[w(P ′)]q ′( 1
p −1)+1

×
∑

R∈T (P ′)

|R|q ′( 1
2 −α)|sR |q ′ [w(R)]1−q ′

bq̃( j+k)(q ′−1)

bλq ′( j+k)

! ‖s‖q ′

ḟ
α,τ0
q′,q′ (A;w)

∑

k∈Z+

bk [̃q(q ′−1)+1−λq ′] ∑

j∈Z+

b j (1+ q̃q′
p −λq ′)

! ‖s‖q ′

ḟ
α,τ0
q′,q′ (A;w)

,

which is also the desired inequality.
Combining the estimates of I and J, by the arbitrariness of P ∈ Q, we have

‖s∗
r,λ‖ ḟ

α,τ0
q′,q′ (A;w) ! ‖s‖ ḟ

α,τ0
q′,q′ (A;w),

which completes the proof of Lemma 3.2. 67

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let τ0 = 1/p + 1/q ′ − 1 and w ∈ A∞(A). We prove Theo-
rem 2.1 in three steps.

Step 1. Proof of ( ḟ α
p, q(A; w))∗ ≡ ḟ −α,0

p′,q ′ (A;w) with (p, q) ∈ (1, ∞) × (0, ∞).

We first prove ḟ −α,0
p′,q ′ (A;w) ⊂ ( ḟ α

p, q(A; w))∗. For any

t ≡ {tQ}Q∈Q ∈ ḟ −α,0
p′,q ′ (A;w),

define a linear functional ,t on ḟ α
p, q(A; w) by ,t (s) ≡ ∑

Q∈Q sQt̄Q for all s ∈
ḟ α

p, q(A; w). By applying Hölder’s inequality twice when q ∈ (1, ∞), or by the
imbedding ḟ α

p, q(A; w) → ḟ α
p,1(A;w) when q ∈ (0, 1], we have

|,t (s)| ≤
∫

Rn

∑

Q∈Q
|Q|−α|sQ |χ̃Q(x)|Q|α|tQ | |Q|

w(Q)
χ̃Q(x)w(x) dx

≤ ‖s‖ ḟ α
p, q (A;w)‖t‖ ḟ −α,0

p′,q′ (A;w)
,

which yields ‖,t ‖( ḟ α
p, q (A;w))∗ ≤ ‖t‖ ḟ −α,0

p′,q′ (A;w)
, and hence ḟ −α,0

p′,q ′ (A;w) ⊂
( ḟ α

p, q(A; w))∗.
Let us prove the converse by referring some ideas from [17, p. 78]. Since

sequences with finite support are dense in ḟ α
p, q(A; w), each bounded linear functional

, ∈ ( ḟ α
p, q(A; w))∗ must be of the form ,(s) ≡ ∑

Q∈Q sQt̄Q for some t ≡ {tQ}Q∈Q ⊂
C. It suffices to show that ‖t‖ ḟ −α,0

p′,q′ (A;w)
! ‖l‖( ḟ α

p, q (A;w))∗ .
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For all p, q ∈ (0, ∞], let L p
w(,q) be the space of all sequences { f j } j∈Z of functions

on Rn such that

‖{ f j } j∈Z‖L p
w(,q ) ≡

∥∥∥∥∥∥∥





∑

j∈Z
| f j |q






1/q
∥∥∥∥∥∥∥

L p
w(Rn)

< ∞.

By [4, Proposition 4.3], we know that (L p
w(,q))∗ = L p′

w (,q ′
) for all p ∈ (1, ∞) and

q ∈ (0, ∞). Notice that the map In : ḟ α
p, q(A; w) → L p

w(,q) defined by setting, for
all s ∈ ḟ α

p, q(A; w), In(s) ≡ { f j } j , where f j ≡ ∑
scale (Q)=− j |Q|−αsQ χ̃Q for all

j ∈ Z, is a linear isometry onto a subspace of L p
w(,q).

When p ∈ (1, ∞) and q ∈ [1, ∞), by the Hahn–Banach theorem, there exists an
,̃ ∈ (L p

w(,q))∗ with ‖,̃‖( ḟ α
p, q (A;w))∗ = ‖,‖( ḟ α

p, q (A;w))∗ such that ,̃ ◦ In = ,.

In other words, there exists g ≡ {g j } j∈Z ∈ L p′
w (,q ′

) with ‖g‖
L p′

w (,q′
)

≤
‖,‖( ḟ α

p, q (A;w))∗ such that for all s ∈ ḟ α
p, q(A; w),

∑

Q∈Q
sQ t̄Q =

∫

Rn

∑

j∈Z
f j (x)ḡ j (x)w(x) dx .

By taking sQ = 0 for all but one dilated cube, we obtain

tQ =
∫

Q

|Q|−α−1/2g j (x)w(x) dx (3.10)

for all cubes Q with scale (Q) = − j .
For any f ∈ L1

loc (Rn;w), which denotes the space of all locally integrable func-
tions on the measure w(x) dx , define the weighted anisotropic Hardy–Littlewood
maximal function of f by Mw( f )(x) ≡ supx∈Q∈Q

1
w(Q)

∫
Q | f (y)|w(y) dy. Then by

[3, Lemma 2.9 and Theorem 2.8] and the fact that w(x) dx is a ρA-doubling mea-
sure (see Sect. 4 below), we have the vector-valued maximal inequality that for all
p′ ∈ (1, ∞), q ′ ∈ (1, ∞] and functions { fi }i ⊂ L p′

w (,q ′
),

∥∥∥∥∥∥

(
∑

i

|Mw fi |q
′
)1/q ′∥∥∥∥∥∥

L p′
w (Rn)

!

∥∥∥∥∥∥

(
∑

i

| fi |q
′
)1/q ′∥∥∥∥∥∥

L p′
w (Rn)

,

which together with (3.10) yields that

‖t‖ ḟ −α,0
p′,q′ (A;w)

≤ ‖{Mw(g j )} j∈Z‖
L p′

w (,q′
)
! ‖g‖

L p′
w (,q′

)
! ‖,‖( ḟ α

p, q (A;w))∗ ,

and hence ( ḟ α
p, q(A; w))∗ ⊂ ḟ −α,0

p′,q ′ (A;w). This finishes the proof of Step 1 when
p ∈ (1, ∞) and q ∈ [1, ∞).
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To complete the proof of Step 1, it suffices to prove ( ḟ α
p, q(A; w))∗ ⊂ ḟ −α,0

p′,q ′ (A;w)

when p ∈ (1, ∞) and q ∈ (0, 1). We need to use Verbitsky’s method from [35,36]
(see also [4]). In fact, since l ∈ ( ḟ α

p, q(A; w))∗ is of the form ,(s) ≡ ∑
Q∈Q sQt̄Q for

some t ≡ {tQ}Q∈Q ⊂ C, we know that there exists a positive constant C such that for
all s ∈ ḟ α

p, q(A; w),

|,(s)| =

∣∣∣∣∣∣

∑

Q∈Q
sQ t̄Q

∣∣∣∣∣∣
≤ C‖s‖ ḟ α

p, q (A;w).

DefineQ′ ≡ {Q ∈ Q : tQ += 0}, uQ ≡ sQt̄Q for all Q ∈ Q and cQ ≡ |Q|−α−1/2|tQ |−1

for all Q ∈ Q′. Then the above inequality can be rewritten as

‖{uQ}Q∈Q‖,1 ≤ C

∥∥∥∥∥∥∥





∑

Q∈Q
|uQ |q(cQ)qχQ






1/q
∥∥∥∥∥∥∥

L p
w(Rn)

.

Then applying [4, Theorem 4.4(ii)] with 0 < q < r = 1 < p < ∞, we obtain that

‖t‖p′

ḟ −α,0
p′,q′ (A;w)

=
∫

Rn

sup
Q∈Q′,x∈Q

[
|Q|α−1/2|tQ | |Q|

w(Q)

]p′

w(x) dx

=
∫

Rn

sup
Q∈Q′,x∈Q

[cQw(Q)]−p′
w(x) dx < ∞,

which implies that ( ḟ α
p, q(A; w))∗ ⊂ ḟ −α,0

p′,q ′ (A;w), and hence completes the proof of
Step 1.

Step 2. Proof of ( ḟ α
p, q(A; w))∗ = ḟ −α,τ0

q ′,q ′ (A;w) for (p, q) ∈ (0, 1] × (1, ∞).

For any t ∈ ḟ −α,τ0
q ′,q ′ (A;w), observe that

‖t‖ ḟ
−α,τ0
q′,q′ (A;w)

≡ sup
P∈Q

1
[w(P)]τ0






∫

P

∑

Q∈T (P)

(
|Q|α|tQ | |Q|

w(Q)
χ̃Q(x)

)q ′

w(x) dx






1
q′

∼ sup
P∈Q

1
[w(P)]τ0





∑

Q∈T (P)

(
|Q|α− 1

2 |tQ | |Q|
w(Q)

)q ′

w(Q)






1
q′

, (3.11)

where T (P) is the tent of P defined in (2.1).



232 B. Li et al.

For any s ≡ {sQ}Q∈Q ∈ ḟ α
p, q(A; w), q ∈ (1, ∞), α ∈ R and k ∈ Z, let

/k ≡





x ∈ Rn :





∑

Q∈Q
[|Q|−α|sQ |χ̃Q(x)]q






1/q

> 2k





,

/̃k ≡ {x ∈ Rn : Mw(χ/k )(x) > 1/2} and

Rk ≡ {Q ∈ Q : w(Q ∩ /k) > w(Q)/2, w(Q ∩ /k+1) ≤ w(Q)/2} .

Then, we see that

(i) for all k ∈ Z,/k+1 ⊂ /k and /k ⊂ /̃k ;
(ii) for any k, j ∈ Z with k += j,Rk ∩ R j = ∅;

(iii) Rn = ∪k∈Z ∪Q∈Rk Q;
(iv) ∪Q∈Rk Q ⊂ /̃k ;
(v) w(/̃k) ! w(/k).

We point out that (v) holds by the L2
w(Rn)-boundedness of Mw. Moreover, we say that

Q̃ ∈ Q is pseudo-maximal in Rk if there is no other P ∈ Rk such that scale (Q̃) <

scale (P) and Q̃ ∩ P += ∅. Notice that the pseudo-maximal cubes in Rk are disjoint
with each other. Then, we obtain a classification for Rk associated with pseudo-
maximal cubes in Rk such that any Q ∈ Rk belongs to one and only one tent of
pseudo-maximal cubes. Precisely, pick any pseudo-maximal cube Q̃ in Rk , denoted
by Q̃(1), and set

T̃k(Q̃(1)) ≡ {Q ∈ Rk : Q ∩ Q̃(1) += ∅, scale (Q) ≤ scale (Q̃(1))}.

Then, we pick another pseudo-maximal cube P̃ in Rk , denoted by Q̃(2), and set

T̃k(Q̃(2)) ≡ {Q ∈ Rk\T̃k(Q̃(1)) : Q ∩ Q̃(2) += ∅, scale (Q) ≤ scale (Q̃(2))}.

Inductively, for any j ∈ N, pick any pseudo-maximal cube R̃ in Rk , denoted by
Q̃( j+1), and set

T̃k(Q̃( j+1)) ≡ {Q ∈ Rk\ ∪ j
,=1 T̃k(Q̃(,)) : Q ∩ Q̃( j+1) += ∅, scale (Q)≤ scale (Q̃( j+1))}.

Thus, Rk = ∪ j∈NT̃k(Q̃( j)). For simplicity, let R̃k be the set of all pseudo-maximal
cubes in R chosen as above. Then

Rk =
⋃

Q̃∈R̃k

T̃k(Q̃). (3.12)

Furthermore, by the fact that the pseudo-maximal cubes in Rk are disjoint with each
other, (iv) and (v), we have
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∑

Q̃∈R̃k

w(Q̃) ≤ w(/̃k) ! w(/k). (3.13)

Now let us first prove that ḟ −α,τ0
q ′,q ′ (A;w) ⊂ ( ḟ α

p, q(A; w))∗. For any t∈ ḟ −α,τ0
q ′,q ′ (A;w),

define a linear functional ,t on ḟ α
p, q(A; w) by ,t (s) ≡ ∑

Q∈Q sQt̄Q for any s ∈
ḟ α

p, q(A; w). Then for all α ∈ R, q ∈ (1, ∞), p ∈ (0, 1], by (iii), (3.12), Hölder’s
inequality with q, (3.11), (3.3), Hölder’s inequality for q/p and (3.13), we have

|,t (s)| ≤
∑

k∈Z

∑

Q̃∈R̃k

∑

Q∈T̃k (Q̃)

|Q|−α− 1
2 |sQ |[w(Q)]

1
q |Q|α|tQ ||Q|− 1

2
|Q|

[w(Q)]
q′−1

q′

≤
∑

k∈Z

∑

Q̃∈R̃k




∑

Q∈T̃k (Q̃)

(|Q|−α− 1
2 |sQ |)qw(Q)





1
q

×




∑

Q∈T̃k (Q̃)

(
|Q|α|tQ ||Q|− 1

2
|Q|

w(Q)

)q ′

w(Q)





1
q′

! ‖t‖ ḟ
−α,τ0
q′,q′ (A;w)





∑

k∈Z

∑

Q̃∈R̃k

[w(Q̃)]1− p
q

×




∑

Q∈T̃k (Q̃)

(|Q|−α− 1
2 |sQ |)qw(Q)





p
q





1
p

! ‖t‖ ḟ
−α,τ0
q′,q′ (A;w)






∑

k∈Z




∑

Q̃∈R̃k

w(Q̃)




1− p

q

×




∑

Q̃∈R̃k

∑

Q∈T̃k (Q̃)

(|Q|−α− 1
2 |sQ |)qw(Q)





p
q





1
p

! ‖t‖ ḟ
−α,τ0
q′,q′ (A;w)

×






∑

k∈Z
[w(/k)]1− p

q




∑

Q∈Rk

(|Q|−α− 1
2 |sQ |)qw(Q)





p
q





1
p

. (3.14)

Moreover, notice that for any k ∈ Z and Q ∈ Rk , we have w(Q ∩ /k+1) ≤ w(Q)/2,
which implies that w(Q ∩ (/k+1)

!) > w(Q)/2. By this and Q ⊂ /̃k , we obtain that
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w(Q ∩ (/̃k\/k+1)) ≥ w(Q)/2, which, together with (iii) and the definition of /k+1,
yields that





∑

Q∈Rk

(|Q|−α− 1
2 |sQ |)qw(Q)






1
q

!






∫

/̃k\/k+1

∑

Q∈Rk

(|Q|−α|sQ |χ̃Q(x))qw(x) dx






1
q

! 2k[w(/k)]
1
q .

Combining this and (3.14) yields that |,t (s)| ! ‖t‖ ḟ
−α,τ0
q′,q′ (A;w)

‖s‖ ḟ α
p, q (A;w), which

further implies that ‖,t ‖( ḟ α
p, q (A;w))∗ ! ‖t‖ ḟ

−α,τ0
q′,q′ (A;w)

, and hence ḟ −α,τ0
q ′,q ′ (A;w) ⊂

( ḟ α
p, q(A; w))∗.
Conversely, since sequences with finite support are dense in ḟ α

p, q(A; w), each , ∈
( ḟ α

p, q(A; w))∗ must be of the form ,(s) ≡ ∑
Q∈Q sQt̄Q for some t ≡ {tQ}Q∈Q ⊂ C.

It suffices to show that ‖t‖ ḟ
−α,τ0
q′,q′ (A;w)

! ‖,‖( ḟ α
p, q (A;w))∗ .

For any P ∈ Q, define a measure ν by ν(Q) ≡ w(Q)/w(P) if Q ∩ P += ∅ and
scale (Q) ≤ scale (P) or else ν(Q) ≡ 0. Then, for any (p, q) ∈ (0, 1] × (1, ∞), by
(3.11), we have

‖t‖ ḟ
−α,τ0
q′,q′ (A;w)

∼ sup
P∈Q

1
[w(P)]τ0





∑

Q∈T (P)

(
|Q|α− 1

2 |tQ | |Q|
w(Q)

)q ′

w(Q)






1
q′

∼ sup
P∈Q

1

[w(P)]
1
p −1




∑

Q∈T (P)

(
|Q|α− 1

2 |tQ | |Q|
w(Q)

)q ′
w(Q)

w(P)





1
q′

∼ sup
P∈Q

1

[w(P)]
1
p −1

∥∥∥∥∥

{
|Q|α− 1

2 tQ
|Q|

w(Q)

}

Q∈Q

∥∥∥∥∥
,q′

(ν)

∼ sup
P∈Q

1

[w(P)]
1
p −1

sup
‖s‖,q (ν)≤1

∣∣∣∣∣∣

∑

Q∈T (P)

|Q|α− 1
2 tQ

|Q|
w(Q)

sQ
w(Q)

w(P)

∣∣∣∣∣∣

! ‖,‖( ḟ α
p, q (A;w))∗ sup

P∈Q

1

[w(P)]
1
p −1

sup
‖s‖,q (ν)≤1

∥∥∥∥∥∥

{
|Q|α+ 1

2

w(P)
sQ

}

Q∈T (P)

∥∥∥∥∥∥
ḟ α

p, q (A;w)

,

where and in what follows, for s ≡ {sQ}Q∈Q and q ∈ (1, ∞),

‖s‖,q (ν) ≡





∑

Q∈Q
|sQ |qν(Q)






1/q

.
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Notice that by [3, Lemma 2.9], there exist positive constants c0 and c1 such that

⋃

Q∈T (P)

Q ⊂ Bρ(cP , bc0 |P|)

and Bρ(cP , b−c1 |P|) ⊂ P , where cP is the center of P . Thus, for any fixed q > qw,
by [8, Proposition 2.5] with w ∈ Aq(A), we have

w




⋃

Q∈T (P)

Q



 ≤ w(Bρ(cP , bc0 |P|))

! bq(c0+c1)w(Bρ(cP , b−c1 |P|)) ! w(P), (3.15)

which, together with Hölder’s inequality, yields that

∥∥∥∥∥∥

{
|Q|α+ 1

2

w(P)
sQ

}

Q∈T (P)

∥∥∥∥∥∥
ḟ α

p, q (A;w)

≡ 1
w(P)






∫

⋃
Q∈T (P) Q




∑

Q∈T (P)

(|sQ |χQ(x))q





p
q

w(x) dx






1
p

≤ 1
w(P)









∑

Q∈T (P)

|sQ |qw(Q)





p
q



w




⋃

Q∈T (P)

Q








1− p

q





1
p

! [w(P)]
1
p −1‖s‖,q (ν).

Combining these estimates yields that ‖t‖ ḟ
−α,τ0
q′,q′ (A;w)

! ‖,‖( ḟ α
p, q (A;w))∗ , which further

implies that ḟ −α,τ0
q ′,q ′ (A;w) ⊃ ( ḟ α

p, q(A; w))∗. This finishes the proof of Step 2.

Step 3. Proof of ( ḟ α
p, q(A; w))∗ = ḟ −α,τ0∞,∞ (A;w) for (p, q) ∈ (0, 1] × (0, 1].

For any (p, q) ∈ (0, 1] × (0, 1] and α ∈ R, by (3.3), we obtain that ḟ α
p, q(A; w) ⊂

ḟ α
p,1(A;w), and hence ( ḟ α

p,1(A;w))∗ ⊂ ( ḟ α
p, q(A; w))∗. Thus, to prove that

( ḟ α
p, q(A; w))∗ ⊃ ḟ −α,τ0∞,∞ (A;w), we only need to show ( ḟ α

p,1(A;w))∗ ⊃ ḟ −α,τ0∞,∞
(A;w). For any k ∈ Z and α ∈ R, set

/k ≡




x ∈ Rn :
∑

Q∈Q
|Q|−α|sQ |χ̃Q(x) > 2k




,

and /̃k,Rk and Q̃ as in Step 2. Then, by an argument similar to that of Step 2, we
obtain ( ḟ α

p,1(A;w))∗ ⊃ ḟ −α,τ0∞,∞ (A;w).
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Conversely, notice that for any , ∈ ( ḟ α
p, q(A; w))∗, , must be of the form ,(s) ≡∑

Q∈Q sQ t̄Q for some t ≡ {tQ}Q∈Q ⊂ C. Then, it suffices to prove that

‖t‖ ḟ −α,1/p−1
∞, ∞ (A;w)

! ‖,‖( ḟ α
p, q (A;w))∗ .

For any fixed Q ∈ Q, define a sequence s Q ≡ {(s Q)R}R∈Q by (s Q)R ≡ 1 if R = Q
or else (s Q)R ≡ 0. Then, we have

‖t‖
ḟ

−α, 1
p −1

∞,∞ (A;w)

= sup
P∈Q

1

[w(P)]
1
p −1

sup
Q∈T (P)

|Q|α− 1
2 |tQ | |Q|

w(Q)

= sup
P∈Q

1

[w(P)]
1
p −1

sup
Q∈T (P)

∣∣∣∣∣∣

∑

R∈Q
|R|α− 1

2 |tR |(s Q)R
|R|

w(R)

∣∣∣∣∣∣

≤ ‖,‖( ḟ α
p, q (A;w))∗ sup

P∈Q

1

[w(P)]
1
p −1

× sup
Q∈T (P)

‖{|R|α+ 1
2 (s Q)R[w(R)]−1}R∈Q‖ ḟ α

p, q (A;w).

By (3.15), we know that for any p ∈ (0, 1] and fixed P ∈ Q,

sup
Q∈T (P)

‖{|R|α+ 1
2 (s Q)R[w(R)]−1}R∈Q‖ ḟ α

p, q (A;w)

= sup
Q∈T (P)

[w(Q)]
1
p −1 ≤



w




⋃

Q∈T (P)

Q









1
p −1

! [w(P)]
1
p −1

.

By this, we finally obtain ‖t‖ ḟ −α,1/p−1
∞,∞ (A;w)

! ‖,‖( ḟ α
p, q (A;w))∗ .

Combining Step 1 through Step 3, we obtain that the desired duality results for the
discrete Triebel–Lizorkin spaces ḟ α

p, q(A; w).
Applying Lemma 3.1 and similarly to the proof of [17, Theorem 5.13], we also

obtain the corresponding duality results for Triebel–Lizorkin spaces, which completes
the proof of Theorem 2.1. 67

Next we give the proof of Corollary 2.1.

Proof of Corollary 2.1 Let α ∈ R, q ∈ (1, ∞], τ > 1/q and w ∈ A∞(A). Define
p ∈ (0, 1) such that τ = 1/p − 1.

By [4, Theorem 4.2] we have that the dual of the space ḟ −α
p,q ′(A;w) can be identi-

fied with ḟ α
∞,∞(A;w), albeit with a different pairing than the standard scalar product
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pairing (2.2). That is,

λ ≡ {λQ}Q∈Q 4→ 〈λ, t〉w,p ≡
∑

Q∈Q
λQtQ

[w(Q)]max(1,1/p)

|Q| .

On the other hand, Theorem 2.1(i) states that the dual of ḟ −α
p,q ′(A;w) is ḟ α,τ0

q,q (A;w),

where τ0 = 1/p + 1/q − 1 = τ + 1/q. Therefore, the spaces ḟ α
∞,∞(A;w) and

ḟ α,τ+1/q
q,q (A;w) are isomorphic. The isomorphism map is given by the multiplier oper-

ator {sQ}Q∈Q 4→ { [w(Q)]1/p

|Q| sQ}Q∈Q. Consequently, in the unweighted case w ≡ 1 we

have the identification ḟ α+τ
∞,∞(A;w) = ḟ α,τ+1/q

q,q (A;w). The same conclusions for the
continuous spaces Ḟα,τ

q,q (A;w) follow as a consequence of Theorem 2.1. This finishes
the proof of Corollary 2.1. 67

We finally give the proof of Theorem 2.2.

Proof of Theorem 2.2 Let α ∈ R, τ0 = 1/p + 1/q ′ − 1 and w ∈ A∞(A).
Since the proof is similar to that of Theorem 2.1, we only prove Theorem 2.2 under

the cases of (p, q) ∈ (0, 1] × (1, ∞) and (p, q) ∈ (1, ∞) × (0, ∞).
Step 1. Proof of (ḃα

p, q(A; w))∗ = ḃ−α,1/p
∞,q ′ (A;w) for (p, q) ∈ (0, 1] × (1, ∞).

We first prove (ḃα
p, q(A; w))∗ ⊃ ḃ−α,1/p

∞,q ′ (A;w). For any t ∈ ḃ−α,τ0
q ′,q ′ (A;w), define

a linear functional ,t on ḃα
p, q(A; w) by ,t (s) ≡ ∑

Q∈Q sQt̄Q for all s ∈ ḃα
p, q(A; w).

We only need to show that ‖,t‖(ḃα
p, q (A;w))∗ ≤ ‖t‖ḃ−α,1/p

∞,q′ (A;w)
.

For any (p, q) ∈ (0, 1] × (1, ∞), by Hölder’s inequality and (3.3), we have

|,t (s)| ≤
∑

j∈Z

∑

scale (Q)=− j

|Q|−α− 1
2 |sQ |[w(Q)]

1
p

1

[w(Q)]
1
p −1

|Q|α− 1
2 |tQ | |Q|

w(Q)

≤
∑

j∈Z

∑

scale (Q)=− j

|Q|−α− 1
2 |sQ |[w(Q)]

1
p

×
[

sup
scale (Q)=− j

|Q|α− 1
2 |sQ ||Q|[w(Q)]−

1
p

]

≤ ‖s‖ḃα
p, q (A;w)





∑

j∈Z

[

sup
scale (Q)=− j

|Q|α− 1
2 |sQ ||Q|[w(Q)]−

1
p

]q ′



1
q′

= ‖s‖ḃα
p, q (A;w)‖t‖ḃ−α,1/p

∞,q′ (A;w)
,

which implies that ‖,t‖(ḃα
p, q (A;w))∗ ≤ ‖t‖ḃ−α,1/p

∞,q′ (A;w)
.

Conversely, for any , ∈ (ḃα
p, q(A; w))∗, , must be of the form ,(s) ≡ ∑

Q∈Q sQ t̄Q
for some t ≡ {tQ}Q∈Q ⊂ C. Then, it is left to show ‖t‖ḃ−α,1/p

∞,q′ (A;w)
! ‖,‖(ḃα

p, q (A;w))∗ .
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Notice that

‖t‖ḃ−α,1/p
∞,q′ (A;w)

= sup
P∈Q






∞∑

j=− scale (P)

[

sup
scale (Q)=− j,Q∈T (P)

|tQ | |Q|α+ 1
2

[w(Q)]
1
p

]q ′



1
q′

.

Since for any P ∈ Q, there are finitely many cubes Q in T (P) with scale (Q) = − j ,
then for each j ≥ − scale (P), there exists a cube Q j satisfying that scale (Q j ) = − j
and Q j ∈ T (P) such that

sup
scale (Q)=− j,Q∈T (P)

|tQ | |Q|α+1/2

[w(Q)]1/p = |tQ j |
|Q j |α+1/2

[w(Q j )]1/p ,

and hence

‖t‖ḃ−α,1/p
∞,q′ (A;w)

= sup
P∈Q






∞∑

j=− scale (P)



|tQ j |
|Q j |α+ 1

2

[w(Q j )]
1
p




q ′



1
q′

= sup
P∈Q

sup
‖{sQ j } j≥− scale (P)‖,q ≤1

∣∣∣∣∣∣
tQ j

|Q j |α+ 1
2

[w(Q j )]
1
p

sQ j

∣∣∣∣∣∣

≤ ‖,‖(ḃα
p, q (A;w))∗

× sup
P∈Q

sup
‖{sQ j } j≥− scale (P)‖,q ≤1

∥∥∥∥∥∥

{

sQ
|Q|α+ 1

2

[w(Q)]
1
p

}

Q∈{Q j : j≥− scale (P)}

∥∥∥∥∥∥
ḃα

p, q (A; w)

.

However,

∥∥∥∥
{

sQ |Q|α+1/2[w(Q)]−1/p
}

Q∈{Q j : j≥− scale (P)}

∥∥∥∥
ḃα

p, q (A;w)

≤ ‖{sQ j } j≥− scale (P)‖,q .

Thus, we obtain ‖t‖ḃ−α,1/p
∞,q′ (A;w)

≤ ‖,‖(ḃα
p, q (A;w))∗ . This finishes the proof of Step 1.

Step 2. Proof of (ḃα
p, q(A; w))∗ = ḃ−α,1

p′,∞(A;w) for (p, q) ∈ (1, ∞) × (0, 1].
To show ḃ−α,1

p′,∞(A;w) ⊂ (ḃα
p, q(A; w))∗, for any t ∈ ḃ−α,1

p′,∞(A;w), we define a lin-

ear functional ,t on ḃα
p, q(A; w) by ,t (s) ≡ ∑

Q∈Q sQt̄Q for any s ∈ ḃα
p, q(A; w). We

only need to prove that ‖,t‖(ḃα
p, q (A;w))∗ ≤ ‖t‖ḃ−α,1

p′,∞(A;w)
. Indeed, for any p ∈ (1, ∞)
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and q ∈ (0, 1], by Hölder’s inequality and (3.3), we have

|,t (s)| ≤
∑

j∈Z

∑

scale (Q)=− j

|Q|−α− 1
2 |sQ |[w(Q)]

1
p |Q|α− 1

2 |tQ | |Q|
w(Q)

[w(Q)]1− 1
p

≤
∑

j∈Z




∑

scale (Q)=− j

(|Q|−α− 1
2 |sQ |)pw(Q)





1
p

× sup
j∈Z




∑

scale (Q)=− j

(
|Q|α− 1

2 |tQ | |Q|
w(Q)

)p′

w(Q)





1
p′

≤ ‖s‖ḃα
p, q (A;w)‖t‖ḃ−α,1

p′,∞(A;w)
,

which implies that ‖,t‖(ḃα
p, q (A;w))∗ ≤ ‖t‖ḃ−α,1

p′,∞(A;w)
.

Conversely, for any , ∈ (ḃα
p, q(A; w))∗, , must be of the form ,(s) ≡ ∑

Q∈Q sQ t̄Q
for some t ≡ {tQ}Q∈Q ⊂ C. Then, to complete the proof of Theorem 2.2, it suffices
to show that

‖t‖ḃ−α,1
p′,∞(A;w)

! ‖,‖(ḃα
p, q (A;w))∗ .

Indeed, we have

‖t‖ḃ−α,1
p′,∞(A;w)

= sup
j∈Z




∑

scale (Q)=− j

(

|Q|α− 1
2 |tQ | |Q|

[w(Q)]
1
p

)p′



1
p′

= sup
j∈Z

sup
‖{(s j )Q}Q∈{Q∈Q: scale (Q)=− j}‖,p ≤1

∣∣∣∣∣∣

∑

scale (Q)=− j

|Q|α− 1
2 t̄Q(s j )Q

|Q|
[w(Q)]

1
p

∣∣∣∣∣∣
≤ ‖,‖(ḃα

p, q (A;w))∗ sup
j∈Z

sup
‖{(s j )Q}Q∈{Q∈Q: scale (Q)=− j}‖,p ≤1

×

∥∥∥∥∥∥

{

|Q|α− 1
2 (s j )Q

|Q|
[w(Q)]

1
p

}

Q∈{Q∈Q: scale (Q)=− j}

∥∥∥∥∥∥
ḃα

p, q (A;w)

≤ ‖,‖(ḃα
p, q (A;w))∗ ,

where

∥∥{(s j )Q}Q∈{Q∈Q: scale (Q)=− j}
∥∥

,p ≡




∑

scale (Q)=− j

|(s j )Q |p




1/p

.
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From this, we deduce that ‖t‖ḃ−α,1
p′,∞(A;w)

≤ ‖,‖(ḃα
p, q (A;w))∗ and then complete the proof

for the case that (p, q) ∈ (1, ∞] × (0, 1].
Now combining the existing proved results for discrete Besov spaces and

Lemma 3.1, by a similar proof to that of [17, Theorem 5.13], we obtain the desired
result for Besov spaces, which completes the proof of Theorem 2.2. 67

4 Duality of Besov and Triebel–Lizorkin spaces associated with doubling
measures

This section focuses on a more general setting involving anisotropic Besov and
Triebel–Lizorkin spaces associated with ρA-doubling measures. We show that Theo-
rems 2.1 and 2.2 are still true with A∞(A) weights replaced by ρA-doubling measures.
Recall that ρA-doubling measures are first introduced in [2].

Definition 4.1 A non-negative Borel measure µ on Rn is called a ρA-doubling mea-
sure if there exists a nonnegative constant β ≡ β(µ) such that for all x ∈ Rn and
r > 0, µ(BρA (x, br)) ≤ bβµ(BρA(x, r)).

We point out that for any w ∈ A∞(A), dµ(x) ≡ w(x) dx (with respect to a quasi-
distance ρA) also defines a ρA-doubling measure albeit with a positive constant C (see
[7, Proposition 2.6(i)]).

Definition 4.2 Let α ∈ R, p, q ∈ (0, ∞) and µ be a ρA-doubling measure. The
spaces Ȧα

p,q(A;µ) and Ȧα,τ
p,q(A;µ), and their corresponding sequence spaces are

defined as in Definitions 2.4 and 2.5 with w(x) dx, w(P) and w(Q) replaced, respec-
tively, by dµ(x), µ(P) and µ(Q).

The spaces Ḟα
p,q(A;µ), Ḃα

p,q(A;µ) and their corresponding sequences spaces men-
tioned above were introduced, respectively, in [3,2].

Similarly to the proof of Theorems 2.1 and 2.2, we have the following conclusion.

Theorem 4.1 Let µ be a ρA-doubling measure, p, q, τ0 and α the same as in Theo-
rems 2.1 and 2.2. Then Theorems 2.1 and 2.2 still hold with those mentioned spaces
associated A∞ weight replaced by the corresponding spaces associated with
ρA-doubling measures as in Definition 4.2.

To prove Theorem 4.1, we first point out that, with a similar proof, Lemma 3.1 is
also true for the spaces associated with ρA-doubling measures. With this, the proof
of Theorem 4.1 is nearly the same as those of Theorems 2.1 and 2.2. We give some
details for the special cases for the reader’s convenience to show their differences.

Proof of Theorem 4.1 Since the proof is nearly verbatim repetition of the proofs of
Theorems 2.1 and 2.2, we only give details for ( ḟ α

p,q(A;µ))∗ = ḟ −α,0
p′,q ′ (A;µ) in the

case (p, q) ∈ (1, ∞) × (0, ∞).
We first prove that ḟ −α,0

p′,q ′ (A;µ) ⊂ ( ḟ α
p,q(A;µ))∗. For any t ≡ {tQ}Q∈Q ∈

ḟ −α,0
p′,q ′ (A;µ), define a linear functional ,t on ḟ α

p,q(A;µ) by ,t (s) ≡ ∑
Q∈Q sQ t̄Q
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for all s ∈ ḟ α
p,q(A;µ). By applying Hölder’s inequality twice for q ≥ 1, while for

q ∈ (0, 1), using the imbedding ḟ α
p,q(A;µ) → ḟ α

p,1(A;µ), we have

|,t (s)| ≤
∫

Rn

∑

Q∈Q
|Q|−α|sQ |χ̃Q(x)|Q|α|tQ | |Q|

µ(Q)
χ̃Q(x) dµ(x)

≤ ‖s‖ ḟ α
p,q (A;µ)‖t‖ ḟ −α,0

p′,q′ (A;µ)
,

which yields that ‖,t ‖( ḟ α
p,q (A;µ))∗ ≤ ‖t‖ ḟ −α,0

p′,q′ (A;µ)
, and hence ḟ −α,0

p′,q ′ (A;µ) ⊂
( ḟ α

p,q(A;µ))∗.
Conversely, since sequences with finite support are dense in ḟ α

p,q(A;µ), each
bounded linear functional , ∈ ( ḟ α

p,q(A;µ))∗ must be of the form ,(s) ≡ sQt̄Q for
some t ≡ {tQ}Q∈Q ⊂ C. It suffices to show that ‖t‖ f −α,0

p′,q′ (A;µ)
! ‖l‖( ḟ α

p,q (A;µ))∗ .

Let L p
µ(,q) be the space of all sequences { f j } j∈Z of functions on Rn such that

∥∥{ f j } j∈Z
∥∥

L p
µ(,q )

≡

∥∥∥∥∥∥∥





∑

j∈Z
| f j |q






1/q
∥∥∥∥∥∥∥

L p
µ(Rn)

< ∞.

We know that (L p
µ(,q))∗ = L p′

µ (,q ′
) for p ∈ (1, ∞) and q ∈ (0, ∞). Notice

that the map In : ḟ α
p, q(A; µ) → L p

µ(,q) defined by In(s) ≡ { f j } j , where f j ≡∑
scale (Q)=− j |Q|−αsQ χ̃Q for all j ∈ Z, is a linear isometry onto a subspace of

L p
µ(,q).
When p ∈ (1, ∞) and q ∈ [1, ∞), by the Hahn–Banach theorem, there exists an

,̃ ∈ (L p
µ(,q))∗ with ‖,̃‖( ḟ α

p,q (A;µ))∗ = ‖,‖( ḟ α
p,q (A;µ))∗ such that ,̃ ◦ In = ,. In other

words, there exists g ≡ {g j } j∈Z ∈ L p′
µ (,q ′

) with ‖g‖
L p′

µ (,q′
)
≤‖,‖( ḟ α

p,q (A;µ))∗ such that

for all s ∈ ḟ α
p,q(A;µ),

∑

Q∈Q
sQt̄Q =

∫

Rn

∑

j∈Z
f j (s)g j (x) dµ(x). (4.1)

By taking sQ=0 for all but one dilated cube, we obtain tQ=
∫

Q |Q|−α−1/2g j (x) dµ(x)

for all cubes Q with scale (Q) = − j .
For any f ∈ L1

loc (Rn;µ), define the anisotropic Hardy–Littlewood maximal func-
tion of f by Mµ( f )(x) ≡ supx∈Q∈Q

1
µ(Q)

∫
Q | f (y)| dµ(y). Then by [4, Proposition

4.3], we know that the vector-valued maximal inequality holds for Mµ. Then, by (4.1)
and the vector-valued maximal inequality for Mµ with p′ ∈ (1, ∞) and q ′ ∈ (1, ∞],
we obtain that

‖t‖ ḟ −α,0
p′,q′ (A;µ)

≤ ‖{Mµ(g j )} j∈Z‖
L p′

µ (,q′
)
! ‖g‖

L p′
µ (,q′

)
! ‖,‖( ḟ α

p,q (A;µ))∗ ,

which implies that ( ḟ α
p,q(A;µ))∗ ⊂ ḟ −α,0

p′,q ′ (A;µ).
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When p ∈ (1, ∞) and q ∈ (0, 1), similarly to Step 1 of the proof for Theorem 2.1,
we also obtain ( ḟ α

p,q(A;µ))∗ ⊂ ḟ −α,0
p′,q ′ (A;µ), and hence complete the proof of The-

orem 4.1. 67

We point out that when dilation A admits a Meyer-type wavelet 2, Bownik [4,
Theorem 4.10] determined the dual spaces of Triebel–Lizorkin spaces with ρA dou-
bling measures under the pairing

〈 f, g〉 ≡
∑

ψ∈2

∑

Q∈Q
〈 f, ψQ〉〈ψQ, g〉 [µ(Q)]max{1, 1

p }

|Q| . (4.2)

Theorem 4.1 identifies the dual spaces of Ḟα
p,q(A;µ) for arbitrary dilation A under the

pairing 〈 f, g〉 ≡
∫
Rn f (x)g(x) dx . Since the pairings used in [4] and here are different,

the dual spaces also appear differently. A question posed in [4, p. 155] asks whether the
duality (4.2) holds without the assumption on the existence of Meyer-type wavelets.
While our paper does not answer this question it provides the duality result without
this extra assumption. The duality in Theorem 4.1 for anisotropic Besov spaces with
doubling measures is new.

As an application of Theorem 4.1, let us discuss a particular class of Triebel–
Lizorkin spaces associated with Hardy spaces. There are several equivalent defini-
tions of Hardy spaces. The weighted Hardy spaces associated with A∞(A) defined
via maximal functions or the atomic decomposition were studied in [7]. We define
two kinds of Hardy spaces with ρA-doubling measure µ via the Littlewood–Paley
g-function space and via the square function.

Definition 4.3 Let p ∈ (0, ∞), ϕ ∈ S∞(Rn) and µ be a ρA-doubling measure.
(i) Define the anisotropic Hardy space H̃ p(A;µ) with a ρA-doubling measure µ

via the Littlewood–Paley g-function by

H̃ p(A;µ) ≡ { f ∈ S ′(Rn) : ‖ f ‖H̃ p(A;µ) ≡ ‖gϕ( f )‖L p
µ(Rn) < ∞},

where the anisotropic Littlewood–Paley g-function gϕ( f ) of f is defined by

gϕ( f ) ≡




∑

j∈Z
|ϕ j ∗ f |2




1/2

;

(ii) Define the anisotropic Hardy space H p(A;µ) with a ρA-doubling measure µ

via the square function by

H p(A;µ) ≡ { f ∈ S ′(Rn) : ‖ f ‖H p(A;µ) ≡ ‖Sϕ( f )‖L p
µ(Rn) < ∞},
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where for any x ∈ Rn , the anisotropic square function Sϕ( f ) of f is defined by

Sϕ( f )(x) ≡






∑

k∈Z
bk

∫

Bρ(x,b−k )

| f ∗ ϕk(y)|2 dy






1/2

.

Corollary 4.1 Let p ∈ (0, ∞) and µ be a ρA-doubling measure. Then,

(i) H p(A;µ) = H̃ p(A;µ) = Ḟ0
p,2(A;µ) with equivalent norms;

(ii) (H p(A;µ))∗ = Ḟ0,1/p−1/2
2,2 (A;µ) in the sense of (2.3).

A weighted anisotropic product version of the first equality in Corollary 4.1(i) has
been obtained in [26, Theorem 2.2]. With an obvious modification on its proof therein,
namely, via replacing the weighted product measure in the proof of [26, Theorem 2.2]
by dµ(x) here and then repeating the proof therein, we have H p(A;µ) = H̃ p(A;µ)

with equivalent norms. The spaces H̃ p(A;µ) = Ḟ0
p,2(A;µ) with equivalent norms

follow directly from their definitions, which completes the proof of Corollary 4.1(i).
Corollary 4.1(ii) is a simple corollary of Corollary 4.1(i) and Theorem 4.1. We omit
the details.

Acknowledgments The authors would like to express their gratitude to the anonymous referee who has
brought their attention to the work by Bui [9].

References

1. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), vi+122 (2003)
2. Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250, 539–

571 (2005)
3. Bownik, M.: Anisotropic Triebel–Lizorkin spaces with doubling measures. J. Geom. Anal. 17, 387–

424 (2007)
4. Bownik, M.: Duality and interpolation of anisotropic Triebel–Lizorkin spaces. Math. Z. 259, 131–169

(2008)
5. Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces.

Trans. Am. Math. Soc. 358, 1469–1510 (2006)
6. Bownik, M., Lemvig, J.: Affine and quasi-affine frames for rational dilations. Trans. Am. Math. Soc.

(2011, in press)
7. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in

boundedness of sublinear operators. Indiana Univ. Math. J. 57, 3065–3100 (2008)
8. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness

of sublinear operators. Math. Nachr. 283, 392–442 (2010)
9. Bui, H.Q.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J.

12, 581–605 (1982)
10. Calderón, A.-P.: An atomic decomposition of distributions in parabolic H p spaces. Adv. Math. 25, 216–

225 (1977)
11. Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math.

16, 1–64 (1975)
12. Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv.

Math. 24, 101–171 (1977)
13. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc.

83, 569–645 (1977)



244 B. Li et al.

14. Essén, M., Janson, S., Peng, L., Xiao, J.: Q spaces of several real variables. Indiana Univ. Math. J.
49, 575–615 (2000)

15. Farkas, W.: Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr.
209, 83–113 (2000)

16. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Group, Mathematical Notes, vol. 28.
Princeton University Press, Princeton (1982)

17. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct.
Anal. 93, 34–170 (1990)

18. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces. CBMS
Regional Conference Series in Mathematics, vol. 79. American Mathematical Society, Providence
(1991)

19. Frazier, M., Roudenko, S.: Matrix-weighted Besov spaces and conditions of A p type for 0 < p≤1.
Indiana Univ. Math. J. 53, 1225–1254 (2004)

20. García-Cuerva, J.: Weighted H p spaces. Dissertationes Math. (Rozprawy Mat.) 162, 1–63 (1979)
21. García-Cuerva, J., Martell, J.M.: Wavelet characterization of weighted spaces. J. Geom. Anal. 11, 241–

264 (2001)
22. Grafakos, L.: Modern Fourier Analysis, 2nd ed., Graduate Texts in Math., vol. 250, Springer Press,

New York (2008)
23. Haroske, D.D., Piotrowska, I.: Atomic decompositions of function spaces with Muckenhoupt weights,

and some relation to fractal analysis. Math. Nachr. 281, 1476–1494 (2008)
24. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces

with Muckenhoupt weights. I. Rev. Math. Complut. 21, 135–177 (2008)
25. Haroske, D.D., Tamási, E.: Wavelet frames for distributions in anisotropic Besov spaces. Georgian

Math. J. 12, 637–658 (2005)
26. Li, B., Bownik, M., Yang, D.: Littlewood–Paley characterization and duality of weighted anisotropic

product Hardy spaces (submitted)
27. Lee, M., Lin, C., Lin, Y.: A wavelet characterization for the dual of weighted Hardy spaces. Proc. Am.

Math. Soc. 137, 4219–4225 (2009)
28. Roudenko, S.: Duality of matrix-weighted Besov spaces. Studia Math. 160, 129–156 (2004)
29. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester

(1987)
30. Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type spaces and Triebel–Lizorkin-type

spaces. J. Math. Anal. Appl. 363, 73–85 (2010)
31. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University

Press, Princeton (1971)
32. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)
33. Triebel, H.: Theory of Function Spaces II. Birkhäuser Verlag, Basel (1992)
34. Triebel, H.: Theory of Function Spaces III. Birkhäuser Verlag, Basel (2006)
35. Verbitsky, I.: Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization

through L p∞. Integr. Equ. Oper. Theory 15, 124–153 (1992)
36. Verbitsky, I.: Imbedding and multiplier theorems for discrete Littlewood–Paley spaces. Pac. J. Math.

176, 529–556 (1996)
37. Vybíral, J.: Function spaces with dominating mixed smoothness. Dissertationes Math. (Rozprawy Mat.)

436, 1–73 (2006)
38. Vybíral, J., Sickel, W.: Traces of functions with a dominating mixed derivative in R3. Czechoslovak

Math. J. 57(132), 1239–1273 (2007)
39. Wang, W.: A discrete transform and Triebel–Lizorkin spaces on the bidisc. Trans. Am. Math. Soc.

347, 1351–1364 (1995)
40. Wu, S.: A wavelet characterization for weighted Hardy spaces. Rev. Math. Iberoamericana 8, 329–349

(1992)
41. Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces.

J. Funct. Anal. 255, 2760–2809 (2008)
42. Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces.

Math. Z. 265, 451–480 (2010)
43. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture

Notes in Mathematics, vol. 2005. Springer, Berlin (2010)


	Duality of weighted anisotropic Besov and Triebel--Lizorkin spaces
	Abstract
	1 Introduction
	2 Main results
	3 Proofs of Theorems 2.1 and 2.2
	4 Duality of Besov and Triebel--Lizorkin spaces associated with doubling measures
	Acknowledgments
	References


